
A Hyperion White Paper

Custom Javascript In Planning
Creative ways to provide custom Web forms

Tools to use

A text editor. A good text editor is crucial for writing and debugging JavaScript. There are several freeware and

shareware text editors that include syntax highlighting, parentheses matching features, and code completion

(see the Resources section at the end of this document for links to text editors).

The following code shows the differences between Crimson Editor and Notepad.

Crimson Editor:

Notepad:

In both examples, the code is exactly the same but the display makes the first easier to interpret than the second.

This paper describes several of the methods that can be used to tailor Hyperion

Planning Web forms. Hyperion has enabled Custom JavaScript within Hyperion

Planning to allow for easy customization and validation of Web forms. This paper

also describes tools that can be used, explains some basic JavaScript syntax, and

provides some examples. The reader should have a general knowledge of Hyperion

Planning and Web development basics.

A Web browser. Because Internet Explorer does not have

a built-in JavaScript console and FireFox is a bit too sensi-

tive, Mozilla Suite is the recommended Web browser for

JavaScript development. When you implement your

custom script, you could possibly have errors in your code.

Mozilla has a built-in JavaScript console that displays error

messages with line numbers. Clicking on an error message

takes you to the line of code that is in error.

To Launch the JavaScript Console in Mozilla, select Tools >

Web Development > JavaScript Console.

After the JavaScript Console is launched, you can test your

code for errors. In the following example, an error message

is displayed that the function validateOnSave has not been

defined. This message could be the result of a typo or

similar error.

Double-clicking on the error message launches a source

browser and highlights the line that is in error.

A good development environment. To test your code, it is

often necessary to stop or start the Web server. In a pro-

duction environment, however, this may be difficult to do.

2

SampleValidateData.js and ValidateData.js (located in

the Custom directory of your Web application server).

These files contain the full suite of available functions

and samples. You need to put all of your custom code in

ValidateData.js so Planning to read it.

Devlopment procedures

The first step in developing custom JavaScript is to

determine what you are trying to do and when it should

happen. The samples provided with Planning include the

following events that you can capture:

• Loading a form

• Clicking save

• Selecting a cell

• Leaving a cell

The samples also include variations on those events as

well as additional helper functions that you can call

during those events.

An optional second step is to use the native alert func-

tion in JavaScript, which displays a message box. The

syntax is displayed in the following example:

alert(“Test Message”);

This displays a message box with the text “Test

Message.” Adding this code where you want your custom

code to execute enables you to see the timing and

frequency of your customization. The message also

provides notification that your code is working. If the

message box is not displayed, then your code may not

be configured correctly or you may need to stop and

restart the Web server.

After you have determined that your test message dis-

plays correctly and with the correct frequency, you can

develop your code further.

Javascript basics

For those new to JavaScript, there are many tutorials

and examples available on the Web (see the Resources

section for links to online resources), which you can use

while developing your code. However, this section provides

a few basic principles.

Building Blocks

JavaScript is organized into objects, properties, methods,

functions, and events.

Objects are the building blocks of JavaScript. A Web

page is an object, commonly referred to as a document.

In Planning, objects include forms, grids, columns, rows,

and cells.

Properties are the values associated with an object. In

Planning, a common property is cell.value, where cell is

the object, and value is the property.

Methods are the actions that you can perform on

objects. For example, document.writeln combines the

method writeln with the object document, and tells

the Web browser to insert content into the Web page

followed with a carriage return. The following sample

is from SampleValidateData.js:

document.writeln('<table cellspacing=0 cellpadding=0

border=0><tr><td>');1

Events trigger a function. For example, when a user

clicks the Save button, that event calls the function

validateForm.

Functions do the work that you are trying to accomplish.

Functions have the following syntax:

function MyFunction (Variable) {

commands;

}

In the preceding example, the function MyFunction

takes the parameter of Variable. A variable is not

required, although the parentheses are. The following

examples are from Planning:

function customCellValidatePost(row, col, cell) {

return;

}

function customSaveFormPost() {

return(true);

}

The function customCellValidatePost takes the parameters

(or variables) of row, column, and cell. The function

customSaveFormPost does not have any parameters.

All functions begin and end with braces { }.

3

Conditional Logic

JavaScript includes an If statement for conditional tests.

The syntax for If statements is fairly straightforward,

although it can become complex when there are nested

conditions and many sets of parentheses and braces. The

following example shows the basic syntax for an If test:

If (a question that returns true or false)

{Do something for True}

Else

{Do something for False}

The following is an example of a Planning-related If

statement:

if (equalsIgnoreCase(formName,"Labor"))

{valid = validateOnSave();}

The preceding example calls the function equalsIgnoreCase

as a conditional test. If the current form name is “Labor”

or the form name is “labor," then the function validateOnSave

is executed. This example does not have an else case.

The next example shows an If statement with multiple

commands:

if (val < 0) {

alert("Negative values are not allowed.");

validated = false;

cancelDrag();

selectLocation(row,col);

}

The preceding example does several things when a user

enters a value less than zero. First, a message box provides

an alert that the value is incorrect. Second, a variable

called validated is set to False, alerting the calling func-

tion ValidateOnSave that the validation has failed. Next,

the function cancelDrag is executed (a built-in Planning

function that deselects the range of cells the user has

selected). Last, the offending cell is selected.

Operators

If statements can contain mathematical comparisons. The

available comparison operators are <, >, !=, ==, <=, >= , to

represent less than, greater than, not equal to, equal to,

less or equal to, and greater or equal to. When testing for

an exact value, it is important that you use the “==” or

double equal operator. A single operator is an assignment.

For example, Val=1 sets the variable Val equal to one, but

Val==1 tests to see if the variable Val is equal to one.

Using a double plus sign (++) allows for incrementing, as

in the following example:

for (r=startRow; r<numberGridRows; r++) {

The variable r is set to the number of the starting row of

a grid (zero in this example), and while r is less than the

total number of rows in the grid, r will be incremented

by one. This example is part of a for loop statement that

enables you to execute code against each row of the grid

from start to end. A for loop is a set of commands to execute

one or more times. In the preceding example, the code is

executed from the starting row until it reaches the

number of rows in the grid. The initial variable r is set to

the value of the starting row (1, for example) and is incre-

mented by one until it no longer meets the condition of

being less than the number of rows in the grid.

You can use a single plus sign (+) to concatenate values

and strings. For example, you can cause a message to

display that includes the value less than zero that a user

entered in a Web form:

if (val < 0) {

alert("Negative values are not allowed. You entered: “ + val);

}

When the code in the preceding example is executed, a

warning message is displayed that notifies the user of an

invalid entry and displays the invalid data.

Putting it all together

The following example demonstrates validating a form.

The purpose of this block of code is to check that a user

has accurately entered data across all (approximately 30)

input cells.

Section 1: Validating the Form

function validateForm() {

var valid = true;

if (equalsIgnoreCase(formName,"Labor1") ||

equalsIgnoreCase(formName,"Labor2")) {

valid = validateVariance();

}

return valid;

}

4

The function validateForm() is a native Planning function,

and this section of code is executed after the user clicks

Save but before the data is actually sent to the database.

This code is capable of canceling the Save operation.

The first step in this section is to create a variable called

valid and assign to it a value of true. This creates a default

value and will remain true unless set to a different value.

Next, the code tests to see if the form name is either

Labor1 or Labor2—the double pipe || characters indicate

or. If the test is true, that is, the form is named Labor1 or

Labor2, then it calls the function validateVariance and

checks for its value, reassigning the value of validateVariance

to the variable valid. Last, it returns the value of valid to

Planning. If the value of valid is true, the save continues

(along with business rules set to run on save). If the value

of valid is false and then the save is canceled—the data

will not be saved to the database unless it is valid.

Section 2: Checking the Grid

The validateForm code calls the function validateVariance,

which is where the real work is done, to validate the data

entered by the user. You can name this function anything

that makes logical sense. For example, you might choose

to name it validateTotal, or something similarly descriptive.

function validateVariance() {

var validated = true;

var cellValid = 0;

for (r=startRow; r<numberGridRows; r++) {

for (c=startCol; c<numberGridCols; c++)

{

var cell = getCellVal(r,c);

if (isFinite(parseFloat(cell))) {

cellValid =

limitPrecision(cellValid + getCellVal(r,c),3);

}

}

}

if (cellValid!=1) {

validated = false;

cellValid = limitPrecision(cellValid * 100,2);

alert("The numbers you have entered do

not equal 100%

\nYour Total Percentage is: " + cellValid + " %");

}

return(validated);

}

This section of code begins with setting a new variable,

validated, to true and initializing the numeric value

cellValid. Next, it begins two for loops to iterate through

each column and row in the grid. Then, it assigns the

value from the current data cell in the grid to the variable

cell. The next step is to find out if the cell contains a data

value—if it’s null or missing, it shouldn’t be included in

the total. This test is performed with the JavaScript func-

tion isFinite()2, which determines if the value is a finite

number. A null value won’t pass here. Next, we increment

our initialized value cellvalid with the contents of the finite

number.

This process also calls a follow-on function (LimitPrecision)

that only takes the first three significant digits of the

number, because there are times when including many

digits of precision can produce undesirable results with

JavaScript. Finally, after looping through every cell on the

grid and adding all of the numbers together, the code

tests the results.

In this instance, the code checks if the variable cellValid

is not equal to a value of one, which would indicate data

was over- or under-allocated. If cellValid is not equal to a

value of one, then the variable validated is set to false.

Additionally, a message is displayed to the user that the

input is not valid and indicates their total entry amount.3

Finally, the value of false is passed all the way back

through each of the functions until it is returned to

validateOnSave, which cancels the Save. No further actions

are taken.

Section 3: Limiting Precision

The last part of the code relates to limiting the precision

of the numbers used in the calculation.

function limitPrecision(value, limit) {

if ((value == null) || (value.length == 0) || (value

== missing)) {

return(value);

} else {

return((Math.round(value *

Math.pow(10,limit)))/Math.pow(10,limit));

}

}

5

This example uses the limitPrecision function, which takes

the parameters value and limit. Value is the value to

be limited and limit is the number of significant digits

to store.

The full code example uses both two and three digits for

different reasons. Two native JavaScript math functions,

round and pow,are used to round the requested value to

the requested limit. The pow function is used in this

example to raise 10 to the power specified as the limit

(102 or 103 – 100 and 1000 respectively), which allows for

the rounding to occur with less precision.

For example:

Math.round(121.5 * 100) / 100

moves the decimal point prior to rounding, and then

moves it back.

6

Section 4: All of the Code

All of the code is put together and ready for implementation.

function validateForm() {

var valid = true;

if (equalsIgnoreCase(formName,"Labor1") || equalsIgnoreCase(formName,"Labor2")) {

valid = validateVariance();

}

return valid;

}

function validateVariance() {

var validated = true;

var cellValid = 0;

for (r=startRow; r<numberGridRows; r++) {

for (c=startCol; c<numberGridCols; c++) {

var cell = getCellVal(r,c);

if (isFinite(parseFloat(cell))) {

cellValid = limitPrecision(cellValid + getCellVal(r,c),3);

}

}

}

if (cellValid!=1) {

validated = false;

cellValid = limitPrecision(cellValid * 100,2);

alert("The numbers you have entered do not equal 100% \nYour Total Percentage is: " + cellValid + " %");

}

return(validated);

}

function limitPrecision(value, limit) {

if ((value == null) || (value.length == 0) || (value == missing)) {

return(value);

} else {

return((Math.round(value * Math.pow(10,limit)))/Math.pow(10,limit));

}

}

7

Tips

Ensure that you read the entire Appendix A of the

Hyperion Planning Administrator’s Guide—it contains

useful tips, hints, and warnings. When you perform a

Planning upgrade, you should back up your custom

JavaScript, and then re-insert it in ValidateData.js after

the upgrade is complete.

JavaScript can be very frustrating to the experienced

programmer because there is no compiler, which

means that the language cannot be tested prior to its

execution. The debugging and writing of JavaScript is

best accomplished using some of the tools listed in

the Resources section of this document.

You can use any function in the Planning library (for

example, EnterData.js), however, those functions are

subject to change and their compatibility with future

versions is not ensured. If you are going to use an

existing Planning function from one of the Planning

libraries, it is recommended to copy the function and

all of its dependent functions into your custom

JavaScript, rename them, and use the renamed

functions so that you are better protected against

upgrades.

If you use any custom JavaScript, it is important that

you use all of the custom JavaScript functions con-

tained in ValidateData.js. Add your custom code where

necessary and leave the existing functions and their

return calls in place. When ValidateData.js is active,

Planning looks for all of the functions contained within

and if some are missing, errors may occur.

Resources

The Hyperion Planning Administrator’s Guide, specifi-

cally Appendix A, which includes all of the JavaScript

samples and documentation.

Mozilla Web Browser: http://www.mozilla.org/

download.html - the version referenced in this document

is Mozilla 1.7.12, which is the full Mozilla suite.

Crimson Editor: http://www.crimsoneditor.com/ - a

free, comprehensive text editor.

CPad: http://zantii.net/ - another free text editor.

TextPad: http://www.textpad.com/ - a powerful text

editor (not free but well worth it).

The JavaScript Source - http://javascript.internet.com/ -

a Web repository of JavaScript code along with tutorials,

documentation, and sample code.

Endnotes
1 This code is used to draw a table within the form.

2 There are a number of ways to test for a number.

isFinite() is just one of them.

3 The \n in the alert causes a new line to be displayed

in the message box.

Copyright 2006 Hyperion Solutions Corporation. All rights reserved. “Hyperion,” the Hyperion logo and Hyperion’s product names are trademarks of
Hyperion. References to other companies and their products use trademarks owned by the respective companies and are for reference purpose only.
No portion hereof may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the recipient’s personal use, without the express written permission of Hyperion.
The information contained herein is subject to change without notice. Hyperion shall not be liable for errors contained herein or consequential
damages in connection with furnishing, performance, or use hereof. Any Hyperion software described herein is licensed exclusively subject to the
conditions set forth in the Hyperion license agreement.

5970_0506

Hyperion Solutions Corporation Worldwide Headquarters

5450 Great America Parkway, Santa Clara, CA 95054

voice 1.408.588.8000 / fax 1.408.588.8500 / www.hyperion.com

product information voice 1.800.286.8000 (U.S. only)

consulting services e-mail northamerican_consulting@Hyperion.com / voice 1.203.703.3000

education services e-mail education@Hyperion.com / voice 1.203.703.3535

worldwide support e-mail worldwide_support@Hyperion.com

Please contact us at www.Hyperion.com/contactus for more information.

