Versatec Ultra

UCV - Geothermal Military Unit Geothermal/Water Source Heat Pump Commercial 1.5 to 3.5 Tons

Installation Information

Water Piping Connections

Hot Water Connections

Electrical

Startup Procedures

Troubleshooting

Preventive Maintenance

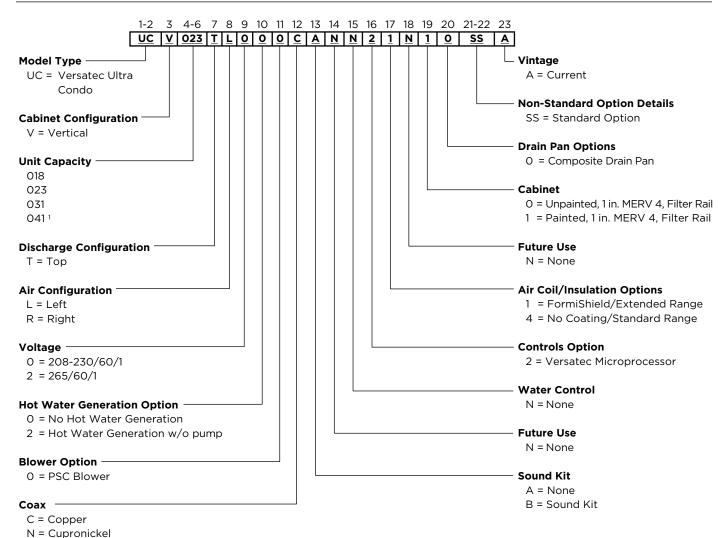


Table of Contents

Model Nomenclature
General Installation Information
Dimensional Data
Duct System
Water Piping
Water Quality 8
Condensate Drain 8
System Cleaning and Flushing
Open Loop Ground Water Systems10
Hot Water Generator Connections
Electrical Connections
Electrical Data
Blower Performance Data14
Setting Blower Speed
Wiring Schematic15
Controls - Versatec Microprocessor
Unit Startup19
Operating Parameters
Operating Limits
Pressure Drop
Compressor and Thermistor Resistance2
Heat of Extraction/Rejection Data
Refrigerant Circuit Guideline
Reference Calculations and Legend
Startup/Troubleshooting Form
Troubleshooting
Preventive Maintenance
Replacement Procedures
Service Parts

Model Nomenclature

NOTE: 1 UCV041 not available in 265/60/1

General Installation Information

Safety Considerations

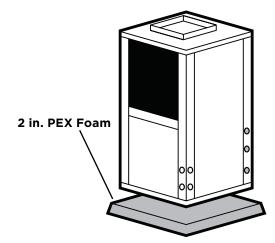
WARNING: Before performing service or maintenance operations on a system, turn off main power switches to the indoor unit. If applicable, turn off the accessory heater power switch. Electrical shock could cause personal injury.

Installing and servicing heating and air conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair or service heating and air conditioning equipment. Untrained personnel can perform the basic maintenance functions of cleaning coils and cleaning and replacing filters. All other operations should be performed by trained service personnel. When working on heating and air conditioning equipment, observe precautions in the literature, tags and labels attached to the unit and other safety precautions that may apply.

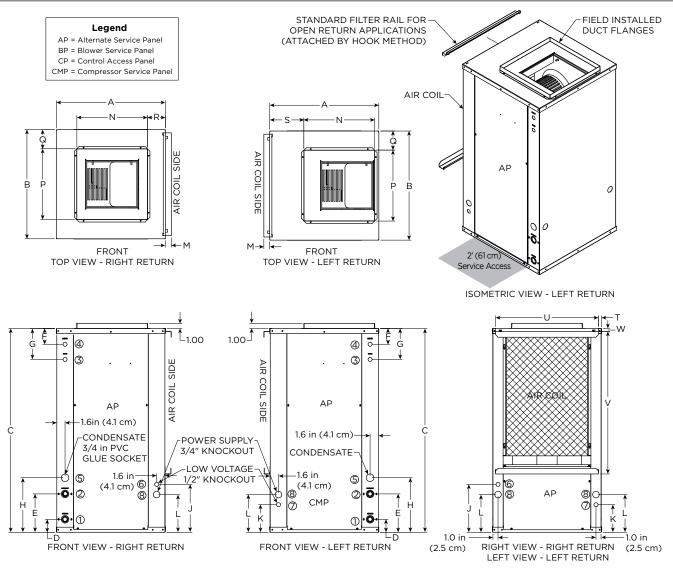
Follow all safety codes. Wear safety glasses and work gloves. Use a quenching cloth for brazing operations and have a fire extinguisher available.

Moving and Storage

Move units in the normal "up" orientation. Vertical units may be stored one upon another to a maximum height of two units. Do not attempt to move units while stacked. When the equipment is received, all items should be carefully checked against the bill of lading to be sure all crates and cartons have been received. Examine units for shipping damage, removing the units from the packaging if necessary. Units in question should also be internally inspected. If any damage is noted, the carrier should make the proper notation on the delivery receipt, acknowledging the damage.


Unit Location

Locate the unit in an indoor area that allows for easy removal of the filter and access panels. Location should have enough space for service personnel to perform maintenance or repair. Provide sufficient room to make water, electrical and duct connection(s). If the unit is located in a confined space, such as a closet, provisions must be made for return air to freely enter the space by means of a louvered door, etc. Any access panel screws that would be difficult to remove after the unit is installed should be removed prior to setting the unit. **NOTE: Units should not be located in unconditioned spaces.**


Installing Vertical Units

Vertical units are available in left or right air return configurations. Top flow vertical units should be mounted level on a vibration absorbing pad slightly larger than the base to provide isolation between the unit and the floor. It is not necessary to anchor the unit to the floor (see figure below).

Dimensional Data

		Overall Cabinet			Water Connections							Electrical Knockouts		
Vertical Models		1			1	2	3	4	5				7	8
		Α	В	С	D	E	F	G	н	Loop	Knock- out	J	к	L
		Width	Depth	Height**	In	Out	HWG In	HWG Out	Cond- ensate	Water FPT	HWG Provisions	1/2 in. cond	1/2 in. cond	1 in. cond
010 071	in.	21.5	21.5	36.2	2.6	7.6	3.1	6.1	10.8	3/4"	0.875	9.4	5.4	7.4
018-031	cm.	54.6	54.6	91.9	6.6	19.3	7.9	15.5	27.4	19.1 mm	22.2 mm	23.9	13.7	18.8
0.41	in.	21.5	21.5	40.2	2.6	7.6	3.1	6.1	10.8	3/4"	0.875	9.4	5.4	7.4
041	cm.	54.6	54.6	102.1	6.6	19.3	7.9	15.5	27.4	19.1 mm	22.2 mm	23.9	13.7	18.8

				Disc	harge Connec	tion			Return Co	nnection*			
Vertical Models			duct flange installed (±0.10 in)					using deluxe filter rack (±0.10 in)					
		M N		P	Q	R	S	Т	U	UVV			
		Filter Rack Width	Supply Width	Supply Depth					Return Depth	Return Height			
010 071	in.	1.2	14.0	14.0	3.8	3.5	6.7	0.6	20.2	24.0	0.6		
018-031	cm.	3.0	35.6	35.6	9.7	8.9	17.0	1.5	51.3	61.0	1.5		
0.41	in.	1.2	14.0	14.0	3.8	3.5	6.7	0.6	20.2	28.0	0.6		
041	cm.	3.0	35.6	35.6	9.7	8.9	17.0	1.5	51.3	71.1	1.5		

Condensate is 3/4 in. PVC female glue socket and is switchable from side to front.

9/2/10

^{*}Dimensions for return connections are for a standard rail design with open return application only.

The open filter rail, used in non-ducted returns, extends 1.2 in. [3.11 cm] from the unit.

^{**}Discharge flange is field installed and extends 1 in. (25.4 mm) from top of cabinet.

Duct System

An air outlet collar is provided on vertical top flow units to facilitate a duct connection. A flexible connector is recommended for discharge duct connections on metal duct systems. The return air filter rails are designed for open return applications and not intended for use with ductwork. The filter rail is designed to be easily installed without using a screw.

Uninsulated duct should be insulated with a minimum of 1-inch duct insulation. Application of the unit to uninsulated ductwork in an unconditioned space is not recommended as the unit's performance will be adversely affected. If the unit is connected to existing ductwork, check the duct system to ensure that it has the capacity to accommodate the air required for the unit application. If the duct is too small, as in the replacement of heating only systems, larger ductwork

should be installed. All existing ductwork should be checked for leaks and repaired if necessary.

The duct system should be sized to handle the design airflow quietly and efficiently. To maximize sound attenuation of the unit blower, the supply plenum should include an internal duct liner of fiberglass or constructed of ductboard for the first few feet. On systems employing a sheet metal duct system, canvas connectors should be used between the unit and the ductwork. If air noise or excessive airflow is a problem, the blower speed can be changed.

CAUTION: Be sure to remove the shipping material from the blower discharge before connecting ductwork.

Water Piping

The proper water flow must be provided to each unit whenever the unit operates. To assure proper flow, use pressure/temperature ports to determine the flow rate. These ports should be located at the supply and return water connections on the unit. The proper flow rate cannot be accurately set without measuring the water pressure drop through the refrigerant-to-water heat exchanger.

All source water connections on commercial units are fittings that accept a male pipe thread (MPT). Insert the connectors by hand, then tighten the fitting with a wrench to provide a leakproof joint. When connecting to an open loop (groundwater) system, thread any copper MPT fitting into the connector and tighten in the same manner as described above.

Water Quality

In ground water situations where scaling could be heavy or where biological growth such as iron bacteria will be present, a closed loop system is recommended. The heat exchanger coils in ground water systems may, over a period of time, lose heat exchange capabilities due to a buildup of mineral deposits inside. These can be cleaned, but only by a qualified service mechanic, as special solutions and pumping equipment are required. Hot water generator coils can likewise become scaled and possibly plugged. In areas

with extremely hard water, the owner should be informed that the heat exchanger may require occasional flushing.

Units with cupronickel heat exchangers are recommended for open loop applications due to the increased resistance to build-up and corrosion, along with reduced wear caused by acid cleaning. Failure to adhere to the guidelines in the water quality table could result in loss of warranty.

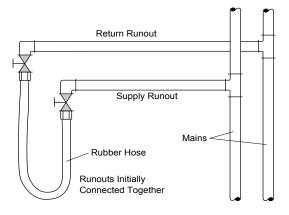
Material		Copper	90/10 Cupro-Nickel	316 Stainless Steel	
рН	Acidity/Alkalinity	7- 9	7 - 9	7 - 9	
Scaling	Calcium and Magnesium Carbonate	(Total Hardness) less than 350 ppm	(Total Hardness) less than 350 ppm	(Total Hardness) less than 350 ppm	
	Hydrogen Sulfide	Less than .5 ppm (rotten egg smell appears at 0.5 PPM)	10 - 50 ppm	Less than 1 ppm	
	Sulfates	Less than 125 ppm	Less than 125 ppm	Less than 200 ppm	
	Chlorine	Less than .5 ppm	Less than .5 ppm	Less than .5 ppm	
	Chlorides	Less than 20 ppm	Less than125 ppm	Less than 300 ppm	
	Carbon Dioxide	Less than 50 ppm	10 - 50 ppm	10- 50 ppm	
	Ammonia	Less than 2 ppm	Less than 2 ppm	Less than 20 ppm	
Corrosion	Ammonia Chloride	Less than .5 ppm	Less than .5 ppm	Less than .5 ppm	
	Ammonia Nitrate	Less than .5 ppm	Less than .5 ppm	Less than .5 ppm	
	Ammonia Hydroxide	Less than .5 ppm	Less than .5 ppm	Less than .5 ppm	
	Ammonia Sulfate	Less than .5 ppm	Less than .5 ppm	Less than .5 ppm	
	Total Dissolved Solids (TDS)	Less than 1000 ppm	1000-1500 ppm	1000-1500 ppm	
	LSI Index	⁺0.5 to ⁻.05	⁺0.5 to ⁻.05	⁺0.5 to ⁻.05	
Iron Fouling	Iron, Fe ² + (Ferrous) Bacterial Iron Potential	< .2ppm	< .2 ppm	< .2 ppm	
(Biological Growth)	Iron Oxide	Less than 1 ppm. Above this level	Less than 1 ppm. Above this level	Less than 1 ppm. Above this level	
(Biological Glowth)	II ONIGE	deposition will occur.	deposition will occur.	deposition will occur.	
Erosion	Suspended Solids	Less than 10 ppm and filtered for max of	Less than 10 ppm and filtered for max of	Less than 10 ppm and filtered for max of	
Liosion	Suspended Solids	600 micron size	600 micron size	600 micron size	
	Threshold Velocity (Fresh Water)	< 6 ft/sec	< 6 ft/sec	<6 ft/sec	

Note:

Grains = PPM divided by 17 mg/l is equivalent to PPM

Condensate Drain

The internal condensate drain assembly consists of a drain tube which is connected to the drain pan, a 3/4 in. PVC female adapter and a flexible connecting hose. The female adapter may exit either the front or the side of the cabinet. The adapter should be glued to the field-installed PVC condensate piping. A condensate hose is inside all cabinets as a trapping loop; therefore, an external trap is not necessary.


System Cleaning and Flushing

Cleaning and Flushing

Prior to start up of any heat pump, the water circulating system must be cleaned and flushed of all dirt and debris.

If the system is equipped with water shutoff valves, the supply and return runouts must be connected together at each unit location (This will prevent the introduction of dirt into the unit, see Flushing with Water Shutoff Valve Equipped Systems illustration). The system should be filled at the water make-up connection with all air vents open. After filling, vents should be closed.

Flushing with Water Shutoff Valve Equipped Systems

The contractor should start the main circulator with the pressure reducing valve makeup open. Vents should be checked in sequence to bleed off any trapped air and to verify circulation through all components of the system.

As water circulates through the system, the contractor should check and repair any leaks found in the piping system. Drain(s) at the lowest point(s) in the system should be opened for initial flush and blowdown, making sure water fill valves are set at the same rate. Check the pressure gauge at the pump suction and manually adjust the makeup water valve to hold the same positive pressure both before and after opening the drain valves. Flushing should continue for at least two hours, or longer if required, until drain water is clean and clear.

The supplemental heater and/or circulator pump, if used, should be shut off. All drains and vents should be opened to completely drain the system. Short-circuited supply and return runouts should now be connected to the unit supply and return connections.

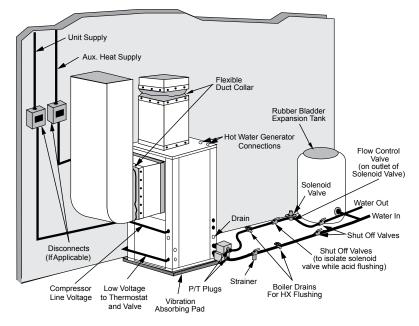
Refill the system with clean water. Test the system water for acidity and treat as required to leave the water slightly alkaline (pH 7.5 to 8.5). The specified percentage of antifreeze may also be added at this time. Use commercial grade antifreeze designed for HVAC systems only. Environol™ brand antifreeze is recommended.

Once the system has been filled with clean water and antifreeze (if used), precautions should be taken to protect the system from dirty water conditions. Dirty water will result in system-wide degradation of performance, and solids may clog valves, strainers, flow regulators, etc. Additionally, the heat exchanger may become clogged which reduces compressor service life and can cause premature unit failure.

In boiler/tower application, set the loop control panel set points to desired temperatures. Supply power to all motors and start the circulating pumps. After full flow has been established through all components including the heat rejector (regardless of season), air vented and loop temperatures stabilized, each of the units will be ready for check, test and start up and for air and water balancing.

Ground Source Loop System Checkout

Once piping is completed between the unit pumping system and ground loop, final purging and charging of the loop is needed. A high pressure pump is needed to achieve adequate flow velocity in the loop to purge air and dirt particles from the loop itself. Antifreeze solution is used in most areas to prevent freezing. Flush the system adequately to remove as much air as possible; then pressurize the loop to a static pressure of 40-50 PSI (summer) or 50-75 PSI (winter). This is normally adequate for good system operation. Loop static pressure may decrease soon after initial installation, due to pipe expansion and loop temperature change. Running the unit for at least 30 minutes after the system has been completely purged of air will allow for the "break-in" period. It may be necessary to adjust static loop pressure (by adding water) after the unit has run for the first time. Loop static pressure will also fluctuate with the seasons. Pressures will be higher in the winter months than during the cooling season. This fluctuation is normal and should be considered when charging the system initially.

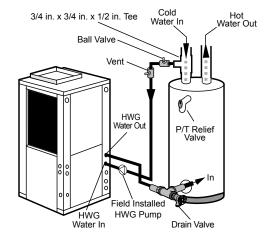

Ensure the pump provides adequate flow through the unit by checking pressure drop across the heat exchanger. Usually 2.25-3.0 GPM of flow per ton of cooling capacity is recommended in earth loop applications.

Open Loop Ground Water Systems

Typical open loop piping is shown below. Always maintain water pressure in the heat exchanger by placing water control valves at the outlet of the unit to prevent mineral precipitation. Use a closed, bladder-type expansion tank to minimize mineral formation due to air exposure. Ensure proper water flow through the unit by checking pressure drop across the heat exchanger and comparing it to the figures in unit capacity data tables in the specification catalog. 1.5-2 GPM of flow per ton of cooling capacity is recommended in open loop applications. Due to only minor differences in flow rate from low to high, only one solenoid valve should be used. The valve should be sized for full flow.

Discharge water from the unit is not contaminated in any manner and can be disposed of in various ways, depending on local codes, i.e. recharge well, storm sewer, drain field, adjacent stream or pond, etc. Most local codes forbid the use of sanitary sewer for disposal. Consult your local building and zoning departments to assure compliance in your area.

Open System - Groundwater Application


Hot Water Generator Connections

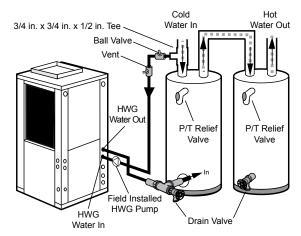
The heat reclaiming hot water generator coil is of vented double-wall copper construction and is suitable for potable water.

To maximize the benefits of the hot water generator a minimum 50-gallon water heater is recommended. For higher demand applications, use an 80-gallon water heater or two 50-gallon water heaters connected in a series as shown below. Electric water heaters are recommended. Make sure all local electrical and plumbing codes are met for installing a hot water generator. A water softener is recommended with hard water (greater than 10 grains or 170 total hardness).

NOTE: Refer to the hot water generation pump kit (DPK5) for further instructions.

Typical Hot Water Generator Installation

Water Tank Preparation


To install a unit with a hot water generator, follow these installation guidelines.

- 1. Turn off the power to the water heater.
- Attach a water hose to the water tank drain connection and run the other end of the hose to an open drain or outdoors.
- 3. Close the cold water inlet valve to the water heater tank.
- Drain the tank by opening the valve on the bottom of the tank, then open the pressure relief valve or hot water faucet.
- Flush the tank by opening the cold water inlet valve to the water heater to free the tank of sediments. Close when draining water is clear.
- 6. Disconnect the garden hose and remove the drain valve from the water heater.
- Refer to Plumbing Installation and Hot Water Generator Startup.

CAUTION: Elements will burn out if energized dry.

Hot Water Generator Installation In Preheat Tank

NOTE: This configuration maximizes hot water generator capability.

Hot Water Generator Connections cont.

Plumbing Installation

- Inspect the dip tube in the water heater cold inlet for a check valve. If a check valve is present it must be removed or damage to the hot water generator circulator will occur.
- 2. Remove drain valve and fitting.
- 3. Thread the 3/4-inch NPT x 3-1/2-inch brass nipple into the water heater drain port.
- 4. Attach the center port of the 3/4-inch FPT tee to the opposite end of the brass nipple.
- 5. Attach the 1/2-inch copper to 3/4-inch NPT adaptor to the side of the tee closest to the unit.
- 6. Install the drain valve on the tee opposite the adaptor.
- Run interconnecting tubing from the tee to HWG water out.
- 8. Cut the cold water "IN" line going to the water heater.
- 9. Insert the reducing solder tee in line with cold water "IN" line as shown.
- 10. Run interconnecting copper tubing between the unit DHW water "IN" and the tee (1/2-inch nominal). The recommended maximum distance is 50 feet.
- To prevent air entrapment in the system, install a vent coupling at the highest point of the interconnecting lines
- 12. Insulate all exposed surfaces of both connecting water lines with 3/8-inch wall closed cell insulation.

NOTE: All plumbing and piping connections must comply with local plumbing codes.

Hot Water Generator Startup

- Make sure the power is off to the heat pump. Connect the wire from the hot water generator pump to T1 on the contactor.
- 2. Close the drain valve to the water heater.
- 3. Open the cold water supply to the tank.
- 4. Open a hot water faucet in the building to bleed air from the system. Close when full.
- 5. Open the pressure relief valve to bleed any remaining air from the tank, then close.
- If so equipped, turn the venting (burping) screw in the center of the pump two (2) turns open (water will drip out), wait until all air is purged from the pump, then tighten the plug. Use vent couplings to bleed air from the lines.
- Carefully inspect all plumbing for water leaks and correct as required.
- 8. Before restoring electrical supply to the water heater, adjust the temperature setting on the tank.
 - On tanks with both upper and lower elements, the lower element should be turned down to the lowest setting, approximately 100°F. The upper element should be adjusted to 120°F to 130°F. Depending upon the specific needs of the customer, you may want to adjust the upper element differently.
 - On tanks with a single element, lower the thermostat setting to 120°F.
- 9. After the thermostat(s) is adjusted, replace the access cover and restore electrical supply to the water heater.
- 10. Make sure that any valves in the hot water generator circuit are open.
- 11. Turn on the unit to heating.
- 12. The HWG pump should be running. When the pump is first started, turn the venting (burping) screw (if equipped) in the center of the pump two (2) turns open until water dribbles out, then replace. Allow the pump to run for at least five minutes to ensure that water has filled the circulator properly.
- 13. The temperature difference between the water entering and leaving the hot water generator should be 5°F to 15°F. The water flow should be approximately 0.4 GPM per ton of nominal cooling.
- 14. Allow the unit to heat water for 15 to 20 minutes to be sure operation is normal.

CAUTION: Never operate the HWG circulating pump while dry. If the unit is placed in operation before the hot water generator piping is connected, be sure that the pump wires are disconnected from the contactor.

Electrical Connections

General

Be sure the available power is the same voltage and phase as that shown on the unit serial plate. Line and low voltage wiring must be done in accordance with local codes or the National Electric Code, whichever is applicable.

Unit Power Connection

Connect the incoming line voltage wires to L1 and L2 of the contactor for single-phase unit. Consult the Unit Electrical Data for correct fuse sizes.

208 Volt Operation

All Versatec Ultra Series UCV 208/230 units are factory wired for 230 volt operation. For 208 volt operation, the red and blue transformer wires must be switched on terminal strip PS.

Control Box

Remove the two screws on the side of the control board. These screws are only required for shipping.

Electrical Data

PSC Motor

	Rated	Voltage		Compressor		Blower	Total	Min	Max
Model	Voltage	Min/Max	мсс	RLA	LRA	Motor FLA	Unit FLA	Circ Amp	Fuse/ HACR
010	208-230/60/1	187/253	10.4	6.7	33.5	1.1	7.8	9.5	15
018	265/60/1	238/292	8.7	5.6	28.0	1.0	6.6	8.0	10
007	208-230/60/1	187/253	21.0	13.5	58.3	1.2	14.7	18.1	30
023	265/60/1	238/292	14.0	9.0	54.0	1.1	10.1	12.4	20
071	208-230/60/1	187/253	22.0	14.1	73.0	1.5	15.6	19.1	30
031	265/60/1	238/292	17.5	11.2	60.0	1.5	12.7	15.5	25
041	208-230/60/1	187/253	31.0	20.0	115.0	3.5	23.5	28.5	45

HACR circuit breaker in USA only

13

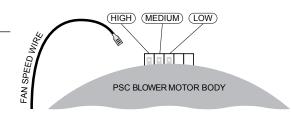
Blower Performance Data

Standard PSC Motor

Madal	Blower	Blower	Motor						Airflow	(cfm) at	Externa	l Static F	ressure	(in. wg)						
Model	Spd	Size	HP	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.70	0.80	0.90	1.00	
	Н			875	860	845	830	820	805	790	770	750	725	700	-	-	-	-	-	
018	М	9 x 7	1/6	760	750	740	730	720	710	700	680	660	640	620	-	-	-	-	-	
	L			630	620	610	600	590	580	570	560	550	520	490	1	-	-	-	-	
	Н			995	975	950	925	895	865	835	795	750	715	680	595	-	-	-	-	
023	М	9 x 7	1/5	860	840	820	805	785	755	725	690	655	620	580	-	-	-	-	-	
	L				790	775	760	745	725	690	655	635	610	575	535	1	-	-	-	-
	Н			1160	1135	1110	1085	1055	1025	995	965	930	890	850	765	650	-	-	-	
031	М	9 x 7	1/3	1035	1015	1000	975	955	930	905	875	845	810	780	685	-	-	-	-	
	L			855	845	840	830	820	800	785	760	740	710	685	610	-	-	-	-	
	Н			1200	1170	1145	1115	1080	1035	995	955	915	875	835	765	640	-	-	-	
041	М	9 x 7	1/2	1110	1085	1065	1035	1010	975	940	900	860	825	795	715	585	-	-	-	
	Ĺ			1040	1020	1000	975	950	920	890	860	830	795	765	683	560	-	-	-	

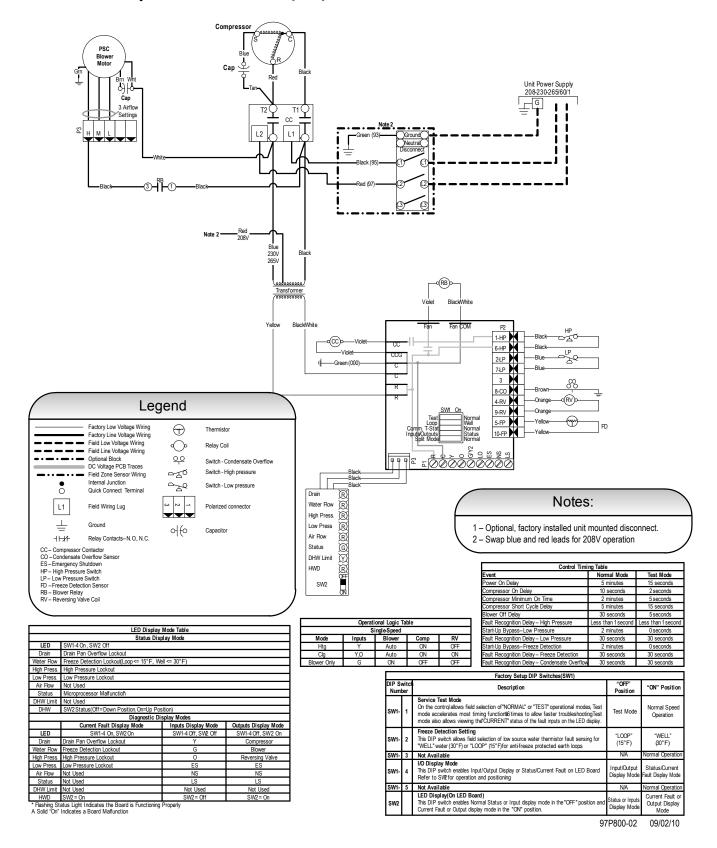
Factory settings are in Bold

Air flow values are with dry coil and standard filter


For wet coil performance first calculate the face velocity of the air coil (Face Velocity [fpm] = Airflow [cfm] / Face Area [sq ft]).

Then for velocities of 200 fpm reduce the static capability by 0.03 in. wg, 300 fpm by 0.08 in. wg, 400 fpm by 0.12in. wg. and 500 fpm by 0.16 in. wg.

Setting Blower Speed - PSC


CAUTION: Disconnect all power before performing this operation.

9/2/10

Wiring Schematic

Versatec Microprocessor 208-230/60/1 PSC

Controls - Versatec Microprocessor

Standard Versatec Microprocessor

Flexible Control Options

The Versatec Ultra Series - Military control system is a microprocessor-based printed circuit board, (PCB), conveniently located in the unit control box for accessibility. The microprocessor control is specifically designed for water source heat pumps to integrate compressors and advanced features needed in water source heat pump applications. The microprocessor provides control of the entire unit as well as outputs for status modes, faults, and diagnostics. Low voltage thermostat terminal strips provide convenient field connections. LEDs are located on the control box to assist the technician when servicing the unit.

Startup

The unit will not operate until all the inputs and safety controls are checked for normal conditions. At first powerup, a four minute delay is employed before the compressor is energized.

Component Sequencing Delays

Components are sequenced and delayed for optimum space conditioning performance.

Short Cycle Protection

The control allows a minimum on time of 2 minutes and a minimum off time of 5 minutes for short cycle protection.

Condensate Overflow Protection

The Versatec control board incorporates an impedance sensing liquid sensor at the top of the drain pan. Upon a continuous 30-second sensing of the condensate, compressor operation is suspended (see Fault Retry), and the condensate overflow lockout LED begins flashing.

Safety Controls

The Versatec control receives separate signals for a high pressure switch for safety, a low pressure switch to prevent loss of charge damage, and a low suction temperature thermistor for freeze sensing. Upon a continuous 30-second measurement of the fault (immediate for high pressure), compressor operation is suspended, the appropriate lockout LED begins flashing. (Refer to the "Fault Retry" section below).

Testing

The Versatec control allows service personnel to shorten most timing delays for faster diagnostics.

Fault Retry

All faults are retried twice before finally locking the unit out. An output signal is made available for a fault LED at the thermostat. The "Fault Retry" feature is designed to prevent nuisance service calls.

Diagnostics

The Versatec control board allows all inputs and outputs to be displayed on the LEDs for fast and simple control board diagnosis.

Emergency Shutdown

A grounded signal to common or connecting 24 VAC to the ES terminal places the controller into the emergency shutdown mode. The compressor and blower operation are suspended while in the emergency shutdown mode.

Heating Operation Heating (Y1)

The blower motor is started immediately after the "Y1" input is received, and the compressor is energized 10 seconds after the "Y1" input.

Cooling Operation

In all cooling operations, the reversing valve directly tracks the "O" input. Thus, anytime the "O" input is present, the reversing valve will be energized.

Cooling (Y1,O)

The blower motor is started immediately after the "Y1" input is received, and the compressor is energized 10 seconds after the "Y1" input.

Blower (G only)

The blower motor is started immediately after the "G" input is received; and it will remain on for 30 seconds at the end of each heating or cooling cycle.

Controls - Versatec Microprocessor cont.

Lockout Conditions

During lockout mode, the appropriate unit and thermostat lockout LEDs will illuminate. The compressor, and accessory outputs are de-energized. If the thermostat calls for heating, emergency heat operation will occur. All other lockout modes can be reset at the thermostat after turning the unit off, and then on, which restores normal operation but keeps the unit lockout LED illuminated. Interruption of power to the unit will reset lockout without a waiting period and clear all lockout LEDs.

High Pressure

This lockout mode occurs when the normally closed safety switch is opened momentarily (set at 600 PSI).

Low Pressure

This lockout mode occurs when the normally closed low pressure switch is opened for 30 continuous seconds (set at 40 PSI).

Freeze Detection (Water Flow)

This lockout mode occurs when the freeze thermistor temperature is at or below the selected freeze detection point (well 30°F or loop 15°F) for 30 continuous seconds.

DIP Switch Settings

Prior to powering unit, ensure that all DIP switches on SW1 are set properly according to the table below.

		FACTORY SETUP DIP SWITCHES (SWI)			
Dip Swi Numb		Description	"OFF" Position	"ON" Position	
SW1-	1	Service Test Mode On the control, allows field selection of "NORMAL" or "TEST" operational modes, Test mode accelerates most timing functions 16 times to allow faster troubleshooting. Test mode also allows viewing the "CURRENT" status of the fault inputs on the LED display.	Test Mode	Normal Speed Operation	
SW1-	2	Freeze Detection Setting This DIP switch allows field selection of low source water thermistor fault sensing for "WELL" water (30°F) or "LOOP" (15°F) for antifreeze protected earth loops.	"LOOP" (15°F)	"WELL" (30°F)	
SW1-	3	Not Available	N/A	Normal Operation	
SW1-	4	I/O Display Mode This DIP switch enables Input/Output Display or Status/Current Fault on LED Board. Refer to SW2 for operation and positioning.	Input/Output Display Mode	Status/Current Fault Display Mode	
SW1-	5	Not Available	N/A	Normal Operation	
SW2-		LED Display (On LED Board) This DIP switch enables Normal Status or Input display mode in the "OFF" position and Current Fault or Output display mode in the "ON" position.	Status or Inputs Display Mode	Current Fault or Output Display Mode	

Operation Logic Data Table

Mode	Inputs	Blower	Comp	RV
Htg	Υ	Auto	ON	OFF
Clg	Y, O	Auto	ON	ON
Blower Only	G/Y2	ON	OFF	OFF

Controls - Versatec Microprocessor cont.

Standard Microprocessor Controls

To check the unit control board for proper operation:

- 1) Disconnect thermostat wires at the control board.
- 2) Jumper the desired test input (Y1, W, O or G) to the R terminal to simulate a thermostat signal.
- 3) If control functions properly:
 - Check for thermostat and field control wiring (use the diagnostic inputs mode).
- 4) If control responds improperly:
 - Ensure that component being controlled is functioning (compressor, blower, reversing valve, etc.).
 - Ensure that wiring from control to the component is functioning (refer to the LED Definition table below and use the diagnostic outputs mode).
 - If steps above check properly, replace unit control.

LED Definitions and Diagnostics

Versatec Microprocessor

Status Display Mode

LED	SW1-4 On, SW2 Off					
Drain	Orain Pan Overflow Lockout					
Water Flow	reeze Detection (Loop <= 15°F, Well <= 30°F)					
High Pressure	igh Pressure Lockout					
Low Pressure	Low Pressure Lockout					
Air Flow	Not Used					
Status	Micoprocessor Malfunction*					
DHW Limit	Not Used					
DHW	SW2 Status (Off=Down Position, On=Up Position)					

Diagnostic Display Modes

	Current Fault Display Mode	Inputs Display Mode	Outputs Display Mode
LED	SW1-4 On, SW2 On	SW1-4 Off, SP2 Off	SW1-4 Off, SW2 On
Drain	Drain Pan Overflow Lockout	Υ	Compressor
Water Flow	Freeze Detection Lockout	G	Blower
High Press.	High Pressure Lockout	0	Reversing Valve
Low Press.	Low Pressure Lockout	ES	ES
Air Flow	Not Used	NS	NS
Status	Not Used	LS	LS
DHW Limit	Not Used	Not Used	Not Used
DHW	SW2 = On	SW2 = Off	SW2 = On

^{*} Flashing Status Light Indicates the Board is Functioning Properly.

Refrigerant Systems

To maintain sealed circuit integrity, do not install service gauges unless unit operation appears abnormal. Compare the change in temperature on the air side as well as the water side to the Unit Operating Parameters tables. If the unit's performance is not within the ranges listed, and the airflow and water flow are known to be correct, gauges should then be installed and superheat and subcooling numbers calculated. If superheat and subcooling are outside recommended ranges, an adjustment to the refrigerant charge may be necessary.

NOTE: Refrigerant tests must be made with hot water generator turned "OFF". Verify that air and water flow rates are at proper levels before servicing the refrigerant circuit.

A Solid "On" Indicates a Board Malfunction.

Unit Startup

Before Powering Unit, Check The Following:

NOTE: Remove and discard the compressor shipping bolts. The bolts can then be discarded.

- High voltage is correct and matches nameplate.
- Fuses, breakers and wire size correct.
- · Low voltage wiring complete.
- Piping completed and water system cleaned and flushed.
- · Air is purged from closed loop system.
- Isolation valves are open, water control valves or loop pumps wired.
- · Condensate line open and correctly pitched.
- Transformer switched to 208V if applicable.
- · Dip switches are set correctly.
- Blower rotates freely foam shipping support has been removed.
- Blower speed correct.
- Air filter/cleaner is clean and in position.
- · Service/access panels are in place.
- Return air temperature is between 50-80°F heating and 60-95°F cooling.
- Check air coil cleanliness to ensure optimum performance. Clean as needed according to maintenance guidelines. To obtain maximum performance the air coil should be cleaned before startup. A 10-percent solution of dishwasher detergent and water is recommended for both sides of coil, a thorough water rinse should follow.

Startup Steps

NOTE: Complete the Equipment Start-Up/Commissioning Check Sheet during this procedure. Refer to thermostat operating instructions and complete the startup procedure.

- 1. Initiate a control signal to energize the blower motor. Check blower operation.
- 2. Initiate a control signal to place the unit in the cooling mode. Cooling setpoint must be set below room temperature.
- 3. Cooling will energize after a time delay. Check for correct rotation of scroll compressors in 3 phase applications. Incorrect rotation will cause low refrigerant pressures and possibly unusual noise. Switch any two power leads at the compressor or contactor to reverse rotation.
- 4. Be sure that the compressor and water control valve or loop pump(s) are activated.
- 5. Verify that the water flow rate is correct by measuring the pressure drop through the heat exchanger using the P/T plugs and comparing to the pressure drop table.
- 6. Check the temperature of both the supply and discharge water (Refer to Unit Operating Parameters tables).
- 7. Check for an air temperature drop of 15°F to 25°F across the air coil, depending on the blower speed and entering water temperature.
- 8. Decrease the cooling set point several degrees and verify high-speed blower operation (ECM2.3 only).
- 9. Adjust the cooling setpoint above the room temperature and verify that the compressor and water valve or loop pumps deactivate
- 10. Initiate a control signal to place the unit in the heating mode. Heating set point must be set above room temperature.
- 11. Heating will energize after a time delay.
- 12. Check the temperature of both the supply and discharge water (Refer to Unit Operating Parameters tables).
- 13. Check for an air temperature rise of 20°F to 35°F across the air coil, depending on the blower speed and entering water temperature.
- 14. If auxiliary electric heaters are installed, increase the heating setpoint until the electric heat banks are sequenced on. All stages of the auxiliary heater should be sequenced on when the thermostat is in the Emergency Heat mode. Check amperage of each element.
- 15. Adjust the heating setpoint below room temperature and verify that the compressor and water valve or loop pumps deactivate.
- 16. During all testing, check for excessive vibration, noise or water leaks. Correct or repair as required.
- 17. Set system to desired normal operating mode and set temperature to maintain desired comfort level.
- 18. Instruct the owner/operator in the proper operation of the thermostat and system maintenance.

NOTE: Be certain to fill out and forward all warranty registration papers.

Operating Parameters

Entering	Makes Fless			Cooling No Hot	Water Generation		
Water Temp °F	Water Flow GPM/Ton	Suction Pressure PSIG	Discharge Pressure PSIG	Superheat	Subcooling	Water Temp Rise °F	Air Temp Drop °F DB
70	1.5	100-115	170-190	17 - 26	10 - 14	18 - 22	18 - 22
30	3.0	95-110	150-170	20 - 29	7 - 11	8 - 10	18 - 22
	1.5	133 - 148	205 - 225	17 - 26	10 - 14	18 - 22	18 - 22
50	3.0	129 - 144	185 - 205	20 - 29	7 - 11	8 - 10	18 - 22
70	1.5	139 - 154	280 - 300	8 - 11	8 -12	18 - 22	18 - 22
/0	3.0	137 - 152	250 - 270	9 - 12	7 - 11	8 - 10	18 - 22
00	1.5	143 - 158	360 - 380	8 - 11	9 - 13	18 - 22	16 - 20
90	3.0	141 - 156	330 - 350	9 - 12	8 - 12	8 - 10	16 - 20
110	2.3	143 - 158	360 - 380	8 - 11	9 - 13	18 - 22	16 - 20
110	3.0	141 - 156	440-460	9 - 12	8 - 12	8 - 10	16 - 20

Entering	Makes Fless	Heating No Hot Water Generation							
Water Temp °F	Water Flow GPM/Ton	Suction Pressure PSIG	Superheat		Subcooling	Water Temp Drop °F	Air Temp Rise °F DB		
70	1.5	73 - 79	279 - 304	7 - 13	2 - 6	7 -10	18 - 24		
30	3.0	79 - 85	285 - 310	8 - 14	2 - 6	3 - 6	20 - 26		
50	1.5	103 - 109	308 - 333	8 - 12	4 - 8	8 - 11	20 - 26		
	3.0	110 - 116	315 - 340	9 - 13	4 - 8	4 - 7	22 - 28		
	1.5	140 - 146	330 - 365	10 - 14	7 - 11	11 - 14	26 - 32		
70	3.0	146 - 153	340 - 375	10 - 14	7 - 11	7 - 10	28 - 34		
00	1.5	170-177	425-460	14-18	12-16	8-11	42-50		
90	3.0	174-181	435-470	14-18	12-16	8-11	42-50		
110	2.3								
110	3.0								

NOTES: Cooling performance based on entering air temperatures of 80°F DB, 67°F WB. Heating performance based on entering air temperature of 70°F DB.

11/10/09

Operating Limits

On avating Limits	Coo	ling	Hea	ting
Operating Limits	(°F)	(°C)	(°F)	(°C)
Air Limits				
Min. Ambient Air	45	7.2	45	7.2
Rated Ambient Air	80	26.7	70	21.1
Max. Ambient Air	100	37.8	85	29.4
Min. Entering Air	50	10.0	40	4.4
Rated Entering Air db/wb	80.6/66.2	27/19	68	20.0
Max. Entering Air db/wb	110/83	43/28.3	80	26.7
Water Limits				
Min. Entering Water	30	-1.1	20	-6.7
Normal Entering Water	50-110	10-43.3	30-70	-1.1
Max. Entering Water	120	48.9	90	32.2

NOTE: Minimum/maximum limits are only for start-up conditions, and are meant for bringing the space up to occupancy temperature. Units are not designed to operate at the minimum/maximum conditions on a regular basis. The operating limits are dependant upon three primary factors: 1) water temperature, 2) return air temperature, and 3) ambient temperature. When any of the factors are at the minimum or maximum levels, the other two factors must be at the normal level for proper and reliable unit operation.

Pressure Drop

Madal	CDM	Pressure Drop (psi)					
Model	GPM	30°F	50°F	70°F	90°F	110°F	
	3.0	1.1	1.0	0.8	0.7	0.5	
018	4.0	1.9	1.8	1.6	1.5	1.3	
018	5.0	3.3	3.2	3.0	2.9	2.7	
	6.0	4.5	4.4	4.3	4.1	4.0	
	3.0	1.1	1.0	0.9	0.8	0.6	
023	4.5	2.4	2.2	2.1	2.0	1.9	
023	6.0	4.5	4.4	4.3	4.1	4.0	
	8.0	6.7	6.6	6.5	6.3	6.2	
	4.0	0.9	0.8	0.7	0.6	0.5	
031	6.0	1.9	1.8	1.7	1.6	1.5	
031	8.0	3.7	3.6	3.5	3.4	3.3	
	10.0	4.8	4.7	4.6	4.5	4.4	
	5.0	1.5	1.2	0.9	0.5	0.4	
041	8.0	3.4	3.1	2.8	2.5	2.1	
041	11.0	7.9	7.5	7.2	6.9	6.6	
	14.0	9.1	8.8	8.5	8.2	7.9	

9/2/10

Compressor and Thermistor Resistance

Compressor Resistance Chart

Model	208-23	0/60/1	265/60/1		
Model	Run	Start	Run	Start	
018	2.24 - 2.58	2.84 - 3.26	3.03 - 3.49	2.39 - 2.75	
023	1.14 - 1.32	1.37 - 1.57	1.38 - 1.58	2.02 - 2.32	
031	0.95 - 1.09	1.81 - 2.09	1.24 - 1.42 2.42 - 2		
041	0.49 - 1.03	1.29 - 1.49	n/a		

9/2/10

Thermistor Resistance Chart

Thermistor Temperature (°F)	Microprocessor Resistance (Ohms)
5	75757-70117
14	57392-53234
23	43865-40771
32	33809-31487
41	26269-24513
50	20570-19230
59	16226-15196
68	12889-12093
77	10310-9688
86	8300-7812
95	6723-6337
104	5480-5172
113	4490-4246
122	3700-3504
131	3067-2907
140	2554-2424
149	2149-2019

9/2/10

Heat of Extraction/Rejection Data

Madal	Heat Of Extraction (HE)			Heat of Rejection (HR)						
Model	GPM	30°F	50°F	70°F	90°F	30°F	50°F	70°F	90°F	110°F
	3.0		11.4	13.9	19.1		23.0	21.6	20.5	
018	4.0	10.1	12.2	14.8	19.5	21.1	23.3	21.7	20.5	20.1
	5.0	10.4	13.1	15.8	19.8	21.2	23.6	21.9	20.7	20.1
	3.0		14.7	18.8	24.1		31.1	30.7	29.6	
023	4.5	11.9	15.4	19.6	24.5	30.1	31.1	30.6	29.6	29.2
	6.0	12.2	16.0	20.4	24.9	30.2	31.1	30.6	29.8	29.3
	4.0		21.5	27.6	34.2		38.4	37.0	34.7	
031	6.0	17.4	22.4	28.7	34.7	34.6	38.6	37.5	35.2	33.8
	8.0	16.8	23.4	29.8	35.3	34.8	38.9	37.9	35.6	34.0
•	5.0		27.3	34.8	45.6		53.2	52.1	48.4	
041	8.0	22.1	28.5	36.6	46.3	49.5	53.3	51.8	49.1	47.8
	11.0	22.1	29.8	38.3	47.1	49.7	53.4	51.4	49.5	48.1

9/2/10

Refrigerant Circuit Guideline

Symptom	Head Pressure	Suction Pressure	Compressor Amp Draw	Superheat	Subcooling	Air Temp. Differential	Water Temp. Differential
Under Charged System (Possible Leak)	Low	Low	Low	High	Low	Low	Low
Over Charged System	High	High	High	Normal	High	Normal/Low	Normal
Low Air Flow Heating	High	High	High	High/Normal	Low	High	Low
Low Air Flow Cooling	Low	Low	Low	Low/Normal	High	High	Low
Low Water Flow Heating	Low/Normal	Low/Normal	Low	Low	High	Low	High
Low Water Flow Cooling	High	High	High	High	Low	Low	High
High Air Flow Heating	Low	Low	Low	Low	High	Low	Low
High Air Flow Cooling	Low	High	Normal	High	Low	Low	Normal
High Water Flow Heating	Normal	Low	Normal	High	Normal	Normal	Low
High Water Flow Cooling	Low	Low	Low	Low	High	Normal	Low
Low Indoor Air Temperature Heating	Low	Low	Low	Normal	High	Normal	Normal/High
Low Indoor Air Temperature Cooling	Low	Low	Low	Normal/Low	High	Low	Low
High Indoor Air Temperature Heating	High	High	High	Normal/High	Normal/Low	Low	Normal
High Indoor Air Temperature Cooling	High	High	High	High	Low	Low	High
Restricted TXV (Check Service Advisory)	High	Low	Normal/Low	High	High	Low	Low
Insufficient Compressor (Possible Bad Valves)	Low	High	Low	High	Normal/High	Low	Low
TXV - Bulb Loss of Charge	Low	Low	Low	High	High	Low	Low
Scaled Coaxial Heat Exchanger Heating	Low	Low	Low	Normal/Low	High	Low	Low
Scaled Coaxial Heat Exchanger Cooling	High	High	High	Normal/Low	Low	Low	Low
Restricted Filter Drier		Check	temperature d	ifference (delta	T) across filte	r drier.	

7/6/10

Reference Calculations

Heating Calculations:	Cooling Calculations:
LWT = EWT - $\frac{\text{HE}}{\text{GPM} \times 500}$	$LWT = EWT + \frac{HR}{GPM \times 500}$
LAT = EAT + HC CFM x 1.08	LAT(DB) = EAT(DB) - $\frac{SC}{CFM \times 1.08}$
	LC = TC - SC
TH = HC + HWC	$S/T = \frac{SC}{TC}$

Legend

ABBREVIATIONS AND DEFINITIONS:

CFM = airflow, cubic feet/minute

EWT = entering water temperature, Fahrenheit

GPM = water flow in gallons/minute

WPD = water pressure drop, PSI and feet of water

EAT = entering air temperature, Fahrenheit

(dry bulb/wet bulb)

HC = air heating capacity, MBTUH
TC = total cooling capacity, MBTUH
SC = sensible cooling capacity, MBTUH
KW = total power unit input, kilowatts

KW = total power unit input, kilowattsHR = total heat of rejection, MBTUH

HE = total heat of extraction, MBTUH HWC = hot water generator capacity, MBTUH

EER = Energy Efficient Ratio

= BTU output/Watt input COP = Coefficient of Performance

= BTU output/BTU input

LWT = leaving water temperature, °F LAT = leaving air temperature, °F TH = total heating capacity, MBTUH LC = latent cooling capacity, MBTUH S/T = sensible to total cooling ratio

Startup and Troubleshooting Form

Company Name:		Date: Serial No: Open or Closed Loop:				
Model No:						
Owner's Name:						
Installation Address:		Instal	lation Date:			
Check One						
☐ Start up/Check-out for new installation	☐ Troublesh	ooting	Problem:			
1. FLOW RATE IN GPM (COAXIAL HEAT EXCH	IANGER)					
Water In Pressure:	a					
Water Out Pressure:	b	PSI				
Pressure Drop = a - b	c	PSI				
Convert Pressure Drop to Flow Rate (refer to <i>Pressure Drop</i> table)	d.	GPM				
(refer to r ressure brop table)	u	OI W				
2. TEMPERATURE RISE OR DROP ACROSS C	COAXIAL HEAT	EXCHAN	IGER			
	COC	DLING	HEATING			
Water In Temperature:	e		e °F			
Water Out Temperature: Temperature Difference:	f g.	°F °F	f °F			
remperature difference.	9	Г	I9·			
3. TEMPERATURE RISE OR DROP ACROSS A	IR COIL					
	COC	DLING	HEATING			
Air In Temperature:	h	°F	h °F			
Air Out Temperature:	i	°F	i °F			
Temperature Difference:	j	°F	j °F			
4. HEAT OF REJECTION (HR) / HEAT OF EXTR	RACTION (HE)	CALCUL	ATION			
HR or HE = Flow Rate x Temperature Diffe d. (above) x g. (above) x 485 for Metha Heat of Extraction (Heating Mode) = Heat of Rejection (Cooling Mode) = Compare results to Capacity Data Tables			water* btu/hr btu/hr			
Note: Steps 5 through 8 need only be completed	if a problem is s	suspected	i			
5. WATTS						
	COC	DLING	HEATING			
Volts:	m		m VOLTS			
Total Amps (Comp. + Fan): Watts = m. x n. x 0.85	n	AMPS	n AMPS			
watts = m. x n. x 0.85	0	WATTS	o WATTS			
6. CAPACITY						
Cooling Capacity = HR (o. x 3.413)		p	btu/hr			
Heating Capacity= HE. + (o. x 3.413)		p	btu/hr			
7. EFFICIENCY						
Cooling EER = p. / o.		q	EER			
Heating COP = p. / (o. x 3.413)		q	-			
0 CUREDUEAT (CUL) / CURCOOUNIC (C.C.)						
8. SUPERHEAT (S.H.) / SUBCOOLING (S.C.)	COC	DLING	HEATING			
Suction Pressure:	r	PSI	r PSI			
Suction Saturation Temperature:	s	°F	s °F			
Suction Line Temperature:	t	°F	t °F			
Superheat = t s.	u	°F	u °F			
Head Pressure:	V	PSI	v PSI			
High Pressure Saturation Temp.:	W	°F	w °F			
Liquid Line Temperature*:	x	°F	x °F			
Subcooling = w x.	у	°F	y °F			

^{*} Note: Liquid line is between the coaxial heat exchanger and the expansion valve in the cooling mode; between the air coil and the expansion valve in the heating mode.

Troubleshooting

Should a major problem develop, refer to the following information for possible causes and corrective steps.

If compressor won't run:

- The fuse may be open or the circuit breaker is tripped. Check electrical circuits and motor windings for shorts or grounds. Investigate for possible overloading. Replace fuse or reset circuit breakers after fault is corrected.
- 2. Supply voltage may be too low. Check it with a volt meter.
- Control system may be faulty. Check control for correct wiring of thermostat or aquastat and check the 24 volt transformer for proper voltage.
- 4. Wires may be loose or broken. Replace or tighten.
- 5. The low pressure switch may have tripped due to one or more of the following:
 - a) Heating
 - 1) Plugged heat exchanger on source side
 - 2) Water flow source side (Low)
 - 3) Water too cold source side
 - 4) Low refrigerant
 - b) Cooling
 - 1) Plugged heat exchanger on load side
 - 2) Water flow load side (Low)
 - 3) Water too cold load side
 - 4) Low refrigerant
- 6. The high pressure switch may have tripped due to one or more of the following:
 - a) Heating
 - 1) Plugged heat exchanger on load side
 - 2) Low water flow load side
 - 3) Water too warm load side
 - b) Cooling
 - 1) Plugged heat exchanger on source side
 - 2) Low water flow on source side
 - 3) Water too warm source side
- 7. The compressor overload protection may be open.
- 8. The internal winding of the compressor motor may be grounded to the compressor shell. If so, replace the compressor.
- The compressor winding may be open or shorted. Disconnect power. Check continuity with ohm meter. If the winding is open, replace the compressor.

If sufficient cooling or heating is not obtained:

- 1. Check control for improper location or setting.
- 2. Check for restriction in water flow.
- 3. Check refrigerant subcooling and superheat for proper refrigerant charge and expansion valve operation.
- 4. The reversing valve may be defective and creating a bypass of refrigerant. If the unit will not heat, check the reversing valve coil.

If the unit operation is noisy:

- 1. Check compressor for loosened mounting bolts. Make sure compressor is floating free on its isolator mounts. Check for tubing contact with the compressor or other surfaces. Readjust it by bending slightly.
- 2. Check screws on all panels.
- 3. Check for chattering or humming in the contactor or relays due to low voltage or a defective holding coil. Replace the component.
- 4. Check for proper installation of vibration absorbing material under the unit.
- 5. Check for abnormally high discharge pressures.
- 6. Compressor rotation incorrect

Refrigerant Systems

To maintain sealed circuit integrity, do not install service gauges unless unit operation appears abnormal. Compare the change in temperature on the air side as well as the water side to the Unit Operating Parameters tables. If the unit's performance is not within the ranges listed, and the airflow and water flow are known to be correct, gauges should then be installed and superheat and subcooling numbers calculated. If superheat and subcooling are outside recommended ranges, an adjustment to the refrigerant charge may be necessary.

NOTE: Refrigerant tests must be made with hot water generator turned "OFF". Verify that air and water flow rates are at proper levels before servicing the refrigerant circuit.

Preventive Maintenance

Water Coil Maintenance

- 1. Keep all air out of the water. An open loop system should be checked to ensure that the well head is not allowing air to infiltrate the water line. Lines should always be airtight.
- Keep the system under pressure at all times. It is recommended in open loop systems that the water control valve be placed in the discharge line to prevent loss of pressure during off cycles. Closed loop systems must have positive static pressure.

NOTE: On open loop systems, if the installation is in an area with a known high mineral content (125 PPM or greater) in the water, it is best to establish with the owner a periodic maintenance schedule so the coil can be checked regularly. Should periodic coil cleaning be necessary, use standard coil cleaning procedures which are compatible with either the cupronickel or copper water lines. Generally, the more water flowing through the unit the less chance for scaling.

Other Maintenance

Filters

Filters must be clean to obtain maximum performance. They should be inspected monthly under normal operating conditions and be replaced when necessary. Units should never be operated without a filter.

Condensate Drain

In areas where airborne bacteria produce a slime in the drain pan, it may be necessary to treat chemically to minimize the problem. The condensate drain can pick up lint and dirt, especially with dirty filters. Inspect twice a year to avoid the possibility of overflow.

Blower Motors

Blower motors are equipped with sealed ball bearings and require no periodic oiling.

Hot Water Generator Coil

See Water Coil Maintenance section above.

Air Coil

The air coil must be cleaned to obtain maximum performance. Check once a year under normal operating conditions and, if dirty, brush or vacuum (with a brush attachment) clean. Care must be taken not to damage the aluminum fins while cleaning.

CAUTION: Fin edges are sharp.

Replacement Procedures

Obtaining Parts

When ordering service or replacement parts, refer to the model number and serial number of the unit as stamped on the serial plate attached to the unit. If replacement parts are required, mention the date of installation of the unit and the date of failure, along with an explanation of the malfunctions and a description of the replacement parts required.

In-Warranty Material Return

Material may not be returned except by permission of authorized warranty personnel. Contact your local distributor for warranty return authorization and assistance.

Service Parts

Part Description		018	023	031	041			
_	Compressor 208-230/60/1	34P593-01(-02)	34P624-01(-02)	34P583-01(-02)	34P621-01			
Compressor	Compressor 265/60/1	34P593-02 34P624-02		34P583-02	N/A			
	Run Capacitor 208-230/60/1	16P002D19	16P002D19	16P002D20	16P002D36			
0 0	Run Capacitor 265/60/1	16P002D30	16P002D20	16P002D20	N/A			
	Sound Jacket	92P504A01		92P504A05				
PSC Motor & Blower	PSC Motor 208-230/60/1 Capacitor	14P507B01	14P508B01	14P509B01	14P510B01			
PSC P & Blo	PSC Motor 265/60/1 Capacitor	14P507B02	14P508B02	14P509B02	N/A			
_ <u>,</u>	Air Coil	61P569-01	61S569-01	61S569-01	61P575-01			
Refrigeration Components	Coax	62P572-01	62P572-01	62P566-01	62P568-01			
gera	TXV	33P605-16	33P605-16	33P605-02	33P605-10			
Refri	Reversing Valve	33P505-04	33P505-04	33P506-04	33P506-04			
	Filter Dryer	36P500B01	36P500B01	36P500B01	36P500B01			
Hot Water Generation	Hot Water Generation Pump	62P516-O5						
Control	Transformer 208-230/60/1 Microprocessor	15P501B01						
Sensors & Safeties	High Pressure Switch							
Sens	Low Pressure Switch		35P50	D6B01				

NOTE: Part numbers subject to change.

9/2/10

Manufactured by WaterFurnace International, Inc. 9000 Conservation Way Fort Wayne, IN 46809 www.waterfurnace.com

Product: Versatec Ultra Series UCV

Type: Geothermal/Water Source Heat Pump

Size: Commercial 1.5 - 3.5 Tons

Document: Installation Manual

IM1220AU 09/10