

Item Code RAS3205 • Copyright © 2008 Queue, Inc.
All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system. Printed in the United States of America.

Table of Contents

MAP Grade Level Expectations 2.0-Grade 6 Mathematics	Pages/ Problem \#'s	
Almher and Operations	Pages 1-38	
1.	Understand numbers, ways of representing numbers, relationships among numbers and number systems.	Pages $1-17$
1A:	Apply and understand whole numbers to millions, fractions and decimals to the thousandths (including location on the number line).	Problems $1-53$
1B:	Recognize and generate equivalent forms of fractions, decimals and benchmark percents.	Problems $54-132$
1C:	*Recognize equivalent representations for the same number and	
generate them by decomposing and composing numbers.		

[^0]| Algobraic Rolationshins | | Pages 39-64 |
| :---: | :---: | :---: |
| 1. | Understand patterns, relations and functions. | $\begin{aligned} & \text { Pages } \\ & 39-50 \end{aligned}$ |
| 1B: | Represent and describe patterns with tables, graphs, pictures, symbolic rules or words. | Problems 313-332 |
| 1C: | * Compare various forms of representations to identify patterns. | Not Tested |
| | * Identify functions as linear or nonlinear from tables or graphs. | Not Tested |
| 2. | Represent and analyze mathematical situations and structures using algebraic symbols. | Pages 51-61 |
| 2A: | Use symbolic algebra to represent unknown quantities in expressions or equations and solve one-step equations. | Problems 333-385 |
| 2B: | Use the commutative, distributive and associative properties to generate equivalent forms for simple algebraic expressions. | Problems 386-398 |
| 3. | Use mathematical models to represent and understand quantitative relationships. | $\begin{aligned} & \text { Pages } \\ & 62-64 \end{aligned}$ |
| | Model and solve problems, using multiple representations such as tables, expressions and one-step equations. | Problems 399-408 |
| | * Analyze change in various contexts. | Not Tested |
| | * Construct and analyze representations to compare situations with constant or varying rates of change. | Not
 Tested |
| Goomotric and Spatial Relationships | | Payes 65-85 |
| 1. | Analyze characteristics and properties of two- and threedimensional geometric shapes and develop mathematical arguments about geometric relationships. | $\begin{aligned} & \text { Pages } \\ & 65-69 \end{aligned}$ |
| 1A: | Identify similar and congruent shapes. | Problems 409-418 |
| 2. | Specify locations and describe spatial relationships using coordinate geometry and other representational systems. | $\begin{aligned} & \text { Pages } \\ & 70-77 \end{aligned}$ |
| 2A: | Use coordinate systems to construct geometric shapes. | Problems 419-427 |

[^1]| 3. | *Apply transformations and use symmetry to analyze mathematical situations. | Not Tested |
| :---: | :---: | :---: |
| 3A: | * Describe the transformation from a given pre-image using the terms reflection/flip, rotation/turn, and translation/slide. | Not Tested |
| 3C: | * Create polygons and designs with rotational symmetry. | Not Tested |
| 4. | Use visualization, spatial reasoning and geometric modeling to solve problems. | $\begin{aligned} & \text { Pages } \\ & 78-85 \end{aligned}$ |
| 4A: | * Use spatial visualization to identify isometric representations of mat plans. | Not
 Tested |
| 4B: | Draw or use visual models to represent and solve problems. | Problems 428-437 |
| Mrasurement | | Payes 86-94 |
| 1. | Understand measurable attributes of objects and the units, systems and processes of measurement. | $\begin{aligned} & \text { Pages } \\ & 86-87 \end{aligned}$ |
| 1A: | Identify and justify the unit of measure for area and volume (customary and metric). | Problems 438-445 |
| 1C: | * Solve problems involving elapsed time (hours and minutes). | Not
 Tested |
| 2. | Apply appropriate techniques, tools and formulas to determine measurements. | $\begin{aligned} & \text { Pages } \\ & 88-94 \end{aligned}$ |
| 2B: | *Identify and justify an angle as acute, obtuse, straight, or right. | Not
 Tested |
| 2C: | Solve problems involving the area or perimeter of polygons. | Problems $446-457$ |
| 2E: | Convert from one unit to another within a system of measurement (mass and weight). | Problems $458-475$ |

[^2]| Iata and Probability | | Pages 95-113 |
| :---: | :---: | :---: |
| 1. | Formulate questions that can be addressed with data and collect, organize and display relevant data to answer them. | Pages 95-102 |
| 1A: | Formulate questions, design studies and collect data about a characteristic. | Problems $476-477$ |
| 1C: | Interpret circle graphs; create and interpret stem-and-leaf plots. | Problems 478-497 |
| 2. | Select and use appropriate statistical methods to analyze data. | $\begin{gathered} \text { Pages } \\ 103-107 \end{gathered}$ |
| 2A: | Find the range and measures of center, including median, mode and mean. | Problems 498-512 |
| 3. | Develop and evaluate inferences and predictions that are based on data. | $\begin{gathered} \text { Page } \\ 108 \end{gathered}$ |
| 3A: | Use observations about differences between 2 samples to make conjectures about the populations from which the samples were taken. | $\begin{aligned} & \text { Problem } \\ & 513 \end{aligned}$ |
| 4. | Understand and apply basic concepts of probability. | $\begin{gathered} \text { Pages } \\ 109-113 \end{gathered}$ |
| 4A: | Use a model (diagrams, list, sample space, or area model) to illustrate the possible outcomes of an event. | Problems 514-518 |
| | About the Practiog Tests | Page 115 |
| | Practice Test 1 | T1 |
| | Practice Test 2 | T45 |

Identify the place values of the underlined digits.

1. $\underline{3}, 246,185.460$
a. thousands
b. ten-thousands
c. hundred-thousands
d. millions
2. $735,951.16 \underline{9}$
a. thousands
b. ten-thousandths
c. hundredths
d. thousandths
3. $17, \underline{6} 18,523.82$
a. ten-millions
b. millions
c. hundred-thousands
d. thousands
4. $2,971 . \underline{8} 79$
a. ones
b. tens
c. hundredths
d. tenths
5. $3,8 \underline{5} 6,723$
a. thousands
b. ten-thousands
c. hundred-thousands
d. millions
6. $989,856.1 \underline{9} 5$
a. thousands
b. tenths
c. hundredths
d. thousandths
7. $2,63 \underline{4}, 107.38$
a. ten-millions
b. millions
c. hundred-thousands
d. thousands
8. $78,651.67 \underline{2}$
a. thousands
b. tenths
c. hundredths
d. thousandths

Express the following fractions
as percents. Round your answers to the
nearest tenth of a percent.
62. $62 / 100=$
63. $19 / 20=$
64. $8 / 45=$
65. $7 / 21=$

Express the following decimal numbers as fractions. Reduce the fractions to their lowest common denominator.
66. . $188=$
67. $.560=$
68. $.425=$
69. $1.270=$

Express the following fractions as decimal numbers. Round your answers to the nearest thousandth.
70. $10 / 36=$
71. $16 / 42=$
72. $11 / 24=$
73. $250 / 125=$

Express the following percents as fractions. Reduce the fractions to their lowest common denominator.
74. $81 \%=$
75. $38 \%=$
76. $125 \%=$
77. $67.5 \%=$

Multiply the following.	Multiply the following.
182. $31 / 8 \times 41 / 6=$	188. $5 / 6 \times 3 / 10=$
183. $17 / 8 \times 68 / 15=$	189. $2 / 15 \times 7 / 10=$
184. $1011 / 6 \times 85 / 9=$	190. $8 / 9 \times 15 / 16=$
Divide the following.	Divide the following.
185. $77 / 9 \div 23 / 16=$	191. $4 / 5 \div 21 / 25=$
186. $91 / 6 \div 411 / 30=$	192. $6 / 7 \div 12 / 28=$
187. $55 / 12 \div 55 / 18=$	193. $15 / 22 \div 10 / 33=$

293. Cindy collects baseball cards and hockey cards. For every hockey card Cindy has, she has five baseball cards. If Cindy has 840 total cards in her collection, how many of those cards would be baseball cards?
a. 600 cards
b. 640 cards
c. 700 cards
d. 750 cards
294. Andy is the center for his school's basketball team. He scores three points for his team for every five minutes that he plays. If Andy played 35 minutes in his last game, how many points would he most likely have scored?
a. 12 points
b. 15 points
c. 21 points
d. 35 points
295. Nick purchased a box of 425 thumbtacks. The box contained green thumbtacks and yellow thumbtacks. The number of green thumbtacks to the number of yellow thumbtacks was in the ratio of seven to ten. How many yellow thumbtacks were in this box?
a. 125
b. 175
c. 200
d. 250

A recipe that yields 36 cookies uses
4.5 cups of flour and 1.25 cups of sugar.

How many cups of flour and sugar would be needed if this recipe were to yield 54 cookies?
296. flour: \qquad cups
297. sugar: \qquad cups

Heather grew a plant for a school science project. For 24 days, she recorded the growth of the plant. Her results are shown in the table below.

Plant Growth									
Time (in Days)	0	3	6	9	12	15	18	21	24
Height (in Centimeters)	0	0.9	1.8	2.7	3.6	4.5	5.4	6.3	7.2

315. Draw a sketch of a graph to display Heather's data in the space below.
316. Describe the rate of growth of Heather's plant over this 24-day period.

Geometric and Spatial Relationships - 1 A

413. Which of the following figures is NOT congruent to the above figure?
a.

b.

c.

d.

414. Which of the following pair of figures are congruent?
a.

b.

c.

d.

431. On the above grid, draw a rectangle. On the same grid, draw a figure that is similar to that first rectangle, but with dimensions 50% smaller.
432. What would be the relationship of the perimeters of these two figures?

Tanya teaches an aerobics class Tuesday mornings at the local gym. Listed below are the ages of the people in her class.
$31,33,28,51,44,37,48,40,29,30$
$36,34,29,52,50,43,47,41,27,38$
491. Create a stem-and-leaf plot that would reflect this information.

About the Practice Tests

These practice tests are designed to prepare students for the Grade 6 Missouri Assessment Program (MAP) mathematics test. They contain problems dealing with number and operations, geometric and spatial relationships, measurement, data and probability, and algebraic relationships. The problems included in these tests are chosen to best represent those that will appear on the actual Grade 6 MAP mathematics test.

To simulate the test-taking experience, each part of the practice tests will be timed. Answers to the selected-response problems will be filled in by the students on the answer grids located on page T44 for Practice Test 1, and on page T89 for Practice Test 2.

[^0]: * Not tested on the MAP

[^1]: * Not tested on the MAP

[^2]: * Not tested on the MAP

