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a b s t r a c t

22This study presents the probabilistic analysis of the inverse analysis of an excavation problem. Two tech-
23niques are used during two successive stages. First, a genetic algorithm inverse analysis is conducted to
24identify soil parameters from in situmeasurements (i.e. first stage of the construction project). For a given
25tolerable error between the measurement and the response of the numerical model the genetic algorithm
26is able to generate a statistical set of soil parameters, which may then serve as input data to a stochastic
27finite element method. The second analysis allows predicting a confidence interval for the final behaviour
28of the geotechnical structure (i.e. second stage of the project). The tools employed in this study have
29already been presented in previous papers, but the originality herein consists of coupling them. To illus-
30trate this method, a synthetic excavation problem with a very simple geometry is used.
31� 2010 Elsevier Ltd. All rights reserved.

32

33

34 1. Introduction

35 In civil engineering, the well-known finite element method
36 (FEM) allows an accurate representation of structures. Yet, many
37 sources of uncertainty unfortunately still exist (e.g. material,
38 geometry, solicitation). Geotechnical problems are particularly
39 affected by poor knowledge of soil behaviour. The inherent heter-
40 ogeneity and complexity of soil behaviour yield a model of geo-
41 technical structures that inevitably proves both uncertain and
42 simplified.
43 This high uncertainty of soil knowledge has led to a successful
44 experience with the observational method for designing geotech-
45 nical structures. Developed by Terzaghi and Peck [1,2], observa-
46 tional approaches are nowadays recommended within the
47 European design code [3], which promotes their use given that
48 the evolution of geotechnical behaviour for a building cannot be
49 easily predicted.
50 Moreover, thanks to the availability of numerical tools, the
51 identification of constitutive parameters by means of inverse anal-
52 ysis [4] has become a timely topic of growing importance in the
53 geotechnical field [5–13]. However, most methods cited in the lit-
54 erature for solving the inverse problem in geotechnical engineering
55 assume uniqueness of the solution and do not take into account
56 modelling errors or in situ measurement uncertainties. This uncer-
57 tainty implies that a unique exact solution to the inverse problem

58in fact does not exist, but instead an infinite number of approxi-
59mated solutions can be found. Recently, Levasseur et al. developed
60an inverse analysis (IA) method based on a genetic algorithm (GA)
61that enables identifying a representative set of these approximated
62solutions [14–16]. In using the same techniques, this paper pre-
63sents a probabilistic analysis of this IA method, applied to an exca-
64vation problem, in order to identify a confidence interval for the
65final behaviour of the geotechnical structure.
66To begin, a genetic algorithm inverse analysis will be introduced
67for the purpose of identifying soil parameters from in situmeasure-
68ments (i.e. first stage of the construction project). For a given toler-
69able error between the measurements and the response of the
70numerical model, the genetic algorithm is able to determine a sta-
71tistical set of soil parameters (Section 2), making the assumption
72that measurements have been done in a homogeneous stratum.
73It is then assumed that identified parameters can be modelled as
74random variables. These identified parameters will then serve
75as input data to a stochastic finite element method (SFEM) [17]
76(Section 3). SFEMs [18,19] have undergone modifications over
77the past several decades to overcome the problem of uncertainty
78propagation through a finite element model, as opposed to Monte
79Carlo simulations [20]. The recent method [17] has already been
80applied in structural engineering problems [21,22] and allows pre-
81dicting a confidence interval for the final geotechnical structure
82behaviour (i.e. second stage of the project).
83To illustrate this method, principles of the proposed approach is
84summarized in Fig. 1. A synthetic excavation problem will then be
85modelled using a commercial finite element code (Section 4). The
86horizontal displacements of a diaphragm wall subsequent to the
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87 first excavation stage will be used as in situ measurements for the
88 identification process. Lastly, a confidence interval for wall dis-
89 placements of the structure while in service will be estimated.

90 2. The genetic algorithm (GA) inverse analysis

91 For this first part of the study, we have assumed a given level
92 of tolerable error between the measurement and the response of
93 the numerical model. Next, a genetic algorithm (GA) optimisation
94 process is implemented to identify all solutions to the inverse
95 problem (Fig. 2). This method is known to be robust and efficient
96 in its ability to solve very complex problems [23]. Its application
97 to the geotechnical field has already been presented in Levasseur
98 et al. [15], and the method has been shown to yield the best solu-
99 tion to an inverse problem even with a flat or noisy error func-

100 tion. In the case of solution non-uniqueness, a representative
101 sample of inverse problem solutions can indeed be identified
102 [16,17].

1032.1. Error function

104The discrepancy between experimental behaviour and mod-
105elled behaviour is expressed as a scalar error function, Ferr, as in-
106tended in the least squares method introduced by Levasseur
107et al. [15]:

Ferr ¼
1

M

X

M

i¼1

ðUei � UniÞ
2

DU2
i

 !1=2

ð1Þ
109109

110where M is the number of measurement points, Uei the ith experi-
111mental measured value, Uni the corresponding value of the numer-
112ical calculation, and 1/DUi the weight of the discrepancy between
113Uei and Uni. DUi represents the experimental (and/or numerical)
114uncertainty of the ith measurement point. This error function corre-
115sponds to the objective function commonly found in the literature
116[24]. A tolerable error dFerr on this error function could eventually
117be expressed in percentage terms [15].

Fig. 1. Principle of the proposed method combining an inverse analysis and a probabilistic approach.

Fig. 2. Principle of the genetic algorithm inverse analysis procedure.
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118 2.2. Genetic algorithm

119 To minimize this error function, the genetic algorithm method
120 is employed. Genetic algorithms have been inspired by Darwin’s
121 theory of evolution. The basic outline of the algorithm, as devel-
122 oped by Levasseur et al. [15] and summarized below, has been de-
123 rived from the studies conducted by Goldberg [23] and Renders
124 [25].
125 Since the error function Ferr(y) is defined as a scalar for each set
126 of Np uncertain parameters, noted as a vector y, the inverse prob-
127 lem is ‘‘solved” as a minimization problem in an Np-dimension
128 space restricted to authorised values of y between ymin and ymax.
129 The key stages of this algorithm are as follows:

130 2.2.1. Encoding, both individual and population
131 We begin by defining y as an individual and then each compo-
132 nent of y as a gene. Each gene is binary-encoded and concatenated
133 to the other components with a given number of bytes, Nb. The
134 choice of this number is directly correlated with the expected pre-
135 cision of the parameter value. The concatenation of several genes
136 forms an individual, with each individual serving to define a point
137 of the search space.

138 2.2.2. Generation of an initial population
139 A group of NI individuals is randomly chosen within the search
140 space. The scalar error function for each individual of a population
141 is then evaluated. The mechanisms of selection, reproduction and
142 mutation are used to induce the population to evolve towards
143 the best individuals in the search space.

144 2.2.3. Selection
145 Depending on their fitness (determined from the minimum cost
146 of the scalar error function), only the best NI/3 individuals are pre-
147 served when constituting the next population: these are called par-
148 ents. This ‘‘elitist” selection process is known to be more efficient
149 for unimodal function optimisations [23].

150 2.2.4. Reproduction and crossing
151 The parents are randomly selected by pairs and crossed over
152 into Ncoup points in order to generate new offspring pairs. To im-
153 prove algorithm efficiency, the number Ncoup is set equal to the
154 number of sought parameters, as proposed by Pal et al. [26]. The
155 crossing process is then repeated until 2NI/3 offspring have been
156 created; these new offspring are called children.

157 2.2.5. Mutation and generation of a new population
158 Combining parents and children serves to create a new popula-
159 tion of NI individuals. To limit convergence problems while diver-
160 sifying the population, some new offspring are randomly mutated
161 (inversion of one bit from one gene), with a given mutation prob-
162 ability PM. The error function of each new individual is then
163 evaluated.

164 2.2.6. Convergence test
165 These various stages are repeated until some convergence con-
166 ditions have been satisfied, i.e. either that the average error func-
167 tion on the parents’ part of the population is less than a given
168 error, or that its standard deviation becomes too small. This con-
169 vergence criterion depends on the quality of both experimental
170 data and problem modelling. For this initial research effort, we
171 have chosen to use synthetic data instead of experimental data.
172 Once a set of NS solutions has been identified by the genetic
173 algorithm, a statistical analysis is employed to estimate a mean l̂
174 and a covariance matrix Ĉ.

1753. Stochastic finite element method (SFEM) prediction

176The targeted soil parameters, as characterised by their mean l̂
177and covariance Ĉ, are used as input data to a stochastic finite ele-
178ment method (SFEM) so as to predict a confidence interval for
179the displacements of the structure in service. Uncertain soil param-
180eters are modelled by a vectorial random variable (r.v.), denoted Y,
181with a lognormal probability density function (PDF), denoted pY,
182and with mean lY and covariance CY (set equal to l̂ and Ĉ, respec-
183tively). For the sake of simplicity, we present the case of a scalar
184r.v., lognormal Y and we introduce the function T binding Y and X
185(Gaussian normalisation [17]). This method’s main steps [17] are
186presented below.

1871. The first step in this approach consists of rewriting the problem
188in terms of standardised Gaussian r.v., denoted X (i.e. with a
189mean of 0 and standard deviation of 1). In the following, r.v.
190Z = f(Y), which models the mechanical response (displace-
191ments), is written as the composite function f � T of the r.v. X,
192such that:

193

194

Z ¼ f � TðXÞ ¼ gðXÞ ð2Þ 196196

197

1982. The approximation of the function g is a projection onto the
199truncated basis {Li}i = 1, . . . , n

200

201
202

gðXÞ � ~gðXÞ ¼
X

n

i¼1

ai �
Y

n

k¼1
k–i

X � xk
xi � xk

¼
X

n

i¼1

ai � LiðXÞ ð3Þ
204204

205where n is a nonzero integer, ðxiÞ16i6n are collocation points, as
206roots of the Hermite polynomials available in [17], and
207ðaiÞ16i6n are weights associated with Lagrange polynomials
208ðLiÞ16i6n. It then becomes possible to express the following
209identification:
210

8i 2 f1;ngai ¼ gðxiÞ ð4Þ 212212

213By substituting (4) into (3), the r.v. Z is approximated by the r.v.
214~Z, such that:
215

~Z ¼ ~gðXÞ ¼
X

n

i¼1

gðxiÞ � LiðXÞ ð5Þ
217217

218

219

2203. The j-order moment of r.v. Z that models the mechanical
221response is written as:

222

223
224

lj;Z ¼

Z þ1

�1

gjðtÞ � pXðtÞ � dt ð6Þ
226226

227Using Eqs. (4)–(6), the mean of Z can then approximated by:

l1;Z � ~lZ ¼
X

n

i¼1

pXðxiÞ � gðxiÞ ¼
X

n

i¼1

xi � gðxiÞ ð7Þ
229229

230where ðxiÞ16i6n are the weights associated with collocation
231points ðxiÞ16i6n. The approximation ~rZ of the standard deviation
232rZ of Z can then be expressed as:

r2
Z � ~r2

Z ¼
X

n

i¼1

ðgðxiÞÞ
2 �xi � ð~lZÞ

2 ð8Þ
234234

235The skewness b1,Z and kurtosis b2,Z are respectively written as
236follows:

b1;Z ¼
jl3;Z j

r3
Z

� �2

; b2;Z ¼
l4;Z

r4
Z

� �2

ð9Þ
238238

239and approximated by:
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~b1;Z ¼

Pn
i¼1ðgðxiÞÞ

3 �xi

�

�

�

�

�

�

~r3
Z

0

@

1

A

2

; ~b2;Z ¼

Pn
i¼1ðgðxiÞÞ

3 �xi

~r4
Z

 !2

ð10Þ241241

242

243 4. The PDF of r.v. Z, denoted pZ, can then be approximated by the
244 PDF p~Z of r.v. ~Z, which is an analytical response surface (5). It is
245 thus possible to obtain an estimation of the PDF using Monte
246 Carlo simulations.
247 5. From PDF p~Z , an approximation of the g% confidence interval Ig,
248 defined by:

249

250

z 2 Ig () Pðz 2 IgÞ 6
g

100
ð11Þ252252

253 is evaluated using the confidence interval for the approximation
254 ~Z of r.v. Z, which can be written as:

~Ig ¼ ½~zginf ; ~z
g
sup� ()

Z ~z
g
sup

~z
g
inf

p~ZðzÞ � dz 6
g

100
ð12Þ

256256

257 Approximations of the bounds ~zginf and ~zgsup can then be practi-
258 cally deduced from p~Z .
259 This SFEM greatly reduces the number of mechanical computa-
260 tions in comparison with Monte Carlo methods [20]. The method-
261 ology presented herein is of optimal use for an analysis with few
262 input random variables and a time-consuming FE model, which
263 is typical of nonlinear cases.

264 4. Application to an excavation problem

265 4.1. The genetic algorithm (GA) inverse analysis

266 The adopted finite element model (2D plane strain) is shown in
267 Fig. 3 (see also the numerical details contained in Table 1). The
268 symmetric excavation under analysis, which measures 6 m deep
269 by 20 m wide, is supported by a sheet pile wall whose head is sta-
270 bilised by a strut. Our focus lies on the horizontal wall displace-
271 ments, which have been coalesced into vector z. Two successive
272 loading steps have been set: at first, only the weight of the soil is
273 considered (Phase 1), then a 30 kN loading is applied at a distance
274 of 1 m from the head (A–A in Fig. 3). The soil is composed of a sin-

275gle layer of homogeneous sand modelled by a five-parameter
276Mohr–Coulomb model. The effect of water is limited to hydrostatic
277pressure. In order to decrease the number of uncertain parameters,
278we have assumed a priori values for parameters showing a weak
279influence within their possible variation range or for parameters
280whose values could be known from empirical relations: the cohe-
281sion c is considered equal to zero, Poisson’s ratio m equal to 0.25,
282and the dilatancy angle w = u � 30�, where u is the friction angle.
283Moreover, in assuming a normally-consolidated behaviour for
284the sand, we make use of the Jaky relation to determine the initial
285stress field (coefficient K0 = 1 � sin u).
286Taking everything into account, we first applied the identifica-
287tion method to determine two parameters: shear modulus Gref,
288and friction angle u, which are the only uncertain parameters
289examined in the analyses that follow.

2904.1.1. Synthetic measurements
291To test the method, the measurements consisted of numerical
292results from this simplified problem instead of using true experi-
293mental data. These first steps have allowed avoiding errors stem-
294ming from both the measurements and the numerical modelling.
295We have arbitrarily set Gref = 22,500 kPa and u = 35� so as to
296numerically create an ‘‘experimental” wall displacement curve
297ux(z) (see Fig. 4). Horizontal displacements of the sheet pile wall
298ux are obtained from nodal displacements of the wall at each depth
299z. From this point, Gref and u have been considered as uncertain
300parameters. Since this study is fully synthetic, we arbitrarily
301decided that a reasonable error associated with these measured
302displacements could be evaluated as D = ±|0.5 mm + 3%|, where
3030.5 mm represents the absolute part and 3% the relative part of
304measurements error. This error has been plotted on Fig. 4 in
305dashed lines. It is supposed to represent both the measurement er-
306ror and the modelling approximation (geometry, constitutive law,
307heterogeneity. . .) which would occurred in a real case.

Fig. 3. Numerical excavation problem: 2D (plane strain) model and its associated mesh (L � H = 50 � 25 m, excavation size: h = 6 m, l = 2 � 10 m, wall height: hw = 9 m, mesh:

419 FE).

Table 1

Characteristics of the numerical excavation model.

Problem size: L = 50 m, H = 25 m

Excavation size: h = 6 m, l = 2 � 10 m

Wall height: hw = 9 m

Plane strain, type of elements = triangles with 15 nodes

419 elements, 3695 nodes, 5028 stress points
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308 4.1.2. Statistical characterisation of Gref and u using the genetic
309 algorithm
310 Table 2 presents the set of parameters obtained from the genet-
311 ic algorithm identification method. Method results consist of a pool
312 of 87 solutions, couples of shear modulus (in kPa) and friction an-
313 gle (�) values, denoted (Gi, ui), i = 1, . . . , N = 20 [15]. Since some
314 couple values are equal, a total of Ns = 20 solutions were eventually
315 identified; each identified solution was then associated with a fre-
316 quency of occurrence. Estimations of means ðmu;mGÞ and standard
317 deviations ðru;rGÞ, as well as coefficients of variation
318 ðCvu ¼ ru=mu;CvG ¼ ru=muÞ and correlation coefficient quG, are
319 listed in Table 3. The correlation coefficient between the friction
320 angle and shear modulus (quG = �0.62) is a result of the identifica-
321 tion process. This correlation is specific to the numerical model and
322 to the associated measurements. It is a consequence of the non-
323 uniqueness of the solution of the inverse problem. In the present
324 case, it describes a simple mechanical property of the wall dis-
325 placements: for each couple (Gi, ui), a slight increase of the friction
326 angle u and decrease of the shear modulus G leads to the same dis-
327 placement of the wall and vice versa.

3284.2. Stochastic finite element method (SFEM) prediction

329This section is intended to:

330� characterise horizontal displacements of the diaphragm wall:
331statistical moments, probability density function (PDF) and con-
332fidence interval;
333� verify that the assumptions adopted concerning uncertainty of
334the deformed diaphragm wall are indeed relevant; and
335� predict horizontal displacements when a structure is built after
336excavation.
337

338The probabilistic assumptions are proposed as a first step. The
339algorithm of the SFEM applied to the inverse analysis results is also
340presented. The SFEM is then calibrated by considering only the
341horizontal displacement prediction for one point of the deformed
342wall. The calibrated method is ultimately applied to various points
343on the wall.

3444.2.1. Probabilistic assumptions
345Two random variables (r.v.), denoted Y1 and Y2, are considered
346for the purpose of modelling the variability of both shear modulus
347G and friction angle u.
348From the previous section, empirical estimations of means mG

349and mu are deduced based on 87 samples. In introducing the
350assumption of Gaussian distributions, 95% confidence intervals
351for these means are evaluated at ±1.3% and D ± 0.4%, respectively.
352This estimation is generated from a sample size-dependent Stu-
353dent’s t-distribution. Such uncertainty due to a limited number
354of data elements demonstrates the lack of a need to derive
355highly-precise probabilistic characteristics. Therefore, following
356probabilistic analyses will be restricted to the evaluation of sec-
357ond order characteristics (mean, coefficients of variation). More-
358over, 95% confidence intervals seem also more relevant than
35999% ones.
360Y1 and Y2 are first assumed to be Gaussian, with means lY1

, lY2
,

361standard deviations rY1
;rY2

and correlation coefficient qY1Y2
,

362which are respectively equal to mG, mu, rG, ru and qGu (see Table
3633).

3644.2.2. SFEM algorithm
365This section presents the algorithm of the stochastic approach
366applied to inverse analysis results, considering n integration points
367and the two random variables Y1 and Y2 [17].

368� generate n quadrature points and weights (xi, wi), for 1 6 i 6 n
369associated with the standard Gaussian law;
370� generate n2 couples of points y ¼ ðyi1; y

j
2Þ of Y = (Y1, Y2), such that

371y = T(x), where x = (xi, xj), for 1 6 i; j 6 n; characteristics of Y,

372namely, lY1
;lY2

;rY1
;rY2

;qY1Y2
are deduced from the statistical

373analysis of the GA calculations;
374� compute the n2 outcomes zij ¼ zðyi1; y

j
2Þ, for 1 6 i; j 6 n, given by

375the FE model;
376� the numerical solution writes

377

378
379

z � ~zðy1; y2Þ ¼
X

n

i¼1

X

n

j¼1

zijLiðy1ÞLjðy2Þ ð13Þ
381381

382where Li, Lj are Lagrange polynomials from (3).
383

384� the mean and standard deviation of the approximate stochastic
385solution ~Z are

386

387

l~Z ¼
X

n

i¼1

X

n

j¼1

zijxixj and r2
~Z
¼
X

n

i¼1

X

n

j¼1

ðzijÞ2xixj � l2
~Z
:

389389

390

391

Fig. 4. Measured horizontal displacements of the diaphragm wall, versus depths

(full line), and the corresponding tolerable margin for the response of the numerical

model ±D (dashed lines).

Table 2

Parameters of the genetic algorithm identification method.

Number of uncertain parameters: Np = 2

Size of the search space: 11,000 kPa < Gref < 83,000 kPa, 14 < u < 46�

Number of bits allocated to an individual: Nb = 12

Number of individuals in a population: NI = 120

Number of crossing points for reproduction: Ncoup = 2

Mutation ratio: PM = 3%

Tolerable error on the error function: dFerr = 3%

Number of identified solutions: Ns = 20

Table 3

Estimations of means, covariance and correlation coefficients of identified

parameters.

Friction angle mean: mu = 34.99�

Coefficient of variation for the friction angle: Cvu = 2.86%

Shear modulus mean: mG = 22,857 kPa

Coefficient of variation for the shear modulus: CvG = 10.6%

Coefficient of correlation between friction angle and shear modulus:

quG = �0.62
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392 � the probability density function can be estimated from (13) by
393 using a Monte Carlo approach.
394

395

396 4.2.3. SFEM calibration
397 This section will focus exclusively on the horizontal displace-
398 ment prediction for one point of the deformed diaphragm wall
399 (�4.5 m, see Fig. 4). The displacement is modelled using a scalar
400 r.v. Z, which has to be characterised by coefficients of variation
401 and confidence intervals for different depths.
402 Table 4 displays the evolution of statistical moments of r.v. Z, for
403 n = 3 � 3, 4 � 4 and 5 � 5 integration points. For both 4 and 5 inte-
404 gration points per r.v., the mean and standard deviation of Z are
405 nearly equal to: lZ = 4.4 mm and rZ = 0.3 mm. For both 4 and 5
406 integration points per r.v., the skewness and kurtosis of Z almost
407 equal b1,Z = 0.4 and b2,Z = 3.2. These adimensional coefficients de-
408 scribe the shape of the PDF of Z, which is plotted in Fig. 5 for
409 n = 3, 4 and 5; this figure reveals that the curves for n = 4 and 5
410 are very similar, which is why additional integration points are
411 not considered necessary in the present work. More detailed stud-
412 ies of numerical convergence are available in [17,22,23,27], where
413 n = 4 was found to offer a good compromise between computa-
414 tional effort and accuracy.
415 N = 100,000 samples are used in Fig. 5 to represent the PDF of
416 r.v. Z. In order to evaluate the effect of N, various PDFs have been
417 plotted in Fig. 6, for N = 103, 104 and 105 samples, with n = 4 inte-
418 gration points.
419 Since 105 samples are required to obtain a relatively smooth
420 PDF, 104 samples prove sufficient to determine the 95% confidence
421 interval on the studied displacement (see Table 5).
422 Whilst the Gaussian assumption leads to an estimation of
423 uncertainty regarding data, it suffers from the limitation that the
424 normal distribution is not representative of real data for the shear
425 modulus and friction angle (which are always positive) and, for
426 this reason, lognormal PDFs for the input random variables will
427 be considered in the following discussion.
428 Table 6 presents approximated statistical moments and the 95%
429 confidence interval ~I95% for r.v. Z with n = 4 integration points, for
430 both Gaussian and lognormal random variables Y1 and Y2. Since
431 the means, standard deviations and kurtosis are all quite close to
432 one another, skewness and the 95% confidence interval are logi-

433cally quite different. Nevertheless, Fig. 7 shows that the resulting
434PDFs remain close, even if values of skewness are quite different.
435The r.v. Z does not seem to greatly depend on the distribution type
436of input random variables. After this study, the lognormal law has
437been chosen to represent input random variables Y1 and Y2.

4384.2.4. Application of the calibrated method to various points of the wall
439Fig. 8 shows the evolution of mean horizontal displacements
440and boundaries of the 95% confidence intervals for various wall
441depths. Confidence intervals have been deduced from 10,000 sam-
442ples. This figure also compares the inverse analysis (IA) method
443assumption (D = ±|0.5 mm + 3%|, see Section 4.1.1) with SFEM eval-
444uations of 95% confidence intervals. Just one SFEM confidence
445interval boundary lies outside the IA confidence intervals. There-
446fore, the SFE prediction allow to verify that the IA assumption do
447seem relevant.

4484.2.5. Prediction of displacements during Phase 2
449Table 7 lists the approximated statistical moments of the r.v. Z
450with n = 4 integration points for the lognormal random variables Y1
451and Y2. During Phases 1 and 2, the coefficients of variation of Z
452range between 6% and 11% and between 7% and 14%, respectively,
453and they are higher at the base of the wall. These results show the
454effect of the variability of the shear modulus and of the friction an-
455gle on the variability of displacements. Indeed, Table 7 means that

Table 4

Evolution of the statistical moments of r.v. Z for various numbers of integration

points.

Number of integration points ~lZ (mm) ~rZ (mm) ~b1;Z ~b2;Z

3 � 3 4.34 0.388 0.304 2.47

4 � 4 4.394 0.3421 0.369 3.23

5 � 5 4.392 0.3416 0.385 3.19
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Fig. 5. Probability density functions (PDFs) of random variable Z (wall displacement

at �4.5 m); Y1 and Y2 Gaussian; N = 100,000 samples; n = 3, 4 and 5.
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Fig. 6. Probability density functions (PDFs) of random variable Z for various

numbers N of samples (n = 4 integration points), N = 103, 104 and 105.

Table 5

Evolution of the 95% confidence interval of r.v. Z, with n = 4 integration points, for a

Gaussian distribution of input r.v.

Number of samples ~I95% (mm)

1000 3.3–5.2

5000 3.4–5.1

10,000 3.4–5.1

20,000 3.4–5.1

100,000 3.4–5.1

Table 6

Evolution of the statistical moments and 95% confidence interval of random variable Z

(sheet pile displacement at �4.5 m) – n = 4 integration points.

Distribution law ~lZ (mm) ~rZ (mm) ~b1;Z ~b2;Z ~I95% (mm)

Gaussian 4.39 0.342 3.7 3.2 3.5–4.98

Lognormal 4.39 0.351 1.2 3.3 3.2–4.99
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456 the increases of square deviations of these displacements are
457 greater than the increases of their means. This nonlinear effect
458 illustrates how crucial it is to take into account soil properties
459 variability.

460Fig. 9 presents the mean horizontal displacements and 95% con-
461fidence interval boundaries (SFEM) for various wall depths. IA con-
462fidence interval boundaries (D = ±|0.5 mm + 3%|) are also plotted. It
463can be observed that many SFEM 95% confidence interval bound-
464aries lie outside the IA confidence intervals in Phase 2. Reminding
465that SFEM 95% confidence interval boundaries were inside IA con-
466fidence intervals in Phase 1, the nonlinearity the mechanical prob-
467lem is illustrated once again. It underscores that predicting only
468mean values of displacements is not secure. It finally quantifies
469the variability of the mechanical response by the estimation of
470confidence intervals of final diaphragm wall displacements.

4715. Conclusion

472This paper has discussed the combination of an inverse analysis
473technique based on a genetic algorithm with a stochastic finite ele-
474ment method, with the aim of improving the design of geotechni-
475cal structures through introducing a stochastic context. A genetic
476algorithm inverse analysis was first carried out to determine soil
477parameters from in situ measurements. The soil layers studies in
478this paper are assumed to be homogeneous and spatial variability,
479where the properties vary from one location (or finite element) to
480another, is not explicitly treated. These statistically-identified
481parameters were then used as input data to a stochastic finite ele-
482ment method. The second analysis allowed predicting a confidence
483interval for the final behaviour of the geotechnical structure. The
484tools employed in this study have already been presented in previ-
485ous papers, but the originality herein consists of coupling them.
486A FE code applied the method to estimate horizontal displace-
487ments of the diaphragm wall used in the synthetic excavation
488problem. This simple application case indicates that for a given tol-
489erable error between the measurement and the response of the
490numerical model during the excavation process, the method leads
491to predicting a confidence interval for the final wall displacements.
492The presented approach has to be suited to describe a heteroge-
493neous soil. In case that different soil layers can be considered,
494authors think reasonable to apply these tools. In case of a strongly
495heterogeneous soil, the method has to be improved. Indeed, the
496statistical treatment of measurements has to be completed by
497the evaluation of a variogram and the corresponding correlation
498length. This information can be deduced if additional trial holes
499are managed, which is sometimes nonpracticable and always
500expensive. Then the probabilistic has to model the identified
501parameters by correlated random fields, for example using high-
502dimensional integration formulas [27] or Karhunen-Loève expan-
503sions [18].
504In case the homogeneity of the studied soil layer can be as-
505sumed, future work will enable applying the method to real appli-
506cation cases and then extending it to reliability studies. It is for this
507reason that the proposed approach is likely to improve observa-
508tional analysis methods for the design of geotechnical structures
509as part of the framework adopted in national and international
510building codes.
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Table 7

Coefficients of variation for displacement modelling with r.v. Z (n = 4).

Depth (m) Cov. (%) Cov. (%)

Phase 1 Phase 2
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