

 ADF Code Corner

0007. How to cancel an edit form, undoing changes

with ADFm savepoints

Abstract:

This how-to document describes one of the two

options available to cancel an edit form in ADF

Faces RC without a required field message being

raised by the client validator. Canceling an edit form

with ADF requires more than just setting the

immediate property set to true on the command

button. It requires some housekeeping for the

changes performed on the ADF binding layer.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
08-JAN-2009

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to cancel an edit form, undoing changes with ADFm
savepoints

 2

Introduction
Two strategies exist to implement a cancel button for an ADF Faces / ADF edit form that uses

client-side and server side validation: a) restoring state with a save point set in ADFm and b) a

client Java method exposed on the ADF Business Component business service. Both strategies

are similar in that they use the immediate property on a ADF Faces command button to cancel

the edit, but are different in their implementation of the data clean-up. When discussing the

problem with Steve Muench, he came up with the the declarative approach that uses a bounded

taskflow to clean up the data modification when cancel is pressed. Its a straight forward approach

that is easy understand and implement. In a previous article, we introduced a Java based solution

that didn't use any save point feature but a pure code centric approach.

The Java based approach however falls a bit short when a record was deleted and now needs to

be recovered. In this article, the focus is on model save points that can be set programmatically

or implicit in bounded taskflows.

Problem Description

The problem is based on a simple usecase: A user enters a page to either create a new record or update an

existing record. After navigating to the edit form, the user starts modifying the form data and then decides

to forget about the changes. So he presses the cancel button of the edit form in which case the ADF

Faces RC response might be as shown below

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to cancel an edit form, undoing changes with ADFm
savepoints

 3

There are two issues here: i) The user didn't provided all the required field values before pressing "cancel"

and ii) a new record has been created in the ADF iterator binding, which awaits clean up.

About ADFm Savepoints

The ADF model (ADFm) save point is a snapshot of the transaction state. Restoring a model save point

rolls back the current transaction up to the point when the save point was created. ADF model save

points can be created explicitly by the application developer or implicit by the ADFc controller. ADFc

implicitly creates a save point if a bounded taskflow is entered without starting its own transaction. The

save-point is used if the user abandons the bounded taskflow, for example using the browser back button,

or when a return activity has the restore-save-point element set.

Implicit ADFm Savepoints

Implicit save points are configured on bounded taskflows. As soon as a navigation enters the bounded

taskflow, a snapshot of the current transaction is taken to revert to the state before entering the bounded

taskflow if needed. In the example below, the bounded taskflow contains the logic for an edit form for

employee data. The router determines whether it is a "new create" or an "edit" request for an existing

employee record. In both cases the "Edit" view is displayed to the user to add or modify the data.

ADF CODE CORNER
How-to cancel an edit form, undoing changes with ADFm
savepoints

 4

The edit form in the "Edit" view has a "submit" button and a "cancel" button. It is important to point out

that the immediate property on the cancel button must be set to true to avoid field validation errors

when canceling the form. The cancel button navigates the request to the "Submit" return activity, whereas

the cancel button routes it to the "cancel" return activity. To enable transaction handing in a bounded

taskflow, the taskflow itself must be configured. In this example, the bounded taskflow is set to use a

shared Data Control Scope (which also is the default setting) and has its Transaction property set to

requires-transaction. The Transaction property setting defines that the bounded taskflow either

leverages an existing transaction from the calling taskflow or starts a new transaction if none exists. In his

upcoming February/March column for Oracle Magazine, Steve Muench explains in detail how the

declarative transaction works in bounded taskflows and you find a reference to all his Oracle Magazine

articles at the end of this paper. For now, it is enough to understand that the transaction either exists or is

created in the bounded taskflow.

ADF CODE CORNER
How-to cancel an edit form, undoing changes with ADFm
savepoints

 5

The return activities differ in their settings for the End Transaction and Restore Save Point properties.

For the submit button, there is no need to restore the save point and all you need to do is to set the End

Transaction property to commit. Commit ? Yes commit! Why ? Because I said so!

The reason why the End Transaction needs to be set to commit is that the bounded taskflow may need

to create a new transaction if no existing one exists. To see the applied changes in the caller taskflow, the

changes must be committed. If there exist a transaction - opened by the parent flow (or view port as it is

more precise to say) - then the commit is ignored and the return happens without committing the

transaction so that no damage is done to uncommitted data states.

The settings for the "cancel" return activity are rollback for the End Transaction and Restore Save

Point set to true. Similar, if a new transaction was created by the bounded taskflow, the rollback will

ADF CODE CORNER
How-to cancel an edit form, undoing changes with ADFm
savepoints

 6

undo all the changes. If an existing transaction was used, a roll back to the previous stored save point will

restore the state that existed before entering the taskflow.

Explicit ADFm Savepoints in ADF Task Flow

The explicit save point use case is in analogy to the previous article though a bit smarter in the approach.

Instead of exposing a method on the Application Module, this approach programmatically sets and

restores ADFm save points. The nice thing about this approach is that it not only works for bounded

taskflows but unbounded taskflows as well.

ADF CODE CORNER
How-to cancel an edit form, undoing changes with ADFm
savepoints

 7

The flow in the image above is similar to the flow shown with the bounded taskflow. The router activity

directs the request to the "Edit" view, either for creating a new employee record or a for editing an

existing record.

Again it is important to notice that the cancel button on the "Edit" form has its immediate property set

to true to avoid filed validation errors. The ADFm save points are created and restored by method call

activities that reference a method in a managed bean. Since the managed bean methods doesn't hold any

state, it can be configured with a None scope so it doesn't hang around unused in memory. The save

point methods are

public void restore_action() {
 String sph = (String) rctx.getPageFlowScope().get("AdfmSavePoint");
 BindingContext bctx = BindingContext.getCurrent();
 DCDataControl dcDataControl = bctx.getDefaultDataControl();
 dcDataControl.restoreSavepoint(sph);
}

public void createAdfmSavePoint(){
 BindingContext bctx = BindingContext.getCurrent();
 DCDataControl dcDataControl = bctx.getDefaultDataControl();
 String sph = (String) dcDataControl.createSavepoint();
 rctx.getPageFlowScope().put("AdfmSavePoint",sph);
}

ADF CODE CORNER
How-to cancel an edit form, undoing changes with ADFm
savepoints

 8

The save point created by the createAdfmSavePoint method is stored in the taskflow's pageFlowScope

where it is accessed from the restore_action method. Note that the lifetime of a save point is limited to

until the transaction is committed or rolled back. In other words, you cannot commit a form to then use a

save point to restore the old state. Something to keep in mind when choosing one or the other approach.

The method call activity definitions used in this example are

 <method-call id="createSavePoint">
 <method>#{BrowseDepartmentBean.createAdfmSavePoint}</method>
 <outcome>
 <fixed-outcome>goAhead</fixed-outcome>
 </outcome>
 </method-call>
 <method-call id="restore">
 <method>#{BrowseDepartmentBean.restore_action}</method>
 <outcome>
 <fixed-outcome>return</fixed-outcome>
 </outcome>
 </method-call>

Download Samples

The two sample workspaces are build against the HR demo schema using Oracle JDeveloper 11

production. You can download the sample workspacess from the ADF Code Corner website:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

RELATED DOCOMENTATION

 Steve Muench’s Oracle Magazine columns -
http://www.oracle.com/technology/products/jdev/tips/muench/oramag/index.html

 Adding savepoints to a Task Flow - Adding savepoints to a Task Flow -

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows_complex.htm#C

HDBDJBI

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technology/products/jdev/tips/muench/oramag/index.html
http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows_complex.htm#CHDBDJBI
http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows_complex.htm#CHDBDJBI

