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Abstract

It is well known that all linear time-invariant controllable

systems can be transformed to Brunovsky canonical form by a

transformation consisting only of coordinate changes and linear

feedback• However, the actual procedures for doing this have

tended to be overly complex• The technique introduced here is

envisioned as an on-line procedure and is inspired by George M_yer's

tang@nt model for nonlinear systems. The process utilizes Meyer's

block triangular form as an intermediate step in going to

Brunovsky form. The method also involves orthogonal matrices,

thus eliminating the need for the computation of matrix inverses.

In addition, the Kronecker indices can be computed as a

by-product of this transformation so it is not necessary to

know them in advance•
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A Simple Algorithm for Computing Canonical Forms

H. Ford*, L.R. Hunt*, and Renjeng Su**

I. Introduction

In his work at NASA Ames Research Center, George Meyer is

applying the theory of transformations of nonlinear systems to

linear systems in order to design automatic flight controllers

for vertical and short take off aircraft [i], [2], [3], [4], [5], [6].

In these articles he introduces a linear system (called the •

tangent model) which approximates the nonlinear system, and he

mentions the importance of taking the tangent model to Brunovsky

[7] canonical form. Thus we feel that an on-line procedure for

transforming a controllable linear system to Brunovsky form is

highly desirable. Additionally in [8] the authors together with

George Meyer present a modification of the tangent model in which

the procedure introduced here plays a central role in the linearization

*Research supported by NASA Ames Research Center under grant NAG2-189

and the Joint Services Electronics Program under ONR contract

N0014-76-CI136.

**Research supported by NASA Ames Research Center under grant

NAG2-203 and the Joint Services Electronics Program under ONR

contract N0014-76-CI136.
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process itself. This process involves a Taylor Series expansion

using lie derivatives.

Our computation of the transformation proceeds in two

steps:

i) An orthogonal coordinate change is used to move the linear

system to Meyer's block triangular form (see [5]).

2) Once we are in block triangular form, the process becomes

trivial and formally involves "Lie differentiation" of

certain coordinate functions. The on-line procedure for

doing this and its application to automatic flight control

are given in [5].

In step i) it is not necessary to calculate a matrix inverse a_d no

systems of linear equations need be solved. As a by-product of

step I) we find the Kronecker indices of the system.

Understanding the fact that the block triangular form is a

natural intermediate step in transforming to Brunovsky form is

our main contribution in this paper. We have computer programs to

carry out the entire process.

In section II, we describe how to transform a single control

linear system to a string of integrators. In section III, we show

how to generalize the results of section II to a multi-control

system. Detailed algorithms for transforming linear systems to

Brunovsky form are given in section IV, including pseudocode

programs. Results achieved using a three control system and

concluding comments are given in section V. We want to emphasize

the simplicity and ease of implementation of the algorithm.
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Though the explanation of why it works may seem cumbersome, the

algorithm is very straightforward.

II. Single Control Case

Definition 2.1. An n dimensional single control system _ = f(x,u)

is called block triangular if xi is a function only of Xl,X2,...,xi+ 1

for i = I, ...,n where Xn+ 1 = u (see [5]).

For a linear single control system x = Ax + bu, this is

that the square matrix H = _ _] is a lowerequivalent to saying

Hessenberg matrix [9], that is, all elements above the first super

diagonal are zero. Notice that all elements on the first super

diagonal must be nonzero if we are to have a controllable system.

The outstanding characteristic of the block triangular system is

that if we start with xI, it is necessary to take n derivatives

of x I with respect to t before reaching the control.

Definition 2.2. An n dimensional single control system _ = f(x,u)

is called a string of integrators if xi = Xi+l for i = l,...,n

where x = u.
n+l

Once we have a block triangular linear system _ = Ax + bu, we can

transform it to a string of integrators _ = Ay + 6v by simply

letting Yl = Xl' Y2 = YI' "'''Yn = @n-i and v = Yn"

Theorem 2.1. The above transformation from block triangular form

to a string of integrators consists of only coordinate changes

and linear feedback.

Proof: We know that Yl = Xl as mentioned above.
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Assuming Yi = 7 e. x0

j=l 3

i

Yi+l = @i = 7 a. _. =

j=l 3 3

for some i < n - i, we have

i j+l i+l

7. a. 7_ a x k = 7 _k Xk
j=l 3k=l j,k k=l

Thus the state variables y are functions only of the state variables

n

x. The new control v = Yn = 7 8k Xk
k=l

n-I

= Z Bk _k + 8n _<n
k=l

n

= 7. y x + Yn+l u,
£=I £

n-i k+l <j! ul

= 7. Bk Z .x + Bn a .x. + b
k--i a=l ak, 3 j 1 n,3 3

and our feedback is linear. []

If we start with a system _ = Ax + bu which is not block

triangular, we first form the augmented matrix H = _ . From

Stewart [9] it is known that there exists an orthogonal

transformation C = _ _

Thus the transformation y

N°tice [Y? = c[X] = [0 I_ ix? =

involving coordinate changes only.

&

such that CHC T is lower Hessenberg.

= Cx yields a block triangular system

_uX_ is a trans formation

Once we have a block triangular

system, we go to a string of integrators as before.

III. Multi-Control Case

.T

For a multi-control system, the situation is slightly more

complicated than for the single control case. Below is the usual

definition of Kronecker indices [7].



Definition 3.1. Let _ = Ax + Bu be a time-invariant n dimensional

linear control system with m controls•

Let r = rank B
O

A j '-lB}r. = rank {B,AB, ... , B}-rank{B,AB,...,A 3
3

We define the Kronecker indices <. as the number of r.'s that are

l m 3

> i. Notice <i > <2 > "'" > Km and j_l<j = n.

Definition 3.2. By the Brunovsky [7] canonical form, we mean a

^ ^ A
linear system _ = Ay + Bv such that A equals

<I

_2

m

_i0 .... 0100 ..... 0

0010.

00,.

.OLOO ..... o

I •
1

I

0 I O0 ..... 0

O0 ..... 0 010 .... 0

0010. . 0

I

O0 " 0

i

J O0 ..... 0

I

• . I .

I

I

I

00 ..... 0

I O0 ..... 0

00 ..... 0 00 ..... 0

O0 ..... 0 00 ..... 0

l O0 ..... 0

T
I

• J

I

I

I

J O0 ..... 0

I

010 .... 0

0010. . 0

i

00 ..... 0



....

/

and equals

°

wci

K_m

-00 . 6

O0 .... 0

i 0 . . . 0

O0 .... 0

O0 .... 0

Ol 0 • . 0

O0 .... 0

00 0

O0 .... i
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That is, the Brunovsky form consists of m strings of integrators

whose respective lengths are the Kronecker indices• For instance

a ten dimensional system with three controls and Kronecker indices

5,3, and 2 will have Brunovsky form

b

Yl

Y2

Y3

Y4

(3. i) Y5

Y6

Y7

Y8

Y9

YI0

_i000

00100

00010

00001

00000

00000

00000

00000

00000

00000

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0

000

000

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1

oo

Yll

Y21

Y4

Y5

i

Y6

I

I

Y9

yl0_

000I

000

000

100

000I

000

010

000

pol 

V_I

Vol

,v3!

Notice that for a system with only one control, the Brunovsky form

is a string of integrators•

Though not necessary for the implementation of our algorithm,

we shall for theoretical reasons want to be able to identify

individual Kronecker indices with individual controls• For that

reason we shall introduce the following alternate definition of

Kronecker indices•

Definition 3.3. Let _ = Ax + Bu be an n dimensional linear system

with m controls and with B = [bl,...,bm]. Consider the vectors

bm,bm_l,...,bl,Abm,...,Abl,],2bm,...,A2bl, ... until we come to a vector

dependent on the previous vectors, call it AKib.. Then <. is the
1 1



Kronecker index associated with the control u..
1

If we continue

in this manner we will get m Kronecker indices whose sum is n.

This definition will give us the same Kronecker indices as before.

However, the subscripts will now associate each Kronecker index

with a control rather than ordering the Kronecker indices (we can

obviously renumber our controls so that <I _ <2 _ 43 _ "'" _ <m )"

This definition will be very useful in showing that the block

triangular form of a system contains all information on the

Kronecker indices.

What do we mean by the block triangular form of a linear

system with m controls ? The most obvious choice would be a

system consisting of m block triangular systems, each in one

control. For instance, a ten dimensional block triangular system

with three controls and Kronecker indices 5,3, and 2 might be of

• m .,

the form

(3.2)

x 1

x 2

x 3

_4

• I

x5!

x6_

x 7

x 8

x 9

Xl0

 xoooooooC

XXX0 0 0 00 0 0

XXXX0 00 00 0

XXXXX0 0 0 0 0

XXXXX0 0 00 0

0 0 0 0 0 XX0 0 0

0"0 0 0 0 XXX0 0

0 0 0 O0 XXXO 0

0 O0 0 0 O00XX

0 000 00 0 0 XX

x 1

x 2

x 3

x4 ;

x5

x6

x7

x8

X9

Ill

Here each of the O's represents zero.

-ooo-

0 0 0

0 0 0

0 0 0

XO 0

0 0 0

0 0 0

!oxo

0 0 0

0 0 X

Each of the rightmost X's

represents a nonzero element. The other X's may or may not
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be zero. We emphasize that 5 derivatives of x I must be taken to

reach a control, 3 derivatives of x 6, and 2 derivatives of x 9,

precisely the Kronecker indices.

We found it convenient to rename the state variables,

ordering them in terms of their distance from the controls. By

distance, we mean the number of derivatives of a variable we must

take to reach the controls. Renaming x I ÷ Xl, x 2 ÷x2, x 3 ÷x3,

x 6 +x 4, x 4 +x 5, x 7 ÷x 6, x 9 ÷x 7, x 5 +x 8, x 8 ÷x 9, and Xl0 ÷Xl0.

(3.3)

We then get

--- 7

x 1

x 2

x 3

x 4

x 5

x6 1
• I

x7 1
• I

xsl

_XO0000 O0 _

XXXO000000

XXXOXO O0 O0

000XOXO000

XXXOXOOXO0

0 0 0 X.O X 0 0 X 0

O0 O000XO OX

XXXOXO0 XO0

0 00XOXO OXO

0 O0 0 00XOOX

x 2

x 3

x 4

'x 5

!

ix 6

i
x 7

x 8

x 9

Xl0

-0 0 _"

000

000

000

000
+

000

000

X 00

0 XO

00 X

Elu 2

We must take 5 derivatives of x I to reach the controls, 3

derivatives of x 4, and 2 derivatives of x 7. Remarkably, the only

thing which affects the number of derivatives necessary to reach

the controls is the rightmost nonzero element in each row.

For instance, x4 is a function of x6 but not a function of xj for

j > 6 n&r u i for i_ i_ 3 "_6 is a function of x 9 but not a function

of Xl0 nor u i for i< i< 3. This implies x4 is a function of x 9
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but not a function of Xl0 nor u i for 1 <i < 3. x9 is a function

of u2 but not u3. This implies _4 is a function of u2 but not u 3.

Notice in determining that it takes three derivatives of x 4

before we reach the controls, all we used was knowledge of the

rightmost nonzero elements• Thus a block triangular system with

ten dimensions, three controls, and Kronecker indices 5,3, and 2

could have the form

(3•4.)

x 2

x 3

x 4

x 5

x 6

x 7

x 8

xlo

w

XX00000 000

XXX0000000

XXXXX00000

XXXXXX000 0

XXXXXXXX00

XXXX, XXXXXO

X X X X X X X X X X

XXX XXX XXXX

X X X X X X X X X X

X X X X X X X X X X

"Xl-

x 2

x 3

x 4

x 5

x 6

x 7

x 8

x 9

hXl0

-oo- 

0 0 0

0 0 0

0 0 0

0 0 0
+

0 0 0

0 0 0

xO 0

XXO

XX X

u I

u 2

In each row, the X furthest to the right is nonzero. The other X's

may or may not be zero. Notice it still takes 5 derivatives of x 1

to reach the controls, 3 derivatives of x 4, and 2 derivatives of x 7.

The above discussion motivates our definition of block

triangular for a linear system with several controls•

Definition 3.4. Let i = Ax + Bu be an n dimensional system with m

controls• We say the system is block triangular if the square

matrix H = Elis a generalization of a lower Hessenberg matrix that
0_,



we simply call generalized lower Hessenberg and which we now define.

First, all elements of H above the mth super diagonal are zero.

Second, if H(I,J) , with I< n, is a zero eiement with no nonzero

element to its right in row I, then all elements above H(I,J) in the

same super diagonal must alsobe zero. For instance,

(3.5.) H =

_XO0000000000

XXXO 00 O000000

XXXXXO00000 O0

XXXXXXO000000

XXXXXXXXO 0000

XXXXXXXXXO 000

XXXXXXXXXXO 00

XXXXXXXXXXXO 0

XXXXXXXXXXXXO

XXXXXXXXXXXXX

00 O000000 O000

O0 O000 O000 O00

2ooooooooooo 

where the rightmost X's are nonzero, represents a ten dimensional

block triangular system with three controls and Kronecker indices

5,3, and 2. Notice that since H(4,7) = 0, we;have

H(3,6) = H(2,5) = H(I,4) = 0. Similarly, H(2,4) = 0 implies

H(I,3) = 0.

If _ = Ax + Bu is an n dimensional system with m controls which

is not in block triangular form, we can easily make it block

triangular in the following way. Form the augmented matrix H =_ _],
_ uj



an or thogonal matrix C _L_ _ (_here I is the m dimensional

and find

identity) such that CHC T is generalized lower Hessenberg. We will

explain in the next section precisely how to find C. This matrix

C satisfies eriC T = [_ _] [_ _] [_T _] = _T CBoj]

Thus the transformation y = Cx yields a block triangular system

= _AcTy + CBu. As in the single control case, this transformation

is just a change of coordinates on our state space.

Definition 3.5. By zero pattern we shall mean the pattern of the

elements of the matrix H = [0 0] of a systemrightmost nonzero

= Ax + Bu in block triangular form. That is, for each block

triangular form there is an n t_ple of integers (£i,£2,...,£n)

so that £. is the column number of rightmost nonzero element in
l

.th
the i row.

Theorem 3.1. Let _ = Ax + Bu be an n dimensional system with m

controls. _ There is a one to one correspondence between the

possible ordered sets of Kronecker indices and the possible zero

patterns of the block triangular form. That is, a given set of

Kronecker indices with given associations with the controls (see

def. 3.3) results in a distinct and unique zero pattern.

Comment: This implies we can retrieve the Kronecker indices of a

system knowing only the zero pattern of the block triangular form.

Proof: Consider the original system _ = Ax + Bu.

Let H = [C0 0][O _] [_T 0] = [A0 _]be the block triangular represent-
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ation. Notice that @ = Ay + Bu has the same Kronecker indices as the

original system _ = Ax + Bu. To see this consider that

[bm,...,bI,_m,...,Abl,...]=[Cbm,...,CbI,CAC'gCbm,...,cAcTCbl,...]

= [Cbm,... ,Cbl,CAbm, •• •,CAbl,... ] = _ Ibm, • ••,bl,Abm, •. • ,Abl,... ] •

Since C is nonsingular, the rank of any selection of columns from

[bm,...,bl,_m,...,Abl,...] is the same as the rank of the

corresponding selection of columns from [bm,...,bl,Abm,...,Abl,...].

Therefore, we can assume without loss of generality that the

original system is already in block triangular form.

The rest of the proof depends on two basic principles from

linear algebra:

i. When we multiply a matrix times a vector, the product

is a linear combination of the columns of the matrix.
&

2. If we have a collection of n nonzero vectors Vl,...,v n,

then the linear combination i_l_iVi , with _n_0, is

linearly independent of Vl,...,Vn_ 1 if and only if v n is

linearly independent of Vl,...,Vn_ I.

Using the first principle, we see that Ab = a b where a is
m m n,m n

th th

the n column of A, and bn, m is the n entry in b . For an
i0 m

integer i0, 0< i0_ m-l, Ab m i = i_=0 an-il bn-il, m-i 0

i
0

Akbm-i0 i_=0 an-il bn-il, m-i 0

i_ m+i I m+ik 1

Akbm-i0 = il=0"" %_=0 .... Z ^- a . a ....ik=U n-i k n-lk,n-lk_ 1 "an-i2,n- _

Thus Akb is a linear combination of columns of A.
m-i

0

Using the second principle, Ab m is linearly independent of

bm,...,b I if and only if an is linearly independent of bm,...,b I.

bn-il,m-i0
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Thus for purposes of checking independence Abm can be represented

by an . Similarly Akbm_i0 can be represented by the leftmost column

of A in the linear combination which has a nonzero coefficient.

Zero coefficients are caused by previous vectors being dependent.

Thus Akb can be represented by column a where
m-i 0 n-[(k-l)m + i0]+h

h is the number of vectors already found to be dependent on previous

vectors. To see this, consider Akbm_i0 = A(Ak-lbm_i0). The index

of the column representing Akbm_i will be the first (from the top)

nonzero element of Ak-lb . 0

m_i0 Since we move up a row for every

independent vector, the first nonzero element of Ak-lb has index

m-i 0

n-[(k-l)m + i 0] + h.

ways.

to it.

Thus Akb can be dependent on the previous vectors in two

m-i 0

One way is that Ak-lbm_i0 was dependent on vectors previous

The second way is that the column an_[(k_l) m + i0 ] + h is

dependent on columns to the right of it. In this second way

Akbm_i0 is the lowest power of A times bm_i0 which is dependent

on previous vectors. Thus there is a one to one correspondence

between the ordered sets of Kronecker indices (ordered by def 3.3)

and the zero patterns of the block triangular form. []

Once we have the block triangular matrix H, how do we retrieve

the lead variables(to be define_ for the Brunovsky form? To see

how this is done and to better understand block triangular systems,

it is useful to think in terms of derivative levels.

Definition 3.6. Let _ = Ax + Bu be a control system in block



triangular form • A state variable x i is said to be on the jth

derivative level if it takes j derivatives of x. to reach the

controls. For instance in the block triangular system illustrated

in equations (3.4) and (3.5), x8,x 9, and Xl0 are on the first derivative

level, x5,x 6, and x 7 are on the second derivative level, x 3 and

x 4 are on the third level, and x 2 is on the fourth level. Lastly

the variable x I is on the fifth derivative level.

Definition 3.7. Let _ = Ax + Bu be a control system in block

triangular form. Let x i be a state variable on the jth derivative

level. Then _. is said to be a lead variable if it cannot be
l

reached by taking the derivative of a state variable on the (j+l)th

level.

For all block triangular systems, x I is a lead variable.

For the particular system in equations 3.4, x 4 and x 7 are also

lead variables. Notice that x 4 is on the third level; x 2 is the

only variable on the fourth level but its derivative is not a

function of x 4. Also x 7 is on the second level; x 3 and x 4 are on

the third level, but their derivatives fdo not involve x 7.

Theorem 3.2. Let _ = Ax + Bu be a control system in block

triangular form. The derivative levels of the lead variables

are precisely the Kronecker indices.

Proof: This theorem is really just a restatement of Theorem 3.1.

Notice that a lead variable occurs because of the inability to

reach the variable from a higher level which in turn _s caused

by a column dependency in A. []

Once we have the lead variables in the block triangular form,

we simply let them be the lead variables in the Brunovsky form.
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For instance for the block triangular system _ = Ax + Bu of equation

3.4, we let

Yl = Xl

Y2 = 91

Y3 = @2

Y4 = 93

Y5 = 94

V 1 = 95

Y6 = X4 Y9 = X7

Y7 = 96 Yl0 = 99

Y8 = 97 V3 = 910

V2 = @8

We know the respective lengths of the integral strings because

we know the derivative levels of Xl,X 4, and x 7.

Again, the essential characteristic of the block triangular

system is that the controls do not appear "too soon". Thus the

state variables in Brunovsky form are functions only of the state

variables_in the original system (that is, not functions of the

controls) .

Theorem 3.3. The above transformation from block triangular form

to Brunovsky canonical form consists of only coordinate changes

and linear feedback.

Proof:
As in the single control case, the derivative of x i is a

linear combination of x.'s except when x. is on the first
] i

derivative level. In that case xi is a linear combination of

the xj's and u£'s. Subsequent derivatives of the state variables

are also linear combinations of the appropriate variables. Let

x i be a lead variable and let k be the derivative level of x i. For j < k,

(J) is a linear
the jth derivative of x i with respect to t,x i ,
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combination of x£'s and xi(k) is a linear combination of the

! I

x£ s and u_ s. Since the lengths of the strings in the Brunovsky

form are determined by the derivative levels of the lead variables,

our proof is complete• []

IV. Algorithms

The actual algorithm for finding a matrix C to transform a

matrix H to block triangular form is a generalization of the

method found in Stewart [9] for transforming a matrix to Hessenberg

form.

We do this by placing the appropriate zeros in H one column

at a time starting with the rightmost column. For each column, we

multiply on the left and right by what is called an elementary
• l

reflector or Householder tranformation uk (see Stewart [9]). Each

_2vv T
where I is the identity

of the uk is of the form uk = I vT v

matrix and v is a vector. To illustrate this process, suppose we

want to zero out the first k-i elements in some column and at the

same time insure that the k th element is nonzero, suppose

Ii
is the column in question then we multiply

1

m

v 1

Vk- 1

vk+llvJ

0

[Vl'''''Vk-l'Vk+ II vil.,0]



= _ Ilvll 2 + vk Ilvll

IIvll(vk + llvll)

o I11where IIvll _ £he Euclidean normof .

Vk_ 1

_k+ llvll

0

0

-- -Ifvll

?
B

Starting with an index = m and k = n+m we zero out the first k-index

-i in elements columnk .... Then reduce k by 1 (or move one column to the

left) and continue• If we find that the first k-index elements of

column k are already zero, we reduce the index by i, reduce k by 1

and continue. All of the work is done by multiplication on the

left, but it is easy to see that multiplication on the right does

not undo the work. For instance uk, the matrix Which produces

zeros in the kth column is of the form uk = where C is at

most .(k-l)x(k-l). Thus multiplication of H by u k on the right cannot

affect columns k thru n+m, precisely the columns that have already

been transformed•

we give the essential part of the algorithm below• In so

doing we use the pseudo code INFL of Stewart [4]. Here N is the

dimension of the system and M is the number of controls•

i.) INDEX = M

2.) For K = N+M,...,I

i.) If H(K+I -INDEX, K +i) = 0

i) INDEX = INDEX-_

If K-Index < 1 Exit Loop

ETA = max { ]H(I,K) [: I = I,;..,K- INDEX}
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4.) If ETA = 0 Step K

5.) V(I,K) = H(I,K)/ETA I = I,...,K-INDEX

6.) SIGMA = sign (V(K - INDEX, K)) /V2(I,M)+...+V2(K-INDEX,K)

7.) V(K-INDEX, K) = V(K-INDEX, K) + SIGMA

8.) PI(K) = SIG_[A * V(K-INDEX, K)

After finding the vector V and the scalor _ , the elementary

VV_
reflector U consists of U = I - and the transformation

k k

matrix c is c = UlU2...Un+ m. Of course some of the U k may be

identities.

A very similar procedure was used by Minimis and Paige [5],

as a first step, for the purpose of placing eigenvalues. They use

a generalized upper Hessenberg matrix rather than a generalized

lower Hessenberg matrix. With renaming of coordinates they would

have obtained the block triangular form. Once in block triangular

form, as we have shown in this paper, the transformation to

Brunovsky canonical form and hence the placing of eigen values is

extremely easy. In Brunovsky form, the system is decoupled into

several single control systems, each represented by a string of

integrators.

Once we have a block triangular system, we can utilize the

zero pattern of H to select the lead variables for the Brunovsky

form. We do this by working our way up the super diagonals of H

until encountering zeros. The column number of the first zero

in each'of the first m superdiagonal working upwards tells us

which variables have been '_kipped over" and must be lead variables.

Recall also that x I is always a lead variable. The following

algorithm shows precisely how this is done.



I.)

2.)

3.)

K = M

I =N

For L = i, N+M

If IH(I,I+K) I _ 0i.)

2.)

3.)

4.)

i.) If I = 1 Exit Loop

2.) I =I-i

3.) Step L

IOTA (K) = I+K

N

Z(K) = Z C(I+K,J) X(J)

J=l

K = K-1

5. ) Step L

4.). If IH(I,J+K)I _ 0

i.) For L = I,K

i.)

2.)

IOTA(L) = L

N

Z(L) Z C (L,J) X(J)

J=l

previous algorithm.

•- Notice the lead variables Z of the Brunovsky form are computed

in terms of the original x, not in terms of the intermediate block
N

triangular system. The variable Z(K) = Y(I+K) = Z C(I+K,J) X(J)

J=l

would be the I+Kth variable in the block triangular system.

Once we know the lead variables in the Brunovsky form, all

we need to know are the Kronecker indices. These can easily be

found by counting the number of derivatives necessary to go from

the lead variables in block triangular form to the controls. The

following algorithm does this, using the value of IOTA from the



1.) For K=I, M

i.) I = IOTA(K)

2.) KAPPA (K) = 1

3.) For J = N+M,...,I

i.) if l_(I,J)l _ 0

4.)

2.)

Step K

i.)

2.)

3.)

4.)

If J > N Step K

I = J

KAPPA (K) = KAPPa(K) ÷ 1

Begin J Loop again

Step J

V. RESULTS

We apply our theory and algorithms to a linear system on _7

with 3 controls. •

Example: The following results were achieved using single

precision Fortran on a VAX 11/780 machine. For purposes of

distinguishing zeros, numbers having absolute value less than

0.00001 were considered zero.

x 2

x 3

_4

_5

36

x 7

Original System

i

0101000

0 0 1 2 0 0 1

.

0001000

0000102

0000020

OOO0045

3200016

x21

x31

x41 +

x51

x61

i

-oo_

000

060

000

000

030

210
i

IJu 2



zl

Transformation to Brunovsky form

= 0.16273xh+ 0.16781 x 3 + 0.75770 x 4 + 0.50853 x 5 - 0.33563 x 6

= 3
1

= - 0.85120 x 2
Z 4

- 0.09259 x 3 - 0.03736 x 4

+ 0.48083 x 5 + 0.18518 x 6

_2 = 3

Z 7 = - x I

_3= 1

are in order as

Here gl,K2 , and K3

necessarily the Kronecker indices

in definition 3.1 and are not

associated with the original

controls Ul,U 2' and u 3 respectively. That is,the subscript 1 does

not identify _i with Ul. In a Brunovsky canonical form, the
that is, after

controls appear only at the end of integral strings;

three derivatives of Z I, three derivatives of Z 4, and one derivative

_ Ail state variables Z should be functions only of the state

of Z 7 •

variables x.

To get some idea of the accuracy of our numerical method we

will look at the actual results in the first string.

We have

" = 0.16273 x 3 + 0.49327 x 4 0.75770 x 5
= Z

Z 2 1

_ 0_00002 x7 - 0.00003 u 2

Notice that the control u 2 does appear in Z 2,

- 0.32546 x 6

but only negligibly.

computing, we find

Z3 = Z2 = "Z = _ 0.00060 x I 0 00004 x 2 + 0 16273 x 4 + 0 49327 x 5

+ 0.01354 x 6 - 0.64098 x 7 - 0.00004 u I - 0.00002 u 2

- 0.00003 fl2



We again have in z

and the derivative u 2 is negligible.

The new control v I = Z 3 = Z 2 = Z 1

3 that the appearance of the controls u I and u 2

- 1.92294 x I - 1.28202 x 2 -0.00004 x 3 - 0.00014 x 4

+ 0.16273 x 5 + 0.39972 x 6 - 3.45276 x 7

- 1.28196 u I - 0.60036 u 2 - 0.00024 u 3 - 0.00004 41

- 0.00002 42 - 0.00003 %2

In the new control Vl' the original controls appear substantially

but derivatives of controls appear only negligibly. These results

can be improved by using more precise arithmetic, but we want to

show how well it works even in single precision.

The weakest link in the algorithm is of course the recognition

of zeros. Because the computer uses discrete arithmetic, there

are no absolute zeros and nonzeros. We must have some criteria

for deciding which numbers are zero. We chose &h arbitrary cutoff

point of 0.00001 in our example. Perhaps a more objective approach

would be to compare an element with other elements in the matrix

by using a matrix norm. We expect however that in an actual

application, there will always be some "tailoring" of this cutoff

point to suit the particular situation.

As mentioned previously, George Meyer is using transformations

to Brunovsky canonical forms to design automatic flight controllers

for vertical and short take off aircraft. In his scheme, the weak

dependencies of the new state variables on the controls in our

example are ignored, and errors are treated by a regulator which

resides .in the aircraft's on board computer.



In practice, we may be receiving noisy measurements for

state and control variables. For our process, once we reach block

triangular form, time derivatives are required to complete the

transformations to Brunovsky form. Meyer [2] has a beautiful

technique for moving from block triangular to Brunovsky form which

involves "smoothing integration" using the inflight computer before

the differentation process takes place.

The theory of transformations of nonlinear systems to linear

systems is developed in [ii],[12],[13], [14],[15], [16]. Recent

applications of this theory to automatic flight control are found r

in [17],[18], [19]. The techniques of this paper are employed in [8]

to build approximate transformations of nonlinear systems to

Brunovsky form.
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