Predicting Wine Club Attrition

Steve Bowden MS Analytics 2015

Primary Research Objective

Situation = Winery A and Winery B have developed very profitable wine clubs. However, growth in this key area is constrained by member attrition averaging 25% per year. Unless this attrition rate can be lowered, an untapped source of new members can be identified or prices can be raised, the profits generated through these clubs will level off.

Complication = Currently there are no anti-attrition remedies being tested because we cannot accurately identify those members with a high likelihood of canceling their membership. Thus, we are forced to be reactive rather than proactive.

Question = Can we develop predictive models to assess the likelihood a wine club member will cancel their membership?

Initial Hypothesis (Answer) = Yes, using account-level, transaction-level and geographic indicators, it is possible to determine the likelihood that a member will cancel their membership.

MECE Diagram

Project Plan

COLLECT

Gather/Clean Data Finish Data Extract Programming Check Data Integrity Develop Data Dictionary

UNDERSTAND

Data Discovery/Descriptive Stats Seek Clarification from SME's Develop/Document Methodology Data Transformation/Modeling

SYNTHESIZE

Evaluate Significance Rationalize Results Evaluate Practicality Present Results

1. Created 2 complete data warehouses using SQL Server 2012 BI Edition

- All billing addresses are verified and standardized using 3rd-party software (*NetZipCode byThe Software Company*)
- All contact names are parsed and genderized (*NetGender by The Software Company*)
- Email and phone numbers formats are checked using Regular Expressions
- Contact records are de-duplicated based on parts of last name, street address and zip code and/or email address.
- Includes all sales transactions down to the item level
- Includes order notes, customer notes and delivery status notes since 2012
- Include all email opens, clicks, bounces, unsubscribes and non-responses since 2008
- Included 224 census variables joined at the zip code level (*Zip Code USA*)
- Included 42 purchased demographic variables and last move date (Acxiom)

- 2. Wrote SQL Queries to create analysis dataset for each winery
 - Included all wine club members that were active (not cancelled) as of 1/1/2010
 - Sales & Email transactional data included through 12/31/2013
 - Summarized sales data by:
 - Wine Club Sales / Non-Wine Club Sales / Total Sales
 - Summarized email data by:
 - Promotion-oriented emails / General information emails / Total emails
 - Created 48 monthly snapshots at customer level (i.e., 1/2010 through 12/2013)
 - Summed lifetime-to-date sales and email variables
 - Captured the prior month's activity
 - Captured all account-level changes and notes for each snapshot
 - Created 2 target cancellation target variables 3 months and 6 months into the future

- 3. Tweaked data collection approach after reviewing data
 - Recognized that we don't have near enough data to predict on a monthly snapshot level. Only 2% cancel on a monthly basis. Rare event.
 - Created 1 modeling file for each winery:
 - Snapshot of cancelled club members as they looked the month that they cancelled. Binary target value = 1 (cancelled).
 - Snapshot of non-cancelled club members as they looked on 12/2013. Binary target value = o (not cancelled).
- 4. Standardized summarized sales and count variables
 - Total sales and count measures for non-cancelled members would increase the longer they remained active which would be collinear with Months Since Club Start.
 - Standardized each variable by dividing by the months since first activity. Example: Cumulative Wine Club Sales is standardized by taking Cumulative Wine Club Sales divided by Number of Months Since First Wine Club Sale.

Data Discovery Phase

1. Created SAS Macro to automate plotting of interval variables

- Histogram → Assess normality
 - For non-normal data, look for optimal categorization of data (e.g., age, miles from winery)
- Scatterplot across Target \rightarrow Assess patterns / correlation
 - Investigate variables that are overly correlated with target (collinearity)
- Boxplots across Target \rightarrow Assess differences in mean, median and variation
 - Identify large difference in variances indicating potential non-linear relationship. Highlight for further investigation
- 2. Created SAS Macro to help identify interactions
 - Runs linear regression on each unique combination of interval predictor variables (Y by X) across target variable . Saves parameters and standard errors estimates to macro variables
 - Uses PROC SQL to standardize beta estimate using standard error and then calculates differences across target variable (i.e., large difference between the slope of the bivariate fit across the binary target).
 - Prints sorted report to identify potential interactions to investigate further

Data Discovery Phase

- 3. Used JMP to visually assess categorical variables across target
 - Where possible, tried to collapse categories down to binary variables
 - Primarily used judgment but also looked at decision tree splits
 - Standardized similar variables across winery
 - Example: Wine Club Tier was decomposed to bottles per shipment, frequency and baseclub/special-club indicators. Winery A and Winery B have very different clubs. This was an attempt to generalize predictor variables across wineries.
 - Fixed any missing values through imputation (very few missing values)
 - Removed fields that were junk or highly dimensional
 - Zip Code, CSA, CBSA, PMSA, etc.
 - Removed text notes and shipment delivery data because it was only available for 2 of the 4 years being studied. Will run separate analysis.

Data Discovery Phase

4. Used Principal Components on Zip-level Census Data

- Needed a way to create distinct categories from 224 predictor variables
- Used SAS Enterprise Miner with default settings (correlation matrix). Used SAS node to save 5 principal components back to SAS dataset

1. Ran Discriminant Analysis to Evaluate Separation

<u>Winery A</u>

Winery B

2. Investigated Potential Quadratics Identified in Data Discovery

Quadratics with Signficant p-values

Winery A

Avg Club ItemPrice*Avg Club ItemPrice Avg_Club_ItemsPerOrder*Avg_Club_ItemsPerOrder Avg Club SalesPerOrder*Avg Club SalesPerOrder Avg NonClub ItemPrice*Avg NonClub ItemPrice Avg NonClub ItemsPerOrder*Avg Club ItemsPerOrder Avg NonClub SalesPerOrder*Avg NonClub SalesPerOrder Cumu ALL DiscPct*Cumu ALL DiscPct Cumu Club DiscPct*Cumu Club DiscPct Cumu NonClub DiscPct*Cumu NonClub DiscPct STD Cuml All Clicks*STD Cuml All Clicks STD Cuml ALL Disc*STD Cuml ALL Disc STD Cuml All DiscountOffers*STD Cuml All DiscountOffers STD Cuml ALL Items*STD Cuml ALL Items STD Cuml ALL Net*STD Cuml ALL Net STD CumI All NoResponses*STD CumI All NoResponses STD Cuml All Opens*STD Cuml All Opens STD Cuml ALL Orders*STD Cuml ALL Orders STD Cuml All ShippingOffers*STD Cuml All ShippingOffers STD Cuml Club Disc*STD Cuml Club Disc STD Cuml Club Items*STD Cuml Club Items STD Cuml Club Net*STD Cuml Club Net STD Cuml Club Orders*STD Cuml Club Orders STD Cuml NonClub Disc*STD Cuml NonClub Disc STD Cuml NonClub_Items*STD_Cuml_NonClub_Items STD Cuml NonClub_Net*STD_Cuml_NonClub_Net STD Cuml NonClub Orders*STD Cuml NonClub Orders

Winery B

Avg Club ItemPrice*Avg Club ItemPrice Avg Club ItemsPerOrder*Avg Club ItemsPerOrder Avg Club SalesPerOrder*Avg Club SalesPerOrder Avg NonClub ItemPrice*Avg NonClub ItemPrice Avg NonClub ItemsPerOrder*Avg_NonClub_ItemsPerOrder Avg NonClub SalesPerOrder*Avg NonClub SalesPerOrder Cumu ALL DiscPct*Cumu ALL DiscPct Cumu Club DiscPct*Cumu Club DiscPct Cumu NonClub DiscPct*Cumu NonClub DiscPct MonthsSinceClubStart*MonthsSinceClubStart MonthsSinceLast Club*MonthsSinceLast Club MonthsSinceLast NonClub*MonthsSinceLast NonClub STD Cuml All Clicks*STD Cuml All Clicks STD Cuml ALL Disc*STD Cuml ALL Disc STD Cuml All DiscountOffers*STD Cuml All DiscountOffers STD Cuml ALL Items*STD Cuml ALL Items STD Cuml ALL Net*STD Cuml ALL Net STD Cuml All Opens*STD Cuml All Opens STD Cuml ALL Orders*STD Cuml ALL Orders STD Cuml All ShippingOffers*STD Cuml All ShippingOffers STD Cuml Club Disc*STD Cuml Club Disc STD Cuml Club Items*STD Cuml Club Items STD Cuml Club Net*STD Cuml Club Net STD Cuml Club Orders*STD Cuml Club Orders STD_Cuml_NonClub_Disc*STD_Cuml_NonClub_Disc STD Cuml NonClub Items*STD Cuml NonClub Items STD Cuml NonClub Net*STD Cuml NonClub Net STD Cuml NonClub Orders*STD Cuml NonClub Orders

Highlighted variables are common between wineries

3. Investigated Potential Interactions Identified in Data Discovery

Interactions with Signficant p-values

Winery A

MonthsSinceFirst EmailALL*Avg Club ItemPrice MonthsSinceFirst ALL*STD Cuml All DiscountOffers MonthsSinceFirst Club*STD Cuml All DiscountOffers MonthsSinceFirst EmailALL*STD Cuml All DiscountOffers MonthsSinceLast NonClub*Avg Club ItemPrice MonthsSinceLast NonClub*STD Cuml All DiscountOffers Cumu NonClub DiscPct*Avg Club ItemPrice Cumu NonClub DiscPct*STD Cuml All DiscountOffers MonthsSinceLast ALL*Avg Club ItemPrice Avg NonClub SalesPerOrder*STD Cuml All DiscountOffers STD Cuml All Reminders*MonthsSinceLast NonClub Avg NonClub ItemPrice*STD Cuml All DiscountOffers STD Cuml All DiscountOffers*Avg NonClub ItemsPerOrder STD Cuml Club Orders*STD Cuml All ShippingOffers MonthsSinceLast Club*MonthsSinceLast EmailALL MonthsSinceLast NonClub*STD Cuml All Opens Avg NonClub SalesPerOrder*STD Cuml All Reminders MonthsSinceLast_ALL*STD_Cuml All Reminders

Winery B

MonthsSinceFirst Club*STD Cuml Club Disc STD Cuml All DiscountOffers*STD Cuml All ShippingOffers STD Cuml Club Net*STD Cuml Club Disc STD Cuml NonClub Net*STD Cuml NonClub Disc STD Cuml Club Items*STD Cuml Club Disc MonthsSinceFirst ALL*STD Cuml All Reminders STD Cuml Club Net*STD Cuml All DiscountOffers STD Cuml All DiscountOffers*STD Cuml Club Items STD Cuml Club Disc*MonthsSinceClubStart STD Cuml All Reminders*MonthsSinceLast NonClub STD Cuml NonClub Disc*STD Cuml ALL Items Avg NonClub ItemsPerOrder*STD Cuml NonClub Disc STD Cuml All Reminders*MonthsSinceLast ALL STD Cuml All ShippingOffers*STD Cuml Club Orders STD Cuml NonClub Items*Cumu ALL DiscPct Cumu ALL DiscPct*Avg NonClub SalesPerOrder STD Cuml All DiscountOffers*STD Cuml ALL Net STD Cuml ALL Items*Cumu ALL DiscPct STD Cuml ALL Net*Cumu ALL DiscPct STD Cuml NonClub Disc*STD Cuml All DiscountOffers MonthsSinceLast NonClub*STD Cuml All ShippingOffers Avg Club SalesPerOrder*STD Cuml All DiscountOffers

← Highlighted variables are common between wineries

- 4. Used JMP to fit Logistic Regression Models
 - Created Validation / Training columns (60% training / 40% Validation)
 - Included Main Effects and selected Quadratics & Interactions
 - Used Forward P-value, Forward BIC, Mixed P-value and Max Validation R² model selection techniques.
 - The Backward method would not converge (Step-halving limit)
 - Manually removed non-significant variables from training models
 - Looked at validation misclassification rate as well as true positive and true negative rates to assess fit.
 - Considered the tradeoff between a larger model and improvements in misclassification

5. Selected model Training data fit – <u>Winery A</u>

Parameter Estimates				
Term	Estimate	Std Error	ChiSquare	Prob>ChiSq
Last_ClubOrder_GT3months[1]	3.829101	0.391809	95.51	<.0001*
MonthsSinceClubStart	0.102001	0.013562	56.56	<.0001*
Avg_Club_ItemPrice	-0.08521	0.011784	52.28	<.0001*
MonthsSinceFirst_EmailALL_GT24[1]	-1.03459	0.152276	46.16	<.0001*
(MonthsSinceClubStart-33.8235)*(MonthsSinceClubStart-33.8235)	-0.00095	0.000149	40.24	<.0001*
MonthsSinceFirst_ALL	-0.13887	0.021955	40.01	<.0001*
Recvd_Offer_Last1Months[1]	-0.85057	0.134676	39.89	<.0001*
MonthsSinceLast_Club	-0.81555	0.13226	38.02	<.0001*
(MonthsSinceLast_Club-3.15599)*(MonthsSinceLast_Club-3.15599)	0.040408	0.006625	37.20	<.0001*
(MonthsSinceFirst_ALL-23.5952)*(STD_Cuml_All_DiscountOffers-1.44463)	0.065473	0.011317	33.47	<.0001*
(STD_Cuml_All_ShippingOffers-1.0146)*(STD_Cuml_Club_Orders-0.35357	3.994778	0.775057	26.57	<.0001*
STD_Cuml_All_NoResponses	0.464669	0.097572	22.68	<.0001*
Avg_Club_ItemPrice_GT40[1]	0.796706	0.178752	19.87	<.0001*
MonthsSinceFirst_ALL_GT38[1]	-1.05672	0.237876	19.73	<.0001*
STD_Cuml_All_DiscountOffers	0.975295	0.230101	17.97	<.0001*
(Avg_Club_ItemsPerOrder-3.81659)*(Avg_Club_ItemsPerOrder-3.81659)	0.03784	0.009379	16.28	<.0001*
IsClubOnHold[1]	-2.45727	0.614917	15.97	<.0001*
Avg_Club_ItemsPerOrder	-0.31222	0.081077	14.83	0.0001*
STD_Cuml_All_ShippingOffers	-0.57826	0.162282	12.70	0.0004*
STD_Cuml_Club_Orders	2.855337	0.809983	12.43	0.0004*
Intercept	3.53299	1.283081	7.58	0.0059*
Ever_NoResponse[1]	0.399119	0.172197	5.37	0.0205*
For log odds of 1/0				

5. Selected model Training data fit – <u>Winery B</u>

Parameter Estimates				
Term	Estimate	Std Error	ChiSquare	Prob>ChiSq
STD_Cuml_All_Reminders	-9.631328	0.9765637	97.27	<.0001*
STD_Cuml_All_Opens	2.14672876	0.2205993	94.70	<.0001*
Intercept	25.9402133	2.8650896	81.97	<.0001*
STD_Cuml_All_NoResponses	1.90243785	0.2171145	76.78	<.0001*
STD_Cuml_Club_Disc	0.67864079	0.0798893	72.16	<.0001*
Avg_Club_ItemPrice	-0.6143825	0.0785344	61.20	<.0001*
MilesFromWinery_GT100[1]	0.77706775	0.1073412	52.41	<.0001*
Cumu_Club_DiscPct	0.28163626	0.0390569	52.00	<.0001*
Avg_Club_ItemsPerOrder	-4.2980506	0.6166689	48.58	<.0001*
Avg_Club_SalesPerOrder	0.11778271	0.0176163	44.70	<.0001*
MonthsSinceFirst_Club	-0.196084	0.0331075	35.08	<.0001*
STD_Cuml_Club_Items	-1.647882	0.2812174	34.34	<.0001*
Had_ClubOrder_Last3Months[1]	-0.9052184	0.1591926	32.33	<.0001*
Ever_NoResponse[1]	1.03792683	0.192511	29.07	<.0001*
Cumu_NonClub_DiscPct_GT0[1]	-0.4015944	0.075673	28.16	<.0001*
Recvd_Offer_Last1Months[1]	-0.8928491	0.1700803	27.56	<.0001*
STD_Cuml_All_ShippingOffers	-3.3682415	0.6669801	25.50	<.0001*
MonthsSinceLast_Club	-0.1707746	0.0344619	24.56	<.0001*
(STD_Cuml_Club_Items-1.4453)*(STD_Cuml_Club_Items-1.4453)	0.35079917	0.0713268	24.19	<.0001*
MonthsSinceFirst_Club_GT38[1]	0.61846875	0.1538522	16.16	<.0001*
(STD_Cuml_All_ShippingOffers-0.47225)*(STD_Cuml_All_ShippingOffers-0.47225)	3.34335646	0.944236	12.54	0.0004*
STD_Cuml_Club_Items_GT1[1]	-0.3693969	0.1101996	11.24	0.0008*
MonthsSinceFirst_ALL	-0.0837471	0.0317398	6.96	0.0083*
(Avg_Club_ItemPrice-32.3626)*(Avg_Club_ItemPrice-32.3626)	0.01071394	0.0041196	6.76	0.0093*
MonthsSinceFirst_NonClub	-0.0154411	0.0065316	5.59	0.0181*
STD_Cuml_Club_Net_GT40[1]	0.23974925	0.1184606	4.10	0.0430*
For log odds of 1/0				

5. Selected model Validation data fit – <u>Winery A</u>

Parameter Estimates				
Term	Estimate	Std Error	ChiSquare	Prob>ChiSq
Last_ClubOrder_GT3months[1]	2.96900218	0.3763348	62.24	<.0001*
Avg_Club_ItemPrice	-0.0686503	0.0120983	32.20	<.0001*
MonthsSinceClubStart	0.09593869	0.0177301	29.28	<.0001*
(Avg_Club_ItemsPerOrder-3.81251)*(Avg_Club_ItemsPerOrder-3.81251)	0.06185406	0.0120689	26.27	<.0001*
MonthsSinceFirst_ALL	-0.1415965	0.0282999	25.03	<.0001*
(MonthsSinceLast_Club-3.28021)*(MonthsSinceLast_Club-3.28021)	0.01847291	0.0037135	24.75	<.0001*
(MonthsSinceClubStart-33.7635)*(MonthsSinceClubStart-33.7635)	-0.0010675	0.0002179	24.00	<.0001*
MonthsSinceFirst_EmailALL_GT24[1]	-0.7756738	0.1710178	20.57	<.0001*
Avg_Club_ItemsPerOrder	-0.4897605	0.1099541	19.84	<.0001*
MonthsSinceLast_Club	-0.4616904	0.1112078	17.24	<.0001*
(MonthsSinceFirst_ALL-23.6116)*(STD_Cuml_All_DiscountOffers-1.44769)	0.05181686	0.0130337	15.81	<.0001*
Avg_Club_ItemPrice_GT40[1]	0.6618244	0.1815623	13.29	0.0003*
(STD_Cuml_All_ShippingOffers-1.01192)*(STD_Cuml_Club_Orders-0.35117)	2.9840402	0.8742246	11.65	0.0006*
Recvd_Offer_Last1Months[1]	-0.5237691	0.1597523	10.75	0.0010*
MonthsSinceFirst_ALL_GT38[1]	-0.9034748	0.2762351	10.70	0.0011*
STD_Cuml_Club_Orders	2.88895828	0.9400641	9.44	0.0021*
IsClubOnHold[1]	-1.6013969	0.535068	8.96	0.0028*
Intercept	3.71456228	1.3524429	7.54	0.0060*
STD_Cuml_All_ShippingOffers	-0.4955241	0.1860753	7.09	0.0077*
Ever_NoResponse[1]	0.48089413	0.1991398	5.83	0.0157*
STD_Cuml_All_NoResponses	0.24589028	0.112456	4.78	0.0288*
STD_Cuml_All_DiscountOffers	0.50420081	0.2592509	3.78	0.0518
For log odds of 1/0				

5. Selected model Validation data fit – <u>Winery B</u>

Parameter Estimates				
Term	Estimate	Std Error	ChiSquare	Prob>ChiSq
STD_Cuml_Club_Disc	0.90733452	0.1065139	72.56	<.0001*
STD_CumI_AII_Reminders	-10.58711	1.3784664	58.99	<.0001*
Intercept	26.6171937	3.7295048	50.94	<.0001*
MonthsSinceFirst_Club	-0.2829162	0.0399271	50.21	<.0001*
STD_CumI_AII_NoResponses	1.86160046	0.2663367	48.86	<.0001*
STD_Cuml_Club_Items	-2.6214609	0.3770172	48.35	<.0001*
(STD_Cuml_Club_Items-1.46596)*(STD_Cuml_Club_Items-1.46596)	0.63122086	0.0976554	41.78	<.0001*
STD_Cuml_All_Opens	1.67058941	0.2772699	36.30	<.0001*
Cumu_Club_DiscPct	0.30029103	0.0518868	33.49	<.0001*
MilesFromWinery_GT100[1]	0.72238873	0.1316393	30.11	<.0001*
Avg_Club_ItemPrice	-0.5547663	0.1036826	28.63	<.0001*
MonthsSinceFirst_Club_GT38[1]	1.03022219	0.1985339	26.93	<.0001*
MonthsSinceLast_Club	-0.2115964	0.049082	18.59	<.0001*
Avg_Club_ItemsPerOrder	-3.3736742	0.8016769	17.71	<.0001*
Ever_NoResponse[1]	1.04781717	0.2516152	17.34	<.0001*
Avg_Club_SalesPerOrder	0.09053464	0.0235865	14.73	0.0001*
Recvd_Offer_Last1Months[1]	-0.8426719	0.2230036	14.28	0.0002*
Had_ClubOrder_Last3Months[1]	-0.7361182	0.2057208	12.80	0.0003*
STD_Cuml_All_ShippingOffers	-2.7983387	0.8684329	10.38	0.0013*
MonthsSinceFirst_NonClub	-0.0225311	0.0083197	7.33	0.0068*
STD_Cuml_Club_Net_GT40[1]	0.35806063	0.1499867	5.70	0.0170*
Cumu_NonClub_DiscPct_GT0[1]	-0.2090313	0.1001151	4.36	0.0368*
MonthsSinceFirst_ALL	-0.0638511	0.0349325	3.34	0.0676
(Avg_Club_ItemPrice-32.365)*(Avg_Club_ItemPrice-32.365)	0.00834604	0.0047157	3.13	0.0768
STD_Cuml_Club_Items_GT1[1]	-0.2394282	0.143602	2.78	0.0955
(STD_Cuml_All_ShippingOffers-0.47199)*(STD_Cuml_All_ShippingOffers-0.47199)	1.42217907	1.1780317	1.46	0.2273
For log odds of 1/0				

6. Are parameters intuitive? <u>Winery A</u>

	Attrition	Immediately	
When the following INCREASES:	Risk:	Intuitive?	Potential Explanation:
Last wine club order was > 3 months ago	\uparrow	Yes	No recent club orders likely means credit card declined
Average price per item in club shipment	\rightarrow	No	Primary club tier was discontinued and replaced by higher priced in 2012
Number of months since club start date	\uparrow	Yes	Quadratic effect. Increases risk until 33.76 months and then lowers risk
Number of months since first purchase	\rightarrow	No	First purchase likely before club membership began - loyal ambassadors
First email sent > 24 months ago	\rightarrow	Yes	Indicates we've had working email address for quite some time. Lowers risk.
Average items per club shipment	\rightarrow	No	Quadratic effect. Decreases risk until 3.81 items and then increases risk
Number of months since last club shipment	\rightarrow	No	Quadratic effect. Decreases attrition risk until 3.28 months and then increases risk
Average price per item in club shipment > \$40	\uparrow	Yes	Very high priced (\$90/bottle) Vintner Select case club was discontinued
Received email promotional offer last month	\rightarrow	Yes	Members receiving recent email promotion
Number of months since first purchase > 38	\rightarrow	Yes	First purchase likely before club membership began - loyal ambassadors
Standardized cumulative club orders	\uparrow	Yes	More club orders equates to more time in club and increase risk
Club is on hold	\rightarrow	Yes	Clubs that are on hold are just skipping a few shipments. Will be reactivated.
Standardized cumlative email shipping discount offers	\rightarrow	Yes	Members that receive discounted shipping offers have lower risk. Deal seekers.
At least one email was NOT opened	\uparrow	Yes	Members that don't open emails are less engaged and higher risk
Standardized cumulative email non responses	\uparrow	Yes	Members that don't open emails are less engaged and higher risk
Standardized cumulative email product discount offers	\uparrow	No	Members that receive product discount offers may feel overcharged for club shipment

6. Are parameters intuitive? <u>Winery B</u>

	Attrition	Immediately	
When the following INCREASES:	Risk:	Intuitive?	Potential Explanation:
Standardized cumulative club discount	\uparrow	Yes	Discounts have slowly been taken away. Price senstitive members are leaving.
Standardized cumulative email reminders	\checkmark	No	Email offers have been greatly reduced in lieu of telesales. Very few email reminders.
Number of months since first club purchase	\checkmark	No	Members that have been transacting for a long time are lower risk (loyal)
Standardized cumulative email no responses	\uparrow	Yes	Members that don't open emails are less engaged and higher risk
Standardized cumulative club items	\checkmark	No	Quadratic effect. Decreases risk until 1.47 items and then increases risk
Standardized cumulative email opens	\uparrow	No	Emails are very winery news & event oriented. May be alienating distant customers.
Cumulative average club discount percent	\uparrow	No	Members with a high average discount % are higher risk. May be price sensitive
Miles from winery > 100	\uparrow	Yes	Strong local following due to winery events. Less strong for distant members
Average club item price	\checkmark	Yes	Quadratic effect. Decreases risk until \$32.37 and then increases risk
Number of months since first club purchase > 38	\uparrow	No	Length of time since membership started increases risk
Months since last club order	\checkmark	No	Could be impact of club option to consolidate shipments (ship fewer times per year)
Average club items per order	\checkmark	Yes	Large base of loyal club members participating at minimum level
At least one email was NOT opened	\uparrow	Yes	Members that don't open email are less engaged and higher risk
Average club sales per order	\uparrow	Yes	Average cost of club has been rising leading to increased risk
Received email offer in last month	\checkmark	Yes	Members receiving recent email promotion show lower risk
Had a club order in past 3 months	\checkmark	Yes	Members with high recency are lower risk
Standardized cumulative email shipping offers	\checkmark	No	Quadratic effect. Decreases risk until .47 shipping offers and then increases risk
Number of months since first non-club purchase	\checkmark	No	First purchase likely before club began - loyal ambassadors
Standardized cumulative net sales > \$40	\uparrow	Yes	Members that average \$40 per month are higher risk. May want discount for large purchase
Average cumulative non-club discount percent > 0%	\checkmark	Yes	Members that utilize their club discount for a la carte wines are lower risk
Number of months since first order of any type	\checkmark	No	First purchase likely before club began - loyal ambassadors
Standardized cumulative club items > 1	\checkmark	Yes	Members that average 1+ bottle of club wine per month are lower risk

7. Assess Validity of Model – <u>Winery A</u> Marginal Model Plots #1

7. Assess Validity of Model – <u>Winery A</u> Marginal Model Plots #2

7. Assess Validity of Model – <u>Winery B</u> Marginal Model Plots #1

7. Assess Validity of Model – <u>Winery B</u> Marginal Model Plots #2

8. Validation model Gains Chart – Winery A

		Cuml %
Decile	Cancels	of Cancels
1	133	32.4%
2	123	62.4%
3	68	79.0%
4	38	88.3%
5	20	93.2%
6	8	95.1%
7	5	96.3%
8	6	97.8%
9	6	99.3%
10	3	100.0%

8. Validation model Gains Chart – Winery B

		Cuml %
Decile	Cancels	of Cancels
1	240	26.8%
2	241	53.7%
3	230	79.4%
4	118	92.6%
5	30	96.0%
6	14	97.5%
7	6	98.2%
8	5	98.8%
9	5	99.3%
10	6	100.0%

9. Cutoff Analysis – Validation data

<u>Winery A</u>

Cutoff: 0.50	Pred	icted	
Actual	Active	Cancelled	
Active	885	54	True
Cancelled	101	309	Trι
Cutoff: 0.45	Pred	icted]
Actual	Active	Cancelled]
Active	866	73	True
Cancelled	89	321	Tru
Cutoff: 0.40	Pred		
Actual	Active	Cancelled	
Active	853	86	True
Cancelled	82	328	Trι
Cutoff: 0.35	Pred	icted]
Actual	Active	Cancelled	
Active	835	104	True
Cancelled	74	336	Tru
Cutoff: 0.30	Pred	icted]
Actual	Active	Cancelled	
Active	802	137	True
Cancel	60	350	Tru

Posterior Probability = 0.31

Misclass Rate: 11.49% True Negative Rate: 94.25% True Positive Rate: 75.37%

Misclass Rate: 12.01% rue Negative Rate: 92.23% True Positive Rate: 78.29%

Misclass Rate: 12.45% le Negative Rate: 90.84% rue Positive Rate: 80.00%

Misclass Rate: 13.19% rue Negative Rate: 88.92% True Positive Rate: 81.95%

Misclass Rate: 14.60% ue Negative Rate: 85.41% rue Positive Rate: 85.37%

<u>Winery B</u>

Posterior Probability = 0.37

Cutoff: 0.50	Predicted				
Actual	Active	Cancelled			
Active	1451	62			
Cancelled	115	780			
Cutoff: 0.45	Pred	icted			
Actual	Active	Cancelled			
Active	1442	71			
Cancelled	106	789			
Cutoff: 0.40	Predicted				
Actual	Active	Cancelled			
Active	1428	85			
Cancelled	92	803			
Cutoff: 0.35	Pred	icted			
Actual	Active	Cancelled			
Active	1415	98			
Cancelled	84	811			
Cutoff: 0.30	Pred	icted			
Actual	Active	Cancelled			
Active	1392	121			
Cancelled	72	823			

Misclass Rate: 7.35% True Negative Rate: 95.90% True Positive Rate: 87.15%

Misclass Rate: 7.35% True Negative Rate: 95.31% True Positive Rate: 88.16%

Misclass Rate: 7.35% True Negative Rate: 94.38% True Positive Rate: 89.72%

Misclass Rate: 7.56% True Negative Rate: 93.52% True Positive Rate: 90.61%

Misclass Rate: 8.01% True Negative Rate: 92.00% True Positive Rate: 91.96%

10. Key Learnings

- There were far fewer predictors in common between wineries than I would have anticipated. It appears that underlying club structure and winery-specific processes have a great deal of influence on attrition.
- Wine club members tend to be a very homogeneous group. None of the purchased demographic variables ended up in either model.
- It's critical to have some subject matter experts that have been around awhile. Managerial decisions made in the past can make the interpretation of parameters difficult without context (e.g., clubs being discontinued).
- The customer's geographic location doesn't have much impact. I used Principal Components on 200+ zip-level variables, census divisions & regions, MSA's and Miles From Winery. Only Winery B showed a significant effect for nearby customers (they have many more winery events).

Supplementary Analysis

Supplementary Analysis Overview

- 1. Would like to know both "if" and "when" a customer will cancel
 - Used Survival Analysis to predicted time-to-event
 - Much of this analysis based on the book <u>Survival Analysis Using SAS: A Practical Guide,</u> <u>Second Edition</u> by Paul D. Allison (SAS Press, 2010).
 - Additional insight was gained from SUGI paper #114-27 entitled <u>Predicting Customer</u> <u>Churn in the Telecommunications Industry – An Application of Survival Analysis Modeling</u> <u>Using SAS</u> by Junxiang Lu, PHD.
 - Survival Analysis was not covered in any detail in the MS Analytics program. The goal of this analysis is to better understand the method not produce an optimum model.
- 2. Would like compare "traditional" logistic modeling to SEM
 - What does the "best" logistic model look like in SAS Enterprise Miner?
 - Similarities & differences from JMP model

- 1. Modeling Methodology & Process
 - Target variable was MonthsSinceClubStart. Censoring variable was IsClubCancelled (1=Yes, o=No)
 - Accounts that were still active at end of study were right-censored
 - Unlike logistic, I limited this study to customers that are within 5 years of club start date. I found that too many outliers result in very poor survival estimates.
 - Started with the same main effects, quadratics and interactions discovered previously. Removed any effects that could act as a proxy for the target.
 - Used semi-parametric stepwise PROC PHREG to decrease the number of effects.
 - Manually removed any remaining terms with p-value > 0.05
 - Evaluated shape of survival distribution
 - Evaluated model significance and goodness of fit

- 1. Modeling Methodology & Process (continued)
 - Used JMP to evaluate shape of Log(MonthsSinceClubStart)
 - Used parametric PROC LIFEREG to predict survival probabilities
 - Generating predicted event times is cumbersome with PHREG and relatively easy with LIFEREG. However, LIFEREG doesn't handle time-dependent covariates which may be a weakness in my methodology.
 - Built models using different distributions and observed AIC. Selected Weibull.
 - Used Paul Allison "Predict" Macro to calculate survival rates for 6, 12, 18, 24, 30 & 36 month periods.
 - Calculated attrition rate at each period as 1 minus Survival probability
 - Validated model with 40% holdout sample
 - Calculated misclassification rate for the period within 24 months of start date
 - Calculated Gains Chart reflecting cumulative cancels up to specified periods

2. Semi-parametric model fit using PHREG – <u>Winery A</u>

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	
MonthsSinceLast_Club	1	0.05865	0.01115	27.6824	<.0001	1.060	
MonthsSinceLast_ALL	1	-0.05747	0.00683	70.8166	<.0001	0.944	
Had_NonClubOrder_Last1Months	1	-0.87379	0.17851	23.9612	<.0001	0.417	
Avg_NonClub_ItemsPerOrder	1	0.03231	0.00742	18.9397	<.0001	1.033	
STD_CumI_AII_DiscountOffers	1	0.36973	0.05025	54.1412	<.0001	1.447	
STD_CumI_AII_ShippingOffers	1	-1.13816	0.09366	147.6678	<.0001		
STD_Cuml_Club_Orders	1	4.77903	0.26190	332.9693	<.0001	118.989	
STD_CumI_ALL_Net	1	-0.00373	0.0005528	45.4218	<.0001	0.996	
Avg_Club_ItemPrice_GT40	1	0.67529	0.12488	29.2424	<.0001	1.965	
Cumu_ALL_DiscPct_GT20	1	-0.54452	0.09608	32.1182	<.0001	0.580	
Cumu_Club_DiscPct_GT20	1	-0.53364	0.13185	16.3800	<.0001	0.586	
STD_Cuml_Club_Net_GT40	1	0.76123	0.10441	53.1563	<.0001	2.141	
ls_CoreClubMember	1	0.52418	0.14605	12.8808	0.0003	1.689	
Last_ClubOrder_GT3months	1	1.09657	0.09934	121.8598	<.0001	2.994	
STD_CumI_AII_ShippingOffers*STD_CumI_AII_ShippingOffers	1	0.27309	0.02468	122.4772	<.0001	-	

2. Semi-parametric model fit using PHREG – <u>Winery B</u>

		Analysi	s of Maxim	um Likelihoo	d Estimates	
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
Ever_Clicked	1	-0.60776	0.06395	90.3100	<.0001	0.545
Ever_Bounced	1	-0.47159	0.10075	21.9086	<.0001	0.624
Months SinceLast_ALL	1	-0.04438	0.00368	145.0643	<.0001	0.957
NonClubSale_Ever	1	0.51755	0.06276	68.0016	<.0001	1.678
Cumu_NonClub_DiscPct	1	0.02500	0.00657	14.4752	0.0001	1.025
Cumu_Club_DiscPct	1	-0.20420	0.01234	273.8574	<.0001	
Moved_Last3Months	1	0.60414	0.16291	13.7532	0.0002	1.830
Recvd_Offer_Last1Months	1	-0.24320	0.06021	16.3141	<.0001	0.784
STD_Cuml_All_Opens	1	0.34481	0.05042	46.7702	<.0001	1.412
STD_Cuml_All_Clicks	1	1.66088	0.23638	49.3683	<.0001	
STD_CumI_AII_Bounces	1	3.22136	0.59234	29.5763	<.0001	25.062
STD_CumI_AII_NoResponses	1	0.26742	0.04433	36.3852	<.0001	1.307
STD_Cuml_All_Reminders	1	-2.32337	0.29014	64.1229	<.0001	0.098
STD_Cuml_Club_Orders	1	0.81229	0.15089	28.9801	<.0001	2.253
STD_Cuml_Club_Disc	1	0.08520	0.01301	42.8991	<.0001	
Cumu_Club_DiscPct_GT20	1	-2.28838	0.22969	99.2575	<.0001	0.101
Cumu_NonClub_DiscPct_GT0	1	-1.55506	0.12104	165.0602	<.0001	0.211
MilesFromWinery_GT100	1	0.33241	0.06172	29.0077	<.0001	1.394
Is_CoreClubMember	1	0.46935	0.07301	41.3306	<.0001	1.599
Last_ClubOrder_GT3months	1	0.54658	0.05985	83.3983	<.0001	1.727
STD_Cuml_All_Clicks*STD_Cuml_All_Clicks	1	-0.77186	0.15523	24.7259	<.0001	
Cumu_Club_DiscPct*Cumu_Club_DiscPct	1	0.01220	0.0005537	485.6059	<.0001	
STD_Cuml_Club_Disc*STD_Cuml_Club_Disc	1	-0.0008748	0.0001993	19.2658	<.0001	-

3. Used JMP to Evaluate Shape of Log(MonthsSinceClubStart)

<u>Winery A</u>

<u>Winery B</u>

4. Training model fit using LIFEREG – Winery A

	Ana	ysis of Ma	ximum Likelihoo	d Parameter	Estimates		
Parameter	DF	Estimate	Standard Error	95% Confide	ence Limits	Chi-Square	Pr > ChiSq
Intercept	1	4.7947	0.1431	4.5142	5.0752	1122.32	<.0001
MonthsSinceLast_Club	1	-0.0321	0.0088	-0.0494	-0.0149	13.30	0.0003
MonthsSinceLast_ALL	1	0.0323	0.0053	0.0219	0.0427	37.18	<.0001
Had_NonClubOrder_Las	1	0.4489	0.1307	0.1928	0.7051	11.80	0.0006
Avg_NonClub_ItemsPer	1	-0.0174	0.0058	-0.0288	-0.0061	9.06	0.0026
STD_Cuml_All_Discoun	1	-0.2071	0.0391	-0.2837	-0.1304	28.04	<.0001
STD_Cuml_All_Shippin	1	0.6933	0.0734	0.5494	0.8372	89.20	<.0001
STD_Cuml_Club_Orders	1	-2.6706	0.1928	-3.0485	-2.2927	191.88	<.0001
STD_Cuml_ALL_Net	1	0.0025	0.0004	0.0017	0.0033	39.71	<.0001
Avg_Club_ItemPrice_G	1	-0.4292	0.0937	-0.6128	-0.2455	20.98	<.0001
Cumu_ALL_DiscPct_GT2	1	0.3453	0.0708	0.2065	0.4841	23.79	<.0001
Cumu_Club_DiscPct_GT	1	0.2275	0.0969	0.0375	0.4175	5.51	0.0189
STD_Cuml_Club_Net_GT	1	-0.5176	0.0764	-0.6674	-0.3677	45.85	<.0001
ls_CoreClubMember	1	-0.2992	0.1064	-0.5077	-0.0907	7.91	0.0049
Last_ClubOrder_GT3mo	1	-0.6337	0.0812	-0.7930	-0.4745	60.84	<.0001
STD_Cuml_*STD_Cuml_A	1	-0.1593	0.0172	-0.1930	-0.1257	86.03	<.0001
Scale	1	0.5805	0.0183	0.5458	0.6174	\sim	
Weibull Shape	1	1.7227	0.0542	1.6197	1.8323		

4. Training model fit using LIFEREG – Winery A

4. Training model fit using LIFEREG – Winery B

	Anal	ysis of Max	ximum Likelihoo	d Parameter	Estimates		
Parameter	DF	Estimate	Standard Error	95% Confid	ence Limits	Chi-Square	Pr > ChiSq
Intercept	1	3.7611	0.1251	3.5159	4.0062	904.21	<.0001
Ever_Clicked	1	0.3515	0.0522	0.2492	0.4538	45.36	<.0001
Ever_Bounced	1	0.3126	0.0837	0.1484	0.4767	13.93	0.0002
MonthsSinceLast_ALL	1	0.0301	0.0030	0.0243	0.0359	103.70	<.0001
NonClubSale_Ever	1	-0.3924	0.0497	-0.4899	-0.2949	62.24	<.0001
Cumu_NonClub_DiscPct	1	-0.0126	0.0051	-0.0226	-0.0025	5.98	0.0144
Cumu_Club_DiscPct	1	0.1435	0.0097	0.1244	0.1626	217.33	<.0001
Moved_Last3Months	1	-0.4188	0.1197	-0.6535	-0.1841	12.24	0.0005
Recvd_Offer_Last1Mon	1	0.1865	0.0484	0.0915	0.2814	14.82	0.0001
STD_Cuml_All_Opens	1	-0.2055	0.0411	-0.2861	-0.1250	25.03	<.0001
STD_Cuml_All_Clicks	1	-1.1978	0.1904	-1.5709	-0.8247	39.59	<.0001
STD_Cuml_All_Bounces	1	-2.3564	0.4572	-3.2525	-1.4602	26.56	<.0001
STD_Cuml_All_NoRespo	1	-0.1598	0.0368	-0.2320	-0.0877	18.85	<.0001
STD_Cuml_All_Reminde	1	1.2583	0.2332	0.8014	1.7153	29.13	<.0001
STD_Cuml_Club_Orders	1	-0.3707	0.1223	-0.6104	-0.1311	9.19	0.0024
STD_Cuml_Club_Disc	1	-0.0624	0.0122	-0.0862	-0.0386	26.33	<.0001
Cumu_Club_DiscPct_GT	1	1.3294	0.1972	0.9429	1.7159	45.45	<.0001
Cumu_NonClub_DiscPct	1	0.9554	0.0956	0.7681	1.1427	99.96	<.0001
MilesFromWinery_GT10	1	-0.1750	0.0488	-0.2707	-0.0793	12.85	0.0003
ls_CoreClubMember	1	-0.2903	0.0596	-0.4072	-0.1735	23.71	<.0001
Last_ClubOrder_GT3mo	1	-0.3101	0.0492	-0.4065	-0.2137	39.76	<.0001
STD_Cuml_*STD_Cuml_A	1	0.5973	0.1238	0.3547	0.8399	23.28	<.0001
Cumu_Club*Cumu_Club_	1	-0.0081	0.0004	-0.0090	-0.0073	350.66	<.0001
STD_Cuml_*STD_Cuml_C	1	0.0007	0.0002	0.0003	0.0012	9.34	0.0022
Scale	1	0.6181	0.0129	0.5933	0.6440		
Weibull Shape	1	1.6177	0.0339	1.5527	1.6855		

4. Training model fit using LIFEREG – Winery B

5. Validation model Gains Chart – Winery A

	6 Months		12 N	lonths	18 N	/lonths	24 N	/lonths	30 N	/lonths	36 N	Nonths
		Cuml %		Cuml %	Cuml %			Cuml %		Cuml %		Cuml %
Decile	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels
1	26	44.1%	33	25.6%	50	21.5%	49	19.3%	43	13.9%	38	11.7%
2	8	57.6%	34	51.9%	49	42.5%	45	37.0%	52	30.7%	54	28.4%
3	11	76.3%	24	70.5%	47	62.7%	43	53.9%	60	50.2%	63	47.8%
4	5	84.7%	14	81.4%	25	73.4%	44	71.3%	51	66.7%	58	65.7%
5	4	91.5%	11	89.9%	28	85.4%	32	83.9%	46	81.6%	53	82.1%
6	1	93.2%	3	92.2%	15	91.8%	16	90.2%	24	89.3%	17	87.3%
7	2	96.6%	6	96.9%	11	96.6%	14	95.7%	16	94.5%	16	92.3%
8	1	98.3%	2	98.4%	6	99.1%	7	98.4%	10	97.7%	18	97.8%
9	0	98.3%	0	98.4%	2	100.0%	3	99.6%	5	99.4%	4	99.1%
10	1	100.0%	2	100.0%	0	100.0%	1	100.0%	2	100.0%	3	100.0%

5. Validation model Gains Chart – Winery B

	6 M	onths	12 N	lonths	18 Months		24 N	/Ionths	30 Months		36 Months	
		Cuml %		Cuml %	Cuml %			Cuml %		Cuml %		Cuml %
Decile	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels	Cancels	of Cancels
1	93	45.1%	173	39.1%	207	33.5%	219	32.6%	223	29.7%	219	28.7%
2	45	67.0%	101	61.9%	135	55.3%	163	56.9%	172	52.6%	156	49.2%
3	25	79.1%	54	74.0%	78	68.0%	85	69.6%	93	65.0%	93	61.4%
4	13	85.4%	40	83.1%	55	76.9%	61	78.7%	73	74.7%	80	71.9%
5	11	90.8%	28	89.4%	57	86.1%	52	86.4%	69	83.9%	72	81.4%
6	7	94.2%	22	94.4%	37	92.1%	38	92.1%	49	90.4%	47	87.5%
7	7	97.6%	10	96.6%	19	95.1%	24	95.7%	26	93.9%	43	93.2%
8	1	98.1%	11	99.1%	16	97.7%	13	97.6%	24	97.1%	25	96.5%
9	3	99.5%	1	99.3%	7	98.9%	6	98.5%	11	98.5%	23	99.5%
10	1	100.0%	3	100.0%	7	100.0%	10	100.0%	11	100.0%	4	100.0%

6. Validation Misclassification

<u>Winery A</u>

Cancellations Within 24 Months of Start Date Posterior Probability: 0.36

Cutoff: 0.50	Pred	icted	
Actual	Active	Cancelled	Misclass Rate: 39.39%
Active	281	158	True Negative Rate: 64.01%
Cancelled	113	136	True Positive Rate: 54.62%

			_					
Cutoff: 0.40	Predicted							
Actual	Active	Cancelled						
Active	257	182	דו]					
Cancelled	79	170	1					

Cutoff: 0.30	Pred		
Actual	Active	Cancelled	
Active	224	215	True N
Cancelled	60	189	True

Misclass Rate: 37.94% rue Negative Rate: 58.54% True Positive Rate: 68.27%

Misclass Rate: 39.97%
True Negative Rate: 51.03%
True Positive Rate: 75.90%

<u>Winery B</u>

Cancellations Within 24 Months of Start Date Posterior Probability: 0.38

Cutoff: 0.50	Predicted					
Actual	Active	Cancelled				
Active	946	142				
Cancelled	205	466				
Cutoff: 0.40	Predicted					
Actual	Active	Cancelled				
Active	831	257				
Cancelled	147	524				
Cutoff: 0.30	Pred	icted				
Actual	Active	Cancelled				
Active	667	421				
Cancelled	82	589				

Misclass Rate: 19.73% True Negative Rate: 86.95% True Positive Rate: 69.45%

Misclass Rate: 22.97% True Negative Rate: 76.38% True Positive Rate: 78.09%

Misclass Rate: 28.60% True Negative Rate: 61.31% True Positive Rate: 87.78%

7. Key Learnings

- It's difficult to get a great model fit. My theory is that this is due to the large number of censored observations however we also may not have the best predictors for this continuous outcome.
- The Winery A model fit is pretty bad. Perhaps this is due to a smaller dataset or significantly different underlying business processes than Winery B.
- In lieu of Survival Analysis, I think I would attempt to split the dataset into "early life" and "mature" customers and build separate logistic models.
- The underlying theory and assumptions of Survival Analysis are much more complex than Logistic or OLS. A great deal of study is likely required for this method to be optimized. Also, it would be pretty difficult to explain to a non-technical business manager.

Data Mining Analysis

1. Goals of Research

- Use a data mining approach to understand which logistic models perform best.
 - Provided SEM the main effects only.
 - Evaluated 6 stepwise options (SLENTER=0.10 / SLSTAY=0.05) and compared results:
 - 1. Variable Selection \rightarrow Forward with NO interactions or quadratics
 - 2. Variable Selection \rightarrow Forward WITH interactions and quadratics
 - 3. Variable Selection \rightarrow Mixed WITH interactions and quadratics
 - 4. Variable Selection -> Backward WITH interactions and quadratics
 - 5. NO Variable Selection \rightarrow Forward WITH interactions and quadratics
 - 6. NO Variable Selection \rightarrow Mixed WITH interactions and quadratics
- Evaluate the best logistic models to those created in JMP previously
 - Do the results look similar?
- Assess some of the tradeoffs between a data mining approach a more structured hypothesis-driven method

2. Flow Diagram

3. Model Comparison – Winery A

Model Description	Selection Criterion: Valid: Misclassifica tion Rate	Train: Misclassifica tion Rate	Valid: Average Squared Error	Train: Average Squared Error	Train: Akaike's Information Criterion
Var Selection Forward Poly	0.068838	0.055418	0.059501	0.043767	803.0277
Forward No Poly	0.105107	0.093518	0.08086	0.071105	1147.206
Var Selection Backward Poly	0.107328	0.017318	0.092929	0.015806	1077.202
Var Selection Forward	0.131014	0.107867	0.09507	0.082257	1221.2
Var Selection Stepwise Poly	0.310881	0.310242	0.214234	0.213992	2505.188
Stepwise No Poly	0.310881	0.310242	0.214234	0.213992	2505.188

3. Best Performing Model – <u>Winery A</u>

• Validation Misclassification = 6.09%. 43 variables and 73 degrees of freedom

Effects	DF	Chi-Square	Pr > ChiSq	Effects (Continued)	DF	Chi-Square	Pr > ChiSq
MonthsSinceFirst_EmailALL*STD_Cuml_All_ShippingOffers	1	97.7586	<.0001	Ever_Bounced*G_IncomeInd	4	10.4052	0.0341
MonthsSinceFirst_EmailALL*STD_Cuml_All_Sent	1	77.1963	<.0001	MonthsSinceFirst_ALL*MonthsSinceFirst_EmailALL	1	10.3683	0.0013
MonthsSinceFirst_ALL*STD_Cuml_All_Clicks	1	68.4516	<.0001	MonthsSinceClubStart*MonthsSinceFirst_Club	1	10.2705	0.0014
Had_ClubOrder_Last3Months	1	61.8101	<.0001	Ever_Bounced*Had_ClubOrder_Last3Months	1	9.9542	0.0016
MonthsSinceFirst_EmailALL*MonthsSinceFirst_EmailALL	1	45.4793	<.0001	MonthsSinceLast_EmailALL*STD_Cuml_Club_Orders	1	9.4583	0.0021
G_LengthOfResidence*G_MilesFromWineryGroup	20	37.3391	0.0107	MonthsSinceFirst_EmailALL*STD_Cuml_All_Reminders	1	8.2264	0.0041
Ever_Bounced*G_Division	4	32.1627	<.0001	G_LengthOfResidence*Had_ClubOrder_Last3Months	5	8.0715	0.1523
Avg_Club_ItemPrice_GT40*STD_Cuml_All_DiscountOffers	1	28.9166	<.0001	G_ClubSalesperson	6	7.2799	0.2957
MonthsSinceFirst_EmailALL*STD_Cuml_ALL_Net_GT100	1	26.1594	<.0001	Cumu_NonClub_DiscPct*MonthsSinceFirst_EmailALL	1	7.1501	0.0075
MonthsSinceFirst_ALL*MonthsSinceFirst_ALL	1	23.7195	<.0001	Avg_NonClub_ItemPrice*MonthsSinceLast_EmailALL	1	6.4456	0.0111
STD_Cuml_All_ShippingOffers*STD_Cuml_All_ShippingOffers	1	22.0926	<.0001	STD_Cuml_All_Sent*STD_Cuml_All_Sent	1	6.3259	0.0119
STD_Cuml_All_DiscountOffers*STD_Cuml_All_DiscountOffers	1	21.7948	<.0001	Avg_NonClub_ItemPrice*STD_Cuml_NonClub_Orders	1	5.3368	0.0209
MonthsSinceClubStart*STD_Cuml_Club_Orders	1	20.9372	<.0001	STD_Cuml_All_DiscountOffers*STD_Cuml_All_ShippingOffers	1	4.774	0.0289
STD_Cuml_All_Reminders*STD_Cuml_Club_Orders	1	17.7775	<.0001	MonthsSinceClubStart*MonthsSinceFirst_NonClub	1	3.8394	0.0501
STD_Cuml_All_Sent*STD_Cuml_Club_Orders	1	16.6427	<.0001	STD_Cuml_All_Opens	1	3.7558	0.0526
MonthsSinceFirst_ALL*MonthsSinceLast_EmailALL	1	13.9176	0.0002	MonthsSinceFirst_EmailALL_GT24*MonthsSinceLast_EmailALL	1	2.9428	0.0863
Avg_NonClub_ItemPrice*STD_Cuml_ALL_Net_GT100	1	13.7339	0.0002	Is_CoreClubMember*STD_Cuml_Club_Orders	1	2.0221	0.155
Recvd_Offer_Last1Months*STD_Cuml_All_Reminders	1	13.0864	0.0003	Recvd_Offer_Last1Months*STD_Cuml_All_Sent	1	0.0589	0.8083
Cumu_NonClub_DiscPct*Recvd_Offer_Last1Months	1	12.4817	0.0004	MonthsSinceFirst_EmailALL*Recvd_Offer_Last1Months	1	0.0323	0.8574
Avg_Club_ItemPrice	1	11.605	0.0007	IsClubOnHold*Recvd_Offer_Last1Months	1	0.0013	0.971
G_ClubShipCarrier	4	10.9958	0.0266	IsClubOnHold*Is_CoreClubMember	1	0.0004	0.984
Recvd_Offer_Last1Months*STD_Cuml_Club_Orders	1	10.8393	0.001		-		

4. Model Comparison – Winery B

Model Description	Selection Criterion: Valid: Misclassifica tion Rate	Train: Misclassifica tion Rate	Valid: Average Squared Error	Train: Average Squared Error	Train: Average Error Function	Train: Akaike's Information Criterion
Var Selection Forward Poly	0.060141	0.050416	0.049368	0.040256	0.153563	1218.725
Var Selection Backward Poly	0.065118	0.044875	0.056123	0.036226	0.139304	1167.778
Forward No Poly	0.075902	0.07036	0.058086	0.052591	0.192927	1456.931
Var Selection Forward	0.082124	0.076454	0.063964	0.058981	0.213414	1576.85
Var Selection Stepwise Poly	0.373289	0.37313	0.233944	0.233904	0.660601	4771.537
Stepwise No Poly	0.373289	0.37313	0.233944	0.233904	0.660601	4771.537

4. Best Performing Model – <u>Winery B</u>

• Validation Misclassification = 6.0%. 50 variables and 54 degrees of freedom

Effect	DF	Chi-Square	Pr > ChiSq	Effect	DF	Chi-Square	Pr > ChiSq
STD_Cuml_All_Sent	1	69.8152	<.0001	STD_Cuml_Club_Items_GT1	1	10.225	0.0014
STD_Cuml_All_DiscountOffers*STD_Cuml_All_ShippingOffers	1	38.5837	<.0001	Avg_Club_ItemPrice*Avg_Club_SalesPerOrder	1	9.8088	0.0017
Cumu_Club_DiscPct*STD_Cuml_All_DiscountOffers	1	34.895	<.0001	Cumu_Club_DiscPct*MonthsSinceFirst_Club	1	9.5098	0.002
Avg_Club_SalesPerOrder_GT125*STD_Cuml_All_DiscountOffers	1	33.343	<.0001	Avg_Club_ItemPrice*MonthsSinceFirst_Club	1	9.3562	0.0022
STD_Cuml_All_DiscountOffers*STD_Cuml_All_DiscountOffers	1	28.7674	<.0001	MonthsSinceFirst_ALL*STD_Cuml_Club_Disc	1	8.5753	0.0034
Recvd_Offer_Last1Months	1	25.1157	<.0001	STD_Cuml_All_Reminders*STD_Cuml_All_Sent	1	7.3414	0.0067
Avg_Club_SalesPerOrder*STD_Cuml_All_DiscountOffers	1	24.3505	<.0001	Avg_Club_ItemPrice*STD_Cuml_Club_Disc	1	7.2784	0.007
Avg_Club_ItemsPerOrder	1	23.5926	<.0001	MonthsSinceFirst_Club*MonthsSinceFirst_Club	1	6.8596	0.0088
Cumu_Club_DiscPct*STD_Cuml_Club_Disc	1	21.8532	<.0001	STD_Cuml_All_DiscountOffers*STD_Cuml_Club_Items_GT1	1	6.5662	0.0104
MonthsSinceFirst_ALL	1	21.2085	<.0001	G_MilesFromWineryGroup*Recvd_Offer_Last1Months	3	6.5049	0.0895
Avg_Club_ItemPrice	1	20.1602	<.0001	STD_Cuml_All_Sent*STD_Cuml_Club_Items_GT1	1	6.2435	0.0125
MonthsSinceFirst_Club*STD_Cuml_All_Sent	1	17.515	<.0001	MonthsSinceClubStart*MonthsSinceLast_EmailALL	1	6.1014	0.0135
G_MilesFromWineryGroup	3	17.2818	0.0006	STD_Cuml_Club_Disc	1	5.0624	0.0245
Cumu_Club_DiscPct	1	16.5861	<.0001	Cumu_NonClub_DiscPct_GT0*STD_Cuml_Club_Items_GT1	1	4.7454	0.0294
STD_Cuml_All_Reminders*STD_Cuml_All_Reminders	1	16.3244	<.0001	Avg_Club_SalesPerOrder_GT125*MonthsSinceClubStart	1	4.1683	0.0412
Avg_Club_ItemsPerOrder*STD_Cuml_All_DiscountOffers	1	15.7587	<.0001	Cumu_Club_DiscPct*STD_Cuml_Club_Items_GT1	1	3.9705	0.0463
Had_ClubOrder_Last3Months	1	15.7517	<.0001	STD_Cuml_All_ShippingOffers*STD_Cuml_All_ShippingOffers	1	3.5818	0.0584
Avg_Club_SalesPerOrder_GT125*MonthsSinceFirst_Club	1	15.4642	<.0001	MonthsSinceFirst_ALL*MonthsSinceFirst_ALL	1	3.5107	0.061
Avg_Club_SalesPerOrder_GT125*STD_Cuml_All_Reminders	1	13.2366	0.0003	Avg_Club_ItemsPerOrder*STD_Cuml_Club_Items_GT1	1	3.348	0.0673
STD_Cuml_All_Sent*STD_Cuml_All_Sent	1	13.0164	0.0003	STD_Cuml_All_DiscountOffers*STD_Cuml_All_Reminders	1	1.6363	0.2008
Avg_Club_ItemPrice*Cumu_Club_DiscPct	1	11.8225	0.0006	STD_Cuml_All_Reminders*STD_Cuml_Club_Items_GT1	1	0.6428	0.4227
STD_Cuml_All_Reminders	1	11.7523	0.0006	Cumu_NonClub_DiscPct_GT0	1	0.3626	0.5471
Avg_Club_ItemPrice*MonthsSinceFirst_ALL	1	10.7568	0.001	Cumu_NonClub_DiscPct_GT0*MonthsSinceLast_EmailALL	1	0.0961	0.7566
MonthsSinceLast_EmailALL*STD_Cuml_All_ShippingOffers	1	10.5801	0.0011	Avg_Club_SalesPerOrder*STD_Cuml_All_Reminders	1	0.0642	0.8
Cumu_Club_DiscPct*Cumu_Club_DiscPct	1	10.5701	0.0011	STD_Cuml_All_Reminders*STD_Cuml_All_ShippingOffers	1	0.0331	0.8556

7. Key Learnings

- SAS Enterprise Miner provides a great graphical user interface to do sophisticated data mining task and can generate results equal or better than traditional methods.
- A drawback is that there is very little emphasis on reports and plots that can confirm if the model is correctly specified. One could use the SAS node within SEM or use SAS outside of SEM to write code to assess model validity.
- In this example, SEM was very efficient at testing many different interactions and quadratics and was more than willing to use these liberally. The result was a very high percentage of terms in the final model being quadratics of some sort. The models were considerably bigger than the model identified through traditional methods.
- For very large datasets where predictive power is of higher importance than understanding underlying associations, SEM really excels. However, the models may be overly dimensional and need to be retrained often to maintain results.