
MCS 320 Introduction to Symbolic Computation Spring 2003

14. Canonical and normal form; collecting and sorting

14.1 Canonical and normal form

An important problem in symbolic computation is the test for equality:

[> e1 := x*(1+y); e2 := x + x*y;

To test for equality, we need to use the evalb (eval boolean) command:

[> e1 = e2; evalb(e1=e2);

While the expressions are mathematically equivalent, for Maple they are not the same.

The canonical form for an expression is the unique representation which reduces the test on equality to

1. bringing the expression to its canonical form;

2. testing whether canonical forms are the same.

For univariate polynomials, the canonical form is the expanded polynomial, after removing of superfluous
terms (e.g.: x− x = 0), and reordering in descending order.

For multivariate polynomials, there are many possible ways to order the variables and monomials – so we
no longer uniqueness. With the command collect, we view a polynomial in several variables as a polynomial
in one (leading) variable:

[> e1c1 := collect(e1,x); e2c2 := collect(e2,y);

[> evalb(e1c1=e2c2);

The above instructions show that we have to settle for a convention. In this case we have to take the same
leading variable:

[> e2c1 := collect(e2,x);

[> evalb(e1c1=e2c1);

A more involved normal form for multivariate polynomials is the Horner form.

Normalization is the name of the process of bringing a mathematical expression into a (not the) normal
form. For rational expressions we have seen that normal removes all common factors and expands numerator
and denominator. Depending on whether we expand or factor numerator and denominator, we have four
possible choices of a normal form.

The expressions above, e1 and e2, are toys to illustrate the problem. In reality, the expressions may be
huge and require a lot of resources to manipulate. The remainder of this lecture treats commands to help to
achieve a normal form.

14.2 Collection

The command collect allows us to view a multivariate polynomial as a polynomial in one variable.

[> p := sum(sum(sum(’(i+j+k)*x^i*y^j*z^k’,’i’=0..2),’j’=0..2),’k’=0..2);

We can view p as a polynomial in x:

[> collect(p,x);

Jan Verschelde, February 14, 2003 UIC, Dept of Math, Stat & CS Lecture 14, page 1



MCS 320 Introduction to Symbolic Computation Spring 2003

We can view p as a polynomial in z with coefficients polynomials in y, whose coefficients are polynomials
in x:

[> rp := collect(p,[z,y,x],‘recursive‘);

Observe however that the convertion to the Horner form takes the default order of variables:

[> convert(rp,‘horner‘);

[> convert(p,‘horner‘);

To change the order of variables :

[> convert(p,‘horner‘,[z,y,x]);

This illustrates that there is no such thing as “the” Horner form for multivariate polynomials.

14.3 Sorting

We have already seen the total degree and pure lexicographic order of multivariate polynomials. Note that
here we first have to decide on the order of the variables, e.g. x > y > z, and then choose tdeg or plex to get
total degree or pure lexicographical order respectively.

This extends to more general expressions :

[> gp := subs(x=sin(u),y=cos(v),z=tan(w),p);

[> collect(gp,sin(u));

[> sort(gp,[sin(u),cos(v),tan(w)],‘plex‘);

14.4 A Numerical Probability One Test on Equality

When even rewriting expressions into a normal form is too expensive or simply impossible, then we can resort
to a numerical probability one test, provided we have a way to evaluate the expressions.

The test on equality between two expressions e1 and e2 is performs as follows:

1. pick a random number: r;

2. evaluate e1 and e2 in r;

3. compare e1(r) with e2(r).

Unless we are really unlucky in our choice of r, the test will be reliable – whence we call it a probability one
test. To increase our confidence (we could have picked r from a common factor), we can repeat the test with
other random numbers.

For the two expressions e1 and e2 defined above, we perform the random test as follows:

[> r := [rand(),rand()]; # we have two variables x and y

[> e1r := subs(x=r[1],y=r[2],e1); # evaluate e1 in r

[> e2r := subs(x=r[1],y=r[2],e2); # evaluate e2 in r

[> evalb(e1r=e2r); # check for equality

For truely numerical expressions, we may have to use evalf and work with a tolerance on the errors to decide
whether a number is zero or not.

Jan Verschelde, February 14, 2003 UIC, Dept of Math, Stat & CS Lecture 14, page 2



MCS 320 Introduction to Symbolic Computation Spring 2003

14.5 Assignments

1. Consider the polynomial p = (x2 + xy + x + y)(x + y).

(a) Write the polynomial as a polynomial in x with coefficients in y.

(b) Order the monomials in p in total degree using x > y.

(c) Order the monomials in p in pure lexicographic order, using x > y.

2. Verify (numerically) the following equality: ln
(

tan
(

1

2
x + 1

4
π
))

= arcsinh (tan(x)).

Jan Verschelde, February 14, 2003 UIC, Dept of Math, Stat & CS Lecture 14, page 3


