LECTURE / DISCUSSION

Simultaneous Equations

Simultaneous Equations

Example 1

Gas consumption $=\alpha+\beta$ (thermostat setting) $+\theta$ (sq. ft.) $+\varepsilon$
Thermostat setting $=\eta+\phi($ income $)+\mu$
ε and μ are correlated.

Problem: Because μ is correlated with ε, and μ affects thermostat setting, thermostat setting is correlated with ε.

Example 2

Price elasticity of telecommunications demand:

$$
\begin{gathered}
\mathrm{MOU}=\alpha+\beta(\text { price })+\theta(\text { Nemply })+\varepsilon \\
\text { Price }=\lambda+\varphi(\mathrm{MOU})+\eta(\text { region dum. })+\mu
\end{gathered}
$$

ε and μ are correlated.

MOU

Demand

Problem: Because μ is correlated with ε, and μ affects price, price is correlated with ε.

Example 3

Aggregate demand and supply:

$$
\begin{array}{ll}
\text { Demand: } & \mathrm{Q}=\alpha+\beta \mathrm{P}+\varepsilon \\
\text { Supply: } & \mathrm{P}=\lambda+\theta \mathrm{Q}+\mu
\end{array}
$$

Solution: Apply IV /2SLS

$$
\begin{aligned}
& M=\alpha+\beta P+\theta N+\varepsilon \\
& P=\lambda+\varphi M+\eta R+\mu
\end{aligned}
$$

Endogenous: M, P
Exogenous: R, N
Step 1: Regress endogenous variables against all the exogenous variables.

$$
\begin{gathered}
M=a+b R+c N+e \\
P=d+f R+g N+u \\
\text { Get } \hat{M}, \hat{P}
\end{gathered}
$$

Step 2: Regress original equations, replacing endogenous explanatory variables M and P with predicted values \hat{M} and \hat{P}.

$$
\begin{aligned}
& \mathrm{M}=\alpha+\beta \hat{\mathrm{P}}+\theta \mathrm{N}+\varepsilon^{*} \\
& \mathrm{P}=\lambda+\varphi \hat{\mathrm{M}}+\eta \mathrm{R}+\mu^{*}
\end{aligned}
$$

Or apply IV directly.

Regress $\quad \mathrm{M}=\alpha+\beta \mathrm{P}+\theta \mathrm{N}+\varepsilon$ with instruments N and R
and $\quad P=\lambda+\phi M+\eta R+\mu$ with instruments N and R .

TSP commands:

$$
\begin{aligned}
& \text { 2sls(inst }=(c, n, r)) m c, p, n \text {; } \\
& \text { 2sls(inst }=(c, n, r)) p \mathrm{c}, \mathrm{~m}, \mathrm{r} \text {; }
\end{aligned}
$$

or

$$
\begin{aligned}
& \text { inst } m \mathrm{c}, \mathrm{p}, \mathrm{n} \text { invr } \mathrm{c}, \mathrm{n}, \mathrm{r} \text {; } \\
& \text { inst } \mathrm{c}, \mathrm{~m}, \mathrm{r} \text { invr } \mathrm{c}, \mathrm{n}, \mathrm{r} \text {; }
\end{aligned}
$$

Reduced-Form Equation

Structural model: causal relationships

$$
\begin{aligned}
& M=\alpha+\beta P+\theta N+\varepsilon \\
& P=\lambda+\phi M+\eta R+\mu
\end{aligned}
$$

Structural parameters: $\alpha, \beta, \theta, \lambda, \phi, \eta$.

Reduced-form

 equations: endogenous variables expressed as a function of exogenous variables.$$
\begin{gathered}
\mathrm{M}=\alpha+\beta(\lambda+\varphi \mathrm{M}+\eta \mathrm{R}+\mu)+\theta \mathrm{N}+\varepsilon \\
\mathrm{M}=\alpha+\beta \lambda+\beta \varphi \mathrm{M}+\beta \eta \mathrm{R}+\theta \mathrm{N}+\beta \mu+\varepsilon \\
(1-\beta \varphi) \mathrm{M}=\alpha+\beta \lambda+\beta \eta \mathrm{R}+\theta \mathrm{N}+\beta \mu+\varepsilon \\
\mathrm{M}=\left(\frac{\alpha+\beta \lambda}{1-\beta \varphi}\right)+\left(\frac{\beta \eta}{1-\beta \varphi}\right) \mathrm{R}+\left(\frac{\theta}{1-\beta \varphi}\right) \mathrm{N}+\left(\frac{\beta \mu+\varepsilon}{1-\beta \varphi}\right) \\
\mathrm{M}=\mathrm{a}+\mathrm{bR}+\mathrm{cN}+\mathrm{e}
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{P}=\left(\frac{\lambda+\varphi \alpha}{1-\beta \varphi}\right)+\left(\frac{\eta}{1-\beta \varphi}\right) \mathrm{R}+\left(\frac{\varphi \theta}{1-\beta \varphi}\right) \mathrm{N}+\left(\frac{\varphi \varepsilon+\mu}{1-\beta \varphi}\right) \\
& \mathrm{P}=\mathrm{d}+\mathrm{fR}+\mathrm{gN}+\mathrm{u}+\mathrm{u}
\end{aligned}
$$

Reduced form parameters: a, b, c, d, f, g.

1. Reduced-form equations are estimated in first step of 2SLS. Structural equations are estimated in second step of 2SLS.
2. Reduced-form equations can be estimated by OLS because exogenous variables are uncorrelated with errors.
3. There is a relation between the reduced-form parameters and the structural parameters.

For example:

$$
c=\frac{\theta}{1-\beta \varphi}
$$

Reduced form parameters give the full effect of a change in an exogenous variable.

$$
\begin{aligned}
& M=\alpha+\beta P+\theta N+\varepsilon \\
& P=\lambda+\phi M+\eta R+\mu
\end{aligned}
$$

N rises by 1 unit:

> M increases by θ
> P increases by $\phi \theta$
> M increases by $\beta[\phi \theta]$
> P increases by $\phi[\beta \phi \theta]=\beta \phi^{2} \theta$
> M increases by $\beta\left[\beta \phi^{2} \theta\right]=\beta^{2} \phi^{2} \theta$
> P increases by $\phi\left[\beta^{2} \phi^{2} \theta\right]=\beta^{2} \phi^{3} \theta$
> M increases by $\beta\left[\beta^{2} \phi^{3} \theta\right]=\beta^{3} \phi^{3} \theta$

Total effect on M

$$
\begin{aligned}
\theta+\beta \varphi \theta+(\beta \varphi)^{2} \theta+(\beta \varphi)^{3} \theta+\ldots & =\sum_{\mathrm{t}=0}^{\infty}(\beta \varphi)^{\mathrm{t}} \theta \\
& =\frac{\theta}{1-\beta \varphi}
\end{aligned}
$$

Total effect on P

$$
\begin{aligned}
\varphi \theta+\beta \varphi^{2} \theta+\beta^{2} \varphi^{3} \theta & =\varphi \theta+(\beta \varphi) \varphi \theta+(\beta \varphi)^{2} \varphi \theta \\
& =\sum_{\mathrm{t}=0}^{\infty}(\beta \varphi)^{\mathrm{t}} \varphi \theta=\frac{\varphi \theta}{1-\beta \varphi}
\end{aligned}
$$

Indirect Least Squares

Sometimes, structural parameters can be calculated from reduced-form parameters.
$a=\frac{\alpha+\beta \lambda}{1-\beta \varphi}$
$d=\frac{\lambda+\varphi \alpha}{1-\beta \varphi}$
$b=\frac{\beta \eta}{1-\beta \varphi}$
$f=\frac{\eta}{1-\beta \varphi}$
$c=\frac{\theta}{1-\beta \varphi}$
$g=\frac{\varphi \theta}{1-\beta \varphi}$

Six equations, six unknowns.

$$
\frac{\mathrm{b}}{\mathrm{f}}=\beta \quad \frac{\mathrm{g}}{\mathrm{c}}=\varphi \quad \text { etc. }
$$

Example:

if

$$
\begin{aligned}
& \hat{\mathrm{a}}=4 \\
& \hat{\mathrm{~b}}=3 \\
& \hat{\mathrm{c}}=7
\end{aligned}
$$

$$
\hat{\mathrm{d}}=8
$$

$$
\hat{\mathrm{f}}=2
$$

$$
\hat{\mathrm{g}}=3.5
$$

then

$$
\begin{aligned}
& \hat{\alpha}=-8 . \\
& \hat{\beta}=1.5 \\
& \hat{\theta}=1.75
\end{aligned}
$$

$$
\hat{\lambda}=6
$$

$$
\hat{\varphi}=0.50
$$

$$
\hat{\eta}=0.50
$$

Note: ILS gives same estimates as 2SLS.

Cannot Always Apply ILS

I. Add an exogenous variable:

$$
\begin{gathered}
M=\alpha+\beta P+\theta N+\tau I+\varepsilon \\
P=\lambda+\varphi M+\eta R+\mu \\
7 \text { structural parameters }
\end{gathered}
$$

Reduced-form equations:

$$
\begin{gathered}
\mathrm{M}=\mathrm{a}+\mathrm{bN}+\mathrm{cI}+\mathrm{dR}+\mathrm{e} \\
\mathrm{P}=\mathrm{f}+\mathrm{gN}+\mathrm{hI}+\ell \mathrm{R}+\mathrm{u} \\
8 \text { reduced-form parameters }
\end{gathered}
$$

Eight equations for seven unknowns. No solution.
Can still apply 2SLS.
2SLS finds structural parameters that best fit the reduced form parameters.
II. Omit an exogenous variable:

$$
\begin{gathered}
M=\alpha+\beta P+\varepsilon \\
P=\lambda+\varphi M+\eta R+\mu
\end{gathered}
$$

5 structural parameters

Reduced-form equations

$$
\begin{gathered}
\text { M }=a+b R+e \\
P=c+d R+u \\
4 \text { reduced-form parameters }
\end{gathered}
$$

Four equations, five unknowns. Infinite number of solutions.

Also: Cannot apply 2SLS in Case II
Step 1: $\quad \hat{M}=\hat{a}+\hat{b} R$

$$
\hat{P}=\hat{c}+\hat{d} R
$$

Step 2: $\quad \mathrm{M}=\alpha+\beta \hat{\mathrm{P}}+\boldsymbol{\varepsilon}$

$$
\begin{aligned}
P & =\lambda+\varphi \hat{M}+\eta R+\mu \\
& =\lambda+\varphi \hat{a}+\varphi \hat{b} R+\eta R+\mu \\
& =(\lambda+\varphi \hat{a})+(\varphi \hat{b}+\eta) R+\mu
\end{aligned}
$$

Cannot estimate ϕ and η separately.

Identification

Name		Estimation method
Just identified	NRFP $=$ NSP	2SLS $=$ ILS
Over identified	NRFP $>$ NSP	2SLS
Under identified	NRFP < NSP	Cannot estimate

NRFP: Number of reduced form parameters.
NSP: Number of structural parameters.

Efficiency

2SLS gives unbiased estimate.
But 2SLS ignores information contained in correlation between errors. So, 2SLS is not efficient.

$$
\begin{aligned}
M= & \alpha+\beta P+\theta N+\varepsilon \\
P= & \lambda+\varphi M+\eta R+\mu \\
& \varepsilon, \mu \text { correlated }
\end{aligned}
$$

If we knew μ was high, we would know that ε is probably also high and hence M is higher than predicted from P and N only.

Similarly for ε and P .

3SLS: An Efficient Estimator

Step 1: Estimate reduced form equations. Get $\hat{\mathrm{M}}, \hat{\mathrm{P}}$.
Step 2: Estimate structural equations with $\hat{\mathrm{M}}$ and $\hat{\mathrm{P}}$.
Save residuals from these regressions, labeled $\hat{\varepsilon}$ and $\hat{\mu}$.

Step 3: Re-estimate structural equations with $\hat{\varepsilon}$ and $\hat{\mu}$ included as explanatory variables.

$$
\begin{aligned}
& M=\alpha+\beta \hat{P}+\theta N+\rho \hat{\mu}+\varepsilon^{* *} \\
& P=\lambda+\varphi \hat{M}+\eta R+\tau \hat{\varepsilon}+\mu^{* *}
\end{aligned}
$$

Because ε and μ are correlated, $\hat{\mu}$ provides information for explaining M and $\hat{\varepsilon}$ provides information for explaining P. Including this information makes the estimates better.

Special Case: Seemingly Unrelated Equations

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{n}}=\alpha+\beta \mathrm{X}_{\mathrm{n}}+\varepsilon_{\mathrm{n}} \\
& \mathrm{~W}_{\mathrm{n}}=\lambda+\theta \mathrm{S}_{\mathrm{n}}+\mu_{\mathrm{n}}
\end{aligned}
$$

No endogenous explanatory variables. But: ε_{n} and μ_{n} are correlated.

Example: $\quad Y_{n}=$ temperature in San Francisco.
$\mathrm{W}_{\mathrm{n}}=$ temperature in Monterey.
3SLS can be done in two steps, because reduced-form equations are the same as the structural equations.

Step 1: Estimate equations by OLS. Get residuals $\hat{\varepsilon}_{\mathrm{n}}$ and $\hat{\mu}_{\mathrm{n}}$.

Step 2: Re-estimate equations including residuals as explanatory variables:

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{n}}=\alpha+\beta \mathrm{X}_{\mathrm{n}}+\rho \hat{\mu}_{\mathrm{n}}+\varepsilon_{\mathrm{n}}^{*} \\
& \mathrm{~W}_{\mathrm{n}}=\lambda+\theta \mathrm{S}_{\mathrm{n}}+\tau \hat{\varepsilon}_{\mathrm{n}}+\mu_{\mathrm{n}}^{*}
\end{aligned}
$$

