
1 INTRODUCTION 

1.1 Type area 

Open graded pavements are considered potentially to 
be a sustainable engineering solutions to increase the 
road safety, avoiding infiltration-related distress 
caused by the presence of water and reducing noise 
impact produced at the tire pavement contact. These 
asphalt mixes with high degrees of porosity (open-
graded mixes) provide many advantages of their use 
than normal pavement materials presenting a high 
value of the index of the voids and interconnection 
among them, but provide also some disadvantages 
related to the cost and the maintenance of the pave-
ment. 

Advantages and disadvantages of porous asphalt 
have been well established in the literature (Younger 
et al., 1994); in the following chapter a summary de-
scription is presented. 

1.2 Advantages of HMA 

Reduction in splash and spray, reduced aquaplan-
ing: compared to dense mixes, surface water can 
drain through porous asphalt due to the large amount 
of continuous pores in the structure. The material 
provides good visibility under rainy conditions, thus 
preventing the reduction in traffic flow volumes, 
which normally accompany rain. In addition, the ab-

sorption of surface water is effective in reducing aq-
uaplaning which occurs when vehicles move at high 
speeds on a thin water layer. It has been shown that 
porous asphalt contributes to the reduction of the 
number of accidents in rainy days (Maupin, 1976). 

Reduction in light reflection and headlight glare: 
because porous asphalt acts as a drainage layer, 
enabling rainwater to percolate through the mix, thus 
light reflection and headlight glare, some of the dan-
gerous factors for drivers especially in night time, 
decrease dramatically and lane markings are en-
hanced clearly on wet surfaces. 

Improvement in Skid Resistance, Reduction in 
vehicle rolling resistance: increasing skid resistance 
under wet conditions is one of the main reasons for 
using porous asphalt. Assuming that a rougher wear-
ing course would increase frictional properties. In 
Oregon friction properties of porous asphalt were 
compared with dense graded asphalt. The data ac-
cumulated indicated that porous asphalt mixes had 
slightly improved friction properties in dry condi-
tions and a much improved friction properties during 
rainy conditions when free water was present on the 
pavement (Moore et al., 2001). Skid resistance is a 
function of macro and micro textures. At high 
speeds, the contribution of the macro texture is more 
dominant. In the A38 Burton trial section, 1987, 
Porous asphalt showed a skid resistance at least as 
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good as that of the HRA (hot rolled asphalt) (Daines, 
1992). In Japan, it is reported that the skid resistance 
of porous asphalt was initially the same as conven-
tional nonporous asphalt, but this value increased 
gradually during the service life, whereas the dense 
mixes did not show any significant change. In addi-
tion, fresh porous asphalt layers may have a reduced 
skid resistance due to the bitumen film on the aggre-
gates exposed to the surface. It is noteworthy to 
mention that some Swiss experts recommend not us-
ing porous asphalt with aggregate size in excess of 
16 mm on wearing courses. According to their expe-
rience, the use of larger top size aggregates may pro-
vide less skid resistance on wet road surfaces. 

Rut-resistance: in Japan, despite its high porosity, 
a number of trial sections show lower permanent de-
formation on porous asphalt than other dense mixes. 
Tighter aggregate skeleton in porous asphalt may 
contribute to withstand the load under traffic 
(EHRFJ, 1993). On the 1987 Burton trial in the UK, 
the deformation rate of this porous asphalt section in 
the near side lanes was less than 2 mm/year and 0.5 
mm/year on average after 8 years trafficking. This 
result was evaluated as an acceptable rate in Britain. 
Although deformation of pavement depends on sev-
eral conditions, such as climate, traffic intensity and 
loads, porous asphalt may provide acceptable rut re-
sistance compared to other dense mixes (Daines, 
1992). 

Noise Reduction: road surfaces are laid with 
coarse macro-texture, which are in contact with the 
tire tread. This texture is known to contribute to the 
noise absorption between the surface and the tire. 
Many trial sections show lower noise levels on por-
ous asphalt, which may be 6 dB(A) lower than con-
crete layers (Tesoriere et al., 1989) or 2 to 6 dB(A) 
lower than the HRA (Nicholls, 1996). According to 
the Swiss standards, under dry conditions in a 70 
dB(A) area by using porous asphalt a noise reduction 
of 5 dB(A) can be achieved (SN 640 433b, 2001). 
Swiss experience also indicates an advantage on the 
high speed traffic lanes in excess of about 80 km/h. 
Although the noise level of porous asphalt on the 
lower speed lanes is almost the same as other con-
ventional dense mixes, porous asphalt is still effec-
tive in reducing the noise in the frequency range of 
1.25 to 2 kHz at 60 km/h (Köster, 1991). The expe-
rience in the Netherlands indicates that on the lower 
traffic speed lanes less than 70 km, the noise level of 
porous asphalt is even higher than dense mixes due 
to its rough macro-texture on the surface. To im-
prove this aspect, 2 layer porous asphalt (twinlay) 
was developed (Bochove, 1996). It consists of a bot-
tom layer of the porous asphalt with a coarse single 
grained aggregate (11/16 mm) and a thin top layer of 
fine graded porous asphalt (4/8 mm).This double-
layer structure can contribute to reduce the traffic 
noise at any vehicular speed. According to their re-
port, additional advantages of the twinlay are better 

clog resistance against dirt and better cleaning prop-
erties. Therefore, this unique structure is expected to 
be introduced in their urban areas on a regular basis 
to meet the high environmental demand. Japanese 
experience reveals that porous asphalt is effective in 
noise reduction, but that this advantage is gradually 
lost over the years due to a decrease in mix porosity, 
especially in snowy areas where tire chains are used 
(JHPC, 1994). As an example from the USA in Ore-
gon, two types of noise measurements were taken. 
The first was roadside noise and the second was inte-
rior vehicle noise. The results indicated that porous 
asphalt pavements reduce the noise in the higher-
frequency zones. This conclusion is supported most-
ly from the roadside measurements and not from 
those taken in the interior of the vehicle, possibly 
since the higher frequencies are dampened by the 
vehicle 

1.3 Disadvantages of HMA 

Aging and Ravelling: although porous asphalt has 
many obvious advantages, there are also some dis-
advantages. One of the most critical factors in the 
performance of bituminous mixes is the tendency of 
the binder film on the surface of the aggregate to be 
continuously exposed to oxygen, sunlight, water etc. 
This results in binder hardening and a reduction in 
pavement service life (Hoban et al., 1985). When bi-
tumen hardens, aggregates can be stripped easily 
from the asphalt mixes. It is well known that, due to 
its high porosity, porous asphalt ages much faster 
than conventional dense mixes. In full-scale road tri-
als in the UK, the results conclude that the life of 
porous asphalt is ultimately limited by binder har-
dening with likely failure when its penetration drops 
below 15 pen (Daines, 1992).Another potential dis-
advantage of porous asphalt is the water sensitivity 
of the mix. Rainwater can penetrate through the por-
ous matrix. Sometimes the water remains in the 
structure keeping the asphalt in wet condition for a 
long time. This moisture can cause some extra dam-
age in porous asphalt by ravelling the binder film 
from the aggregate surfaces. 

Reduction in Porosity: during service life, the 
pores tend to be clogged by dirt, dust or other clog-
ging agents. On high speed lanes, tires produce a 
self-cleaning effect (Van Heystraeten et al., 1990). 
Thus clogging is more serious on low speed lanes or 
minor roads. With the loss of pores, the advantages 
of noise reduction and drainage function will gradu-
ally disappear. This is another serious problem for 
road maintenance. To overcome this disadvantage 
many types of cleaning methods, including vacuum 
vehicles with hydraulic jet water, have been devel-
oped to maintain the advantage of porous asphalt 
long term. However, no conclusion on the optimum 
type of cleaning method can be recommended. Po-
rosity loss is also caused by secondary traffic com-
paction, especially on heavy routes. 



Shorter Service Life: due to the above listed dis-
advantages, the service life of porous asphalt surfac-
es is shorter than that of dense mix layers. In addi-
tion, it depends on several factors such as binder 
content and type, aggregate gradation, traffic volume 
and climate. Although previous experiences show an 
optimistic life expectancy of around 15 years, some 
maintenance should be necessary within about 5 to 8 
years according to the results in many countries. 
Such maintenance costs for porous asphalt (from 
cleaning the clogged pores to replacement of those 
layers, which lost their drainage function) are consi-
dered higher than for the conventional asphalt. How-
ever, this does not mean that cost-effectiveness of 
porous asphalt surface is lower than that of other sur-
face mixes. When this issue is discussed, the signifi-
cant contribution of this pervious layer for social 
benefits, such as traffic safety and environmental is-
sues, can not be ignored. 

Winter Maintenance: snow and ice removal from 
porous surfaces requires at least twice the quantity of 
de-icing salt treatment compared to that of other 
dense mixes. However, the damage to porous asphalt 
due to salt is still unclear. Vehicular tire chains, 
spiked tires and snow ploughing sometimes cause 
severe damage on the open textured mixes requiring 
additional repair when the aggregates are stripped 
from the surface. Swiss standards recommend expli-
citly that porous asphalt not be used in areas where 
chains and spiked tires are used (SN 640 433b, 
2001). CEN suggests an abrasion test by studded 
tires to evaluate the chain damage (EN13108-7, 
2006).Japan also applies either a similar test for por-
ous asphalt, which was originally developed for 
dense mixes in snowy areas, or a decrease in the 
temperature down to - 20 °C in the Cantabro test 
(Japan Highway Public Corporation, 1994). It should 
be noted that, because of the lower thermal conduc-
tivity of the porous asphalt, in winter this surface 
may colder than dense asphalt (Köster, 1991). There-
fore, on the porous asphalt surface, snow tends to 
settle earlier and remain longer, also ice forms earli-
er when the roads are wet (Nicholls, 1996). 

All these studies and the disadvantages of open-
graded asphalt show that one of the most important 
factor that influence the acoustic and drainage prop-
erties of the HMA and their behavior during the ser-
vice life is the design of the mix, that affects also its 
durability and its safety. The mix design appears in 
this case as an optimization problem. However, be-
cause there are no analytical nor empirical model 
available, it often happens that the mixture is de-
signed adopting a minimum or overestimated stan-
dard for the hydraulic and acoustic characteristics of 
the mix. This oversize produces many disadvantages 
and problems from an economic and environmental 
point of view (Benedetto et al., 2007).  

In this paper we propose a simulation approach in 

order to predict the drainage and acoustic behavior 

of open-graded mixes during service life. In detail 

we have generated, using a Random Sequential Ad-

sorption model, synthetic HMA samples starting 

from the same grading and bitumen contents of real 

samples produced in laboratory by volumetric me-

thods. For each sample we have considered three 

number of gyrations which measure the mixture 

compaction during paving (Ndes), during the opera-

tional phase (Nint) and at the end of the service life 

(Nmax). After the numerical generation of samples we 

have simulated the unsteady flow of water through 

Lattice-Boltzmann method inside the specimens for 

each step in order to evaluate the expected permea-

bility and we have determined an absorption coeffi-

cient, using a stationary waves device applied on the 

real sample, to evaluate the acoustic properties.  

This numerical procedure allows to investigate 

the correlations between some indicators, extrapo-

lated from the simulation, and the behavior of open-

graded mixes, in order to optimize the design of the 

mix and the road maintenance 

2 . SIMULATION MODEL 

2.1 Numerical generation and indicators 

The simulation model for the numerical genera-
tion of asphalt sample is based on the characteriza-
tion of the microscopic structure of the sample. In 
particular this model allows to define the parameters 
that identify the distribution and the position of the 
constituents (aggregates, bitumen and air voids) of 
the open graded mixes. In order to define these pa-
rameters the model uses the Random Sequential ad-
sorption (RSA) for the numerical generation of the 
sample. RSA is a simple but fundamental problem in 

statistical physics. Objects are added randomly, one at a 

time, to a d-dimensional space. They must not overlap 

with previously added objects. In the present case (Bene-

detto, 2009) the space is two-dimensional, why simulat-

ing a cross section of the sample, or three-dimensional, 

why simulating fully the sample. As the process of add-

ing objects is proceeding it becomes more and more dif-

ficult to find regions where the objects can find a new 

place. Theoretically when no further addition is possible 

the process is reaching the so called “jamming limit” 
(Meakin et al., 1992). 

The single particle of aggregate is approximated here 

by a sphere. The diameter of the sphere is an approxima-

tion of the specimen size. Assuming that the asphalt pro-

duction is a random process, the RSA can be accepted as 

a good approximation of the mixture forming. In general 

it is evident that the spherical approximation is not al-

ways very realistic for this purpose, but in the case of 

porous HMA mix this approximation has been validated 

at a first stage (Benedetto, 2009). Eventually the model 

could be upgraded considering also different shapes for 



the particles if needed. Similar examples are discussed in 

the literature (hyper-spheres, ellipses, rectangles, parallel 

squares) (Manciu et al., 2004). The case of spheres is 

well and diffusely discussed in the literature (Cooper, 

1988) if the particles have the same diameter. The case 

of different sizes has been rarely investigated. However 

some applications and studies can be found in the litera-

ture about the binary (Talbot et al., 1989) and polydis-

perse mixtures (Tarjus et al., 1991). 

Here the case of a polydisperse mixture, two phase 

(solid, air), is simulated according to the sizes distribu-

tion of the aggregate. The spheres have diameters from a 

minimum value δmin to a maximum value δmax. The me-

thod is here applied to simulate real porous hot-mix as-

phalt samples, 

with the dimension and the shape of a cylinder Φ 0.15 

m and 0.05 m high. The RSA algorithm selects one di-

ameter (D) of a single sphere at random and one point 

(x,y,z) within the three-dimensional domain, that is the 

position of the center of the sphere. The selection of the 

diameter is made within the range of possible diameters 

(δmin ≤ D ≤ δmax). The final set of selected diameters must 

accord to the distribution of aggregate sizes. At this 

scope the expected grading is divided in mutually exclu-

sive but exhaustive classes (i.e. class i is from diameter 

Di to diameter Di+1). Within each class a set of diame-

ters is extracted at random in a way that the final distri-

bution of particles all over the classes accords to the real 

grading of aggregates. 

Each sphere inserted in the domain is labelled with a 

number that points to that sphere in a list where all the 

inserted spheres are associated to the coordinates of the 

position of the center and to the diameter. Basically it fa-

cilitates the process of checking for overlapping. In the 

tests we did not attempt to reach the jamming limit be-

cause the real samples are not compacted at the maxi-

mum theoretical limit. Otherwise the simulation is 

stopped when the rate between solid, as sum of the par-

ticles volumes, and the volume of voids tends to the real 

rate. Finally the distribution of spheres sizes is checked, 

to verify the consistency of the simulation respect to the 

real grading. 

Two different approaches have been adopted. A com-

plete three dimensional approach and a simplified two-

dimensional approach. A 2D sample is shown in Figure 

1. 

Figure 1. Example of two dimensional generation of asphalt 

sample. 

 

It has been verified (Benedetto, 2009) that this second 

approach (2D) gives results that are strictly correlated to 

the three-dimensional approach and it can be considered 

absolutely more efficient, under a computational point of 

view, if a full and accurate generation of the real sample 

is not required. 

According to one aggregate grading and one bitumen 

content it is possible to generate how many different 

samples how the different random seeds are. This casual 

procedure simulates the real procedure of sample mak-

ing. It is well known that the laboratory procedure to 

make samples produces, from the same initial conditions, 

different results, also under rigorous standards and me-

thods. This is the reason why, in the laboratory tests, a 

number of samples is required to calculate the average 

values of mechanical or hydraulic properties. For ob-

vious reasons of time and cost this number of samples is 

always very limited (generally four samples). The numer-

ical simulation makes it possible to generate a great 

amount of virtual samples. Over this great amount of 

samples it is possible to extract more stable and repre-

sentative averages, following a Monte Carlo procedure 

(Von Neumann, 1951). 

Once the set of samples have been simulated starting 

from the grading of aggregates and from the bitumen 

content, according to (Benedetto, 2009), it is possible to 

extract the average values, of some indicators 

representing geometrical and topological characteristics 

of the mixtures. The first step is the definition of these 

indicators . 

Here 15 different indicators, according to (Benedetto, 

2009), are examinated. These indicators have been se-

lected considering the main factors that are expected to 

play significant role in the behavior of the mixture.  

Table 1 lists all the 15 indicators. 

 

Table 1.  The indicators extracted from simulated 
samples ______________________________________________ 

N°  Indicator      Definition                        ______________________________________________ 

1   I1  Expected value of bitumen film thickness zi 
2   I2  Number of contacts among all the particles   
3   I3  Number of contacts among big particles    
4   I4  Number of contacts among little particles 
5   I5  Number of contacts between big and little  

particles    
6   I6  Number of contacts Type I among particles  
7   I7  Number of contacts Type II among particles 
8   I8  Expected value of the distance among contacts 
9   I9  Expected value of the distance among contacts  

weighted by the sum of particles radii 
10   I10  Expected value of the distance among contacts  

Type I 
11   I11  Expected value of the distance among contacts  

Type II 
12   I12  Number of interspace between particles 
13   I13  Expected value of the specific surface of par 

ticles 
14   I14  Expected value of the specific surface of par 

ticles and bitumen film 
15   I15  The rate between the number of contacts (I2)  

and the number of total particles _____________________________________________ 

 

 



3 HYDRAULIC PROPERTIES OF HMA 

The hydraulic characteristics of HMA are determined 

by the use of another numerical model   that simulate the 

flow of water inside the asphalt sample. It is based on 

Lattice – Boltzmann method (LB). The LB method is a 

class of computational fluid dynamics methods (CFD) 

for fluid simulation, it has evolved from the theory of 

Lattice Gas Automata (LGA) (Von Neumann, 1940). 

Among various techniques, the LB method is widely ac-

cepted. It has proven to be extremely efficient in the si-

mulation of fluid flow through the complex geometries 

due to the facility of implementing boundary conditions 

and to the numerical stability in a wide variety of flow 

conditions. The LB method approximates the continuous 

Boltzmann equation by discretizing a physical space with 

lattice nodes and a velocity space by a set of microscopic 

velocity vectors (Kutay, 2006). The lattice nodes are un-

iformly spaced in order to represent the voids and the 

solids, while the discrete set of microscopic velocities is 

defined for propagation of fluid molecules (Fig. 2). For 

each nodes of the lattice the macroscopic flow properties, 

density and velocity, can be calculated. 

 

 

 

 

 

 

 

Figure 2. Lattice – Boltzmann Grid 

 

The reliability of the model is already validated using 

experimental tests and theoretical calculation (Benedetto 

and Umiliaco, 2012). In particular starting from the gen-

eration of the synthetical sample and the subsequent si-

mulation of the flow of water, as described previously, it 

is possible to determine a fundamental property related to 

the permeability: tortuosity. The tortuosity of a porous 

medium describes network complexity in porous media 

(flow paths). It depends on various parameters of the par-

ticles and settlement: the shape, size, and type of the 

grains, pores, and pore channels; mode of packing of the 

grains; grain size distribution; the orientation; and non-

uniformity of the grains and it is defined as: 

 

                  (1) 

 

where L is the minimal geometrical distance between 

inlet and outlet and Le is an average effective hydraulic 

path length, of course it results Le > L. 

The knowledge of this parameter through the simula-

tion model, introduced in most of permeability models, 

allows to evaluate the permeability according to the fol-

lowing equation (Walsh and Brace, 1984): 

 

                                         (2) 

 

where K is the hydraulic conductivity, Sa is the spe-

cific surface area, ne is the effective porosity, γ is the 

unit weight of the fluid (water at 20°C), and μ is fluid 

viscosity, b is a constant given as 2 for perfectly circular 

pore structure and 3 for rough texture on the pore sur-

face.  

In previous works the reliability of the results, ob-

tained from the simulation and from the theoretical ap-

proach, were already validated by the comparison with 

some experimental outcomes, coming from laboratory 

tests using an hydraulic permeameter (Benedetto et al., 

2007). 

Figure 3 shows the correlation between the values of 

K measured and K predicted of two grading curves, from 

basaltic and silica – limestone aggregates, and three dif-

ferent percentage of bitumen for each of the four Mar-

shall samples, for a total of 24 tests (Benedetto et al., 

2007). The range of K values accepted for open – graded 

asphalt pavements is 0,02 – 0,05 cm/s and the range of T 

values accepted is 1,1 – 1,4. 

 

Figure 3. Validation of the model 

4 ACOUSTIC PROPERTIES OF HMA 

In order to assess the acoustic properties of HMA, as 

described previously, we manufactured samples by 

means of a gyratory compactor and we have considered 

three different steps, as mentioned, in terms of number of 

gyrations. They are consistent to the initial mixture com-

paction (Ndes = 30), the compaction approximately after 

half of the service life (Nint = 70 (G70, G75) or 50 (G80, 

G85) and the compaction at the end of the service life 

(Nmax = 130).  

In particular four grading curves have been selected, 

as shown in Figure 4. Two different percentage of mod-

ified bitumen have been used, 5.5% for G70 and G75 and 

5% for G80 and G85, to prepare three samples for each 

grading curve and number of gyrations, for a total of 36 

samples.  

For each of the 36 samples we have measured the 

acoustic characteristics by the determination of absorp-

tion coefficient α, defined as the ratio between the inten 
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Figure 4. Selected grading curve. 

 

sity of the absorbed acoustic wave and the intensity of 

the incident wave. This parameter is measured through a  

stationary waves device: Kundt’s tube (Fig. 5). This tube 

has an internal diameter of 100mm. 

Figure 5. Stationary wave device – Kundt’s Tube. 
 

The measuring equipment consists of a computer for 

acquisition and data processing and a tube. At the two 

extreme parts of the tube there are respectively posi-

tioned: a speaker, that generates  a tone of known fre-

quency, and the sample (Fig. 5).  

The signal generated from the speaker is a white 

noise, that has a frequency distribution almost constant in 

the range for the measurement (200-600 Hz).  

 

 

 

 

 

 

 

 

 

 

Figure 6. Absorption coefficient (a) versus service life. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Absorption coefficient (a) versus void content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stationary waves propagate in the tube as plane 

waves which invest the sample and part of them are re-

flected. The overlap of the reflected waves and the inci-

dent waves return the typical phenomenon of stationary 

wave within the tube.  

More in detail the absorption coefficient, as described 

previously, is obtained as a function of the chosenfre-

quency range, by determining a coefficient of reflection, 

obtained by measuring the sound pressure in two fixed 

locations (microphones) and by calculating, consequent-

ly, the response of the sample to the incident wave. The 

absorption coefficient is refer to the maximum value of 

the absorption spectrum of bands of narrow and large 

frequencies (one – third octave). 

Figure 6 shows the measured absorption coefficient 

during the life cycle of the open-graded samples. 

The plot position shows a good correlation between 

the absorption coefficient α and the voids content (%), 
decreasing with the increase of the number of gyrations. 

This correlation is showed in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 CORRELATION 

In order to investigate a possible correlation be-
tween hydraulic permeability and the numerical in-
dicators, starting from the grading curves (Fig. 4) we 
evaluate the drainage capability of the mixes coming 
from these grading curves using the Lattice - Boltz-
mann model, as described previously. 

In particular for each of the synthetical samples 
the model simulates the different flow paths of the 
water, as show in Figure 8. The flow paths geome-
tries allow to calculate the tortuosity (1) by tracking 
a band of most probable water paths and by assum-
ing an average trajectory to measure the length of the 
paths.  

 
 
 

 

 

 

 

 

 

 

 

Figure 8. (a), (b), (c) identification and measurement of the 

length of water paths.  
 

 

 

Using Walsh and Brace equation (2), where the 
values of parameters are evaluated from output of 
numerical generation, we are able to calculate the 
hydraulic permeability for each simulated samples.   

The values of tortuosity and the related 
permeability for the virtual samples are shown in ta-
ble 2.  
Table 2.  Tortuosity and Permeability of the mixes ______________________________________________ 

Grading curve   Service Life   T   K(cm/s)                      ______________________________________________ 

           Ndes      1.41  0.0251 
G70        Nint      1.43  0.0244 

           Nmax      1.45  0.0237 
           Ndes      1.27  0.0309 

G75        Nint      1.35  0.0273 
           Nmax      1.40  0.0254 
           Ndes      1.18  0.0358 

G80        Nint      1.27  0.0309 
           Nmax      1.36  0.0269 
           Ndes      1.14  0.0383 

G85        Nint      1.23  0.0329 
           Nmax      1.26  0.0314 _____________________________________________ 

 

Referring to the hydraulic properties, the in depth 

analysis of all the indicators shows a high correlation be-

tween the number of contacts per particle, extracted from 

the synthetic HMA sample (ratio between the number of 

contacts and the number of particles included in the ref-

erence domain, I15 ) and the values of tortuosity and per-

meability (cm/s) (R
2
 = 0.78) extracted from the syntheti-

cal samples, as the number of gyrations (Ndes – Nint – 

Nmax) increases.  

Figure 9 and Figure 10 show these correlations. 

In Figure 11 the permeability values of the four mixes 

are compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Ratio between number of contacts and number of particles versus tortuosity (T) 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Ratio between number of contacts and number of particles versus permeability (K) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Ratio between number of contacts and number of particles versus permeability (K) for each grading curve. 
 

Here the angular coefficients of the regression linear 

are mainly greater for coarser grading and lower for fin-

er.  

In detail Figure 11 shows that finer is the grading 

smoother is the decreasing trend of the permeability val-

ues while finer is the grading greater is the decreasing 

gradient for the permeability values, as the number of gy-

rations (Ndes – Nint – Nmax) increases. 

It is possible to write in a general form the correlation 

equation between the permeability coefficient and the 

number of gyratory cycles, or life time, as it follows: 

 

            (3) 

 

where: 

K = permeability (cm/s); 

λ = coefficient of regression (function of the grain 

size distribution); 

t = time related to the gyratory cycles and finally to 

the ratio between number of contacts and the number of 

inserted particles (Ndes – Nint – Nmax); 

K0 = permeability at time t0 (function of the grain size 

distribution). 

Referring to the acoustic properties, the in depth anal-

ysis of all the indicators shows a high correlation be-

tween the number of contacts per particle, as shown also 

for permeability, extracted from the synthetic HMA 

sample (ratio between the number of contacts and the 

number of particles included in the reference domain, I15  

and the number of voids (%) of the real samples, as the 

number of gyrations (Ndes – Nint – Nmax) increases.  

This correlation is shown in Figure 12:  

As expected, the figure shows a decreasing trend of 

the voids content as the number of gyrations increases. 

Accordingly, the increasing of gyrations cycles produces 

an increasing of the ratio between the number of contacts 

and the number of particles. 

Moreover, if we consider the acoustic absorption 

coefficient (α), the correlation with the rate of contacts 
per particle is weaker (Fig. 13). This is reasonably due by 

the various levels of uncertainty as grain size characteris-

tics, dimension and distribution of voids, that produces a 

not negligible dispersion in the plot position.  

Under a quantitative point of view, figure 11 shows as 

the adsorption coefficient decreases as the voids content 

decreases. 

It is clear that the absorption coefficient is reduced 

much more rapidly than the voids ratio, that decreases 

much slowly. 

In a more complex and realistic model, where dimen-

sion and size distribution of particles are very variable, 

the absorption coefficient decreasing cannot be predicted 

easily, but an analogous trend is reasonably expected. 

More in depth it is expected that coarser is the grading 

smoother is the decreasing trend of the absorption coeffi-

cient, because the average final (after compaction) di-

mension of the voids is greater, while finer is the grading 

greater is the decreasing gradient for the absorption coef-

ficient. 

This assumption is qualitatively confirmed by the re-

sults, as it is shown in Figure 14, where the four mate-

rials, that have different grading curves, are compared. 

Here the angular coefficients of the regression linear are 

mainly greater for finer grading and lower for coarser. 

It is possible to write in a general form the correlation 

equation between the absorption coefficient and the 

number of gyratory cycles, or life time, as it follows: 

 

            (4) 

 

where: 

α = absorption coefficient; 

ω = coefficient of regression (function of the grain 
size distribution); 

t = time related to the gyratory cycles and finally to 

the ratio between number of contacts and the number of 

inserted particles (Ndes – Nint – Nmax); 

α0 = absorption coefficient at time t0 (function of the 

grain size distribution). 

The coefficient of regression is expected to be a func-

tion of the particle size distribution, as well as the ab-

sorption coefficient at time t0. 

tKK 0

0t



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12: Ratio between number of contacts and number of particles versus voids content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Ratio between number of contacts and number of particles versus absorption coefficient (α). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14: Ratio between number of contacts and number of particles versus α for each grading curve. 

 



6 CONCLUSION 

Open-gradede pavements have many desiderable cha-

racteristics in order to increase road safety. They reduce 

noise, hydroplaning, splash and spray, rutting and crack-

ing. However in order to improve upon this pavement 

type, it is necessary to correct some of the maintenance 

and construction problems. These problems can be re-

duce by a careful choice of the design of the mix in order 

to define and to optimize the most important properties 

(drainage and acoustic behavior) of HMA. 

However it is very difficult to predict these features of 

the mixes, because it is a function of many variables re-

lated to the physical characteristics and to the micro-

structure (distribution, dimension and interconnection of 

voids) which make the evaluation very uncertain.  

In this paper a numerical model is proposed to simu-

late open-graded sample in order to predict the hydraulic 

and acoustical features of HMA.  

In particular number of contacts and dimension of vo-

ids seem to be the most significant indicators for predict-

ing hydraulic (permeability) and acoustic properties (ab-

sorption coefficient) of HMA. More in depth the 

correlation between the permeability value and absorp-

tion coefficient with density of contacts appears as a 

function of grain size distribution and as a function of the 

increasing number of gyrations (Ndes – Nint – Nmax), 

that represents three different temporal steps of the lyfe 

cycle of the pavement.  

It is possible to write in a general form the correlation 

equation between the permeability values and absorption 

coefficient with the life time (number of gyratory cycles). 

This correlation, that seems to be very promising, is very 

useful in order to optimize and to support the design of 

HMA to minimize costs and maintenance of the pave-

ment. However additional experimental validations 
have to be carried out, in order to reach the needed re-
liability and a stable procedure. 
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