
Recap, and outline of Lecture 9

Previously

� Every LP is either
� infeasible,
� unbounded,
� or has (one or more) optimal solutions

� Every LP can be converted into an equivalent LP in standard
form

� Feasible LPs in standard form
� always have at least one basic feasible solutions, and hence
� (if not unbounded) always have at least one optimal solution

which is a BFS

Today

� Better understanding of LPs in standard form
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Standard form problems

min c�x
s.t. Ax = b

x ≥ 0

� Converting any LP into standard form (�)

� Interpretation and visualization

� Full row rank assumption on A

� Basic solutions and bases in standard form polyhedra

� Degeneracy in standard form polyhedra

� Adjacent solutions and adjacent bases

� Optimality conditions (for general and standard form LPs)

� Developing an algorithm (the Simplex Method) for solving
LPs in standard form
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Interpretation of standard form LPs

min c�x
s.t. Ax = b

x ≥ 0

� A ∈ �m×n, b ∈ �m

� View so far: let ai ∈ �n be the transpose of the ith row of A
� Ax = b ⇔ a�ix = bi , i = 1, . . . ,m

� Let Aj ∈ �m be the jth column of A, j = 1, . . . , n

� Ax = b ⇔

n
�

j=1

Ajxj = b

� Interpretation: we are trying to “synthesize” the target vector
b as a (nonnegative) linear combination of columns of A,
while minimizing the cost.

� E.g., in the diet problem, suppose we are trying to exactly

meet the nutritional demands summarized by b by consuming
a combination of n foods whose nutritional contents (per oz.)
are given by vectors Aj , j = 1, . . . , n
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Rank of matrix A ∈ �m×n (Section 1.5)

min c�x
s.t. Ax = b

x ≥ 0

� The column space of A is the subspace spanned by the
columns of A: span(A1, . . . ,An) ⊆ �m

� The row space of A is the subspace spanned by the rows of A:
span(a1, . . . , am) ⊆ �n

� The dimensions of the column space and the row space are
the same, and called the rank of A

� Clearly, rank(A) ≤ min{m, n}
� If rank(A) = min{m, n}, we say that A has full rank

� full row rank if rank(A) = m; full column rank if rank(A) = n

� When considering LPs in standard form, usually make the
assumption that A has full row rank

� which implies m ≤ n, and span(A1, . . . ,An) = �m
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Full row rank assumption on A

Modified Theorem 2.5

Let S = {x ∈ �n | Ax = b} be a nonempty set, where A is a
matrix of dimensions m × n, with rows a�1, . . . , a

�
m. Suppose that

rank(A) = k < m and that the rows a�i1 , . . . , a
�
ik
are linearly

independent. Consider the set

T = {x | a�i1x = bi1 , . . . , a
�
ik
x = bik}.

Then S = T .

Proof: To show that S = T , show that S ⊆ T and T ⊆ S .
� S ⊆ T is easy
� Note that ai1 , . . . , aik form a basis of the row space...

Implications
� For a feasible LP in standard form, full row rank assumption

on A is made without loss of generality
� We can find m columns of A that are linearly independent
� Dimension of S0 = {x | Ax = 0} is n −m

IOE 510: Linear Programming I, Fall 2010 Standard form problems Page 9–5

Visualization of standard form LPs

min c�x
s.t. Ax = b

x ≥ 0

� A ∈ �m×n, rank(A) = m ≤ n

� The set S = {x ∈ �n | Ax = b} is an affine subspace
� “Definition:” a translation of some subspace S0 by a given

vector x0:
S = S0 + x0 = {x+ x0 | x ∈ S0}

� dimension(S) =dimension(S0) = n −m

� Constraints Ax = b force x to lie in an n−m-dimensional set.

� Whenever n −m = 2, can draw the feasible set as represented
in this n −m-dimensional affine subspace.

� Example: A = [1, 1, 1], b = [1].
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Basic solutions in standard form polyhedra

Ax = b, x ≥ 0

� Recall: x ∈ �n is a basic solution of a polyhedron defined by
equality and inequality constraints if

� All equality constraints are active at x, and
� Out of the constraints that are active at x, there are n of them

that are linearly independent
� Equiv. to saying “The system of equations corresponding to

constraints active at x has a unique solution (namely, x).”

� To construct a basic solutions, need to choose n linearly
independent constraints to be active.

� At a basic solution for a problem in standard form:
� Ax = b give us m linearly independent active constraints
� At least n −m of the constraints “xj ≥ 0” need to be active
� The resulting system of linear equations needs to have a

unique solution!
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Example

Arbitrarily picking n −m sign constraints to be active might not
result in a basic solution!

A =









1 1 2 1 0 0 0
2 1 6 0 1 0 0
1 0 4 0 0 1 0
0 1 0 0 0 0 1









, b =









8
12
4
6









n = 7, m = 4; need (at least) 3 sign constraints active for a BS

1. Try x1 = x2 = x3 = 0 (a BFS)

2. Try x1 = x2 = x4 = 0 (a BS, but not a BFS)

3. Try x1 = x3 = x4 = 0 (not a BS: no solutions)

4. Try x4 = x5 = x6 = 0 (not a BS: multiple solutions, e.g.,
x1 = 2, x2 = 5, x3 = 0.5, x7 = 1, or
x1 = 1, x2 = 5.5, x3 = 0.75, x7 = 0.5)
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Basic solutions in standard form polyhedra

Theorem 2.4

Consider the polyhedron represented by constraints Ax = b and
x ≥ 0 and assume that the m × n matrix A has linearly
independent rows. A vector x ∈ �n is a basic solution if and only if
we have Ax = b and there exist indices B(1), . . . ,B(m) such that:
(a) The columns AB(1), . . . ,AB(m) are linearly independent;
(b) if j �= B(1), . . . ,B(m), then xj = 0.

Proof of the “if” part:

� Suppose x satisfies (a) and (b). Then x satisfies

m
�

i=1

AB(i)xB(i) = b, xj = 0, j �= B(1), . . . ,B(m)

� Above system has a unique solution (since AB(1), . . . ,AB(m)

are linearly independent)
� Therefore, x is a BFS
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Basic solutions in standard form polyhedra

Theorem 2.4
Consider the polyhedron represented by constraints Ax = b and x ≥ 0 and assume that
the m × n matrix A has linearly independent rows. A vector x ∈ �n is a basic solution
if and only if we have Ax = b and there exist indices B(1), . . . ,B(m) such that:
(a) The columns AB(1), . . . ,AB(m) are linearly independent;

(b) if j �= B(1), . . . ,B(m), then xj = 0.

Proof of the “only if” part:

� Suppose x is a BS.
� Let xB(1), . . . , xB(k) be the non-zero components of x (k ≤ m)
� The following system has a unique solution (since x is a BS):

k
�

i=1

AB(i)xB(i) = b, xj = 0, j �= B(1), . . . ,B(k)

� Hence, AB(1), . . . ,AB(k) are linearly independent
� If k < m, can find additional columns AB(k+1), . . . ,AB(m) so

that columns AB(1), . . . ,AB(m) are linearly independent
� With this selection of B(1), . . . ,B(m), x satisfies (a) and (b)
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Procedure for constructing basic solutions of problems in
standard form

1. Choose m linearly independent columns AB(1), . . . ,AB(m)

2. Let xi = 0 for all i �= B(1), . . . ,B(m)

3. Solve the system of m equations Ax = b for the unknowns
xB(1), . . . , xB(m)

Example: A =









1 1 2 1 0 0 0
2 1 6 0 1 0 0
1 0 4 0 0 1 0
0 1 0 0 0 0 1









, b =









8
12
4
6









1. Let B(1) = 4, B(2) = 1, B(3) = 6, B(4) = 2.

2. x3 = x5 = x7 = 0
3. Solve









1
0
0
0









xB(1) +









1
2
1
0









xB(2) +









0
0
1
0









xB(3) +









1
1
0
1









xB(4) =









8
12
4
6









x4 = xB(1) = −1, x1 = xB(2) = 3, x6 = xB(3) = 1, x2 = xB(4) = 6
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Terminology of BSs for standard form systems

If x is a basic solution, and xB(1), . . . , xB(m) are as above,

� Columns AB(1), . . . ,AB(m) — basic columns; they form a
basis of �m.

� The matrix B =





| | |
AB(1) AB(2) · · · AB(m)

| | |



 is the basis

matrix

� Variables xB = (xB(1), . . . , xB(m))
� — basic variables; the

remaining variables are nonbasic

� Unique solution of BxB = b is xB = B−1b

� A BFS “synthesizes” the target vector b as a (nonnegative)
linear combination of basic columns of A
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Correspondence between bases and basic solutions

� Two bases are distinct or different if they involve different set
of indices {B(1), . . . ,B(m)}.

� Two different bases may correspond to the same basic
solution.

� In the second part of Theorem 2.4, if the number of non-zero
components in a BS is < m, we might have a choice of which
columns of A to use to complete the basis

� In this case, the basic solution is degenerate

� However, different basic solutions correspond to different
bases

� because a basis uniquely determines the corresponding basic
solution
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Adjacent basic solutions and adjacent bases

Definition: Adjacent basic solutions

Two distinct basic solution to a set of linear constraints in �n are
adjacent if we can find n − 1 linearly independent constraints that
are active at both of them.

Definition: Adjacent bases

In a standard form problem, two bases are adjacent if they share all
but one basic column.

� Adjacent basic solutions can always be obtained from adjacent
bases

� If two adjacent bases lead to two different basic solutions,
then these solutions are adjacent.
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Degeneracy in standard form polyhedra

Definition 2.10

A basic solution x ∈ �n is said to be degenerate if more than n of
the constraints are active at x.

Definition 2.11

Consider the standard from polyhedron
P = {x ∈ �n | Ax = b, x ≥ 0} and let x be a basic solution. Let
A ∈ �m×n have full row rank. The vector x is a degenerate basic
solution if more than n −m of the components of x are zero.

Degeneracy is not a purely geometric property! It depends on
problem representation.

P = {(x1, x2, x3) : x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1, x2, x3 ≥ 0}

vs.

P = {(x1, x2, x3) : x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1, x3 ≥ 0}

(0, 0, 1) is degenerate in the 1st representation, but not the 2nd.
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