
1

Picturing Programs

Jennifer Campbell

(slightly edited by Greg Wilson)

CSC301 – Fall 2007

CSC301 University of Toronto 2

Moving Towards Specifications

• What functions will the new system

provide?

– How will people interact with it?

– Describe functions from a user’s perspective

• UML Use Cases

– Used to show:

• the functions to be provided by the system

• which actors will use which functions

CSC340 University of Toronto 3

UML Use Case Diagrams

Capture the relationships between actors

and use cases.

Campaign

Manager

Accountant

Staff contact

[BMF99]

Add a
new client

Change a
client contact

Record
client payment

CSC301 University of Toronto 4

Notation for Use Case Diagrams

Actor

Place book order

Communication
association

System
boundary

Use case

[BMF99]

Customer

2

CSC340 University of Toronto 5

Use cases and Actors

� Use case:

� a pattern of behavior that the new system is required
to exhibit

� a sequence of related actions performed by an actor
and the system via a dialogue.

� Actor:

� anything that needs to interact with the system:

� a person

� a role that different people may play

� another (external) system.

CSC340 University of Toronto 6

Example: Staff Management
Add new

staff member

Add new

staff category

Calculate staff

bonuses

Change category

for staff member

Accountant

Change rate

for staff category

Staff

Management

System

CSC340 University of Toronto 7

<<extends>>

When one use case adds behaviour to a base case
� used to model a part of a use case that the user may see as

optional system behavior;

� also models a separate sub-case which is executed conditionally.

Registrar

Distribute info
to students

Distribute schedule
info to students

<<extends>>

CSC340 University of Toronto 8

<<uses>>

One use case invokes another (like a procedure call);

� used to avoid describing the same flow of events several times

� puts the common behavior in a use case of its own.

Cashier

Check out item

Swipe UPC
code

<<uses>>

3

CSC301 University of Toronto 9

Example: Car
Driver Mechanic

<<extends>><<uses>>

GasAttendant

<<uses>>

<<uses>>

<<uses>>
Fix CarCheck Oil

Drive
Fill Up

Fix car on
the road

Turn On
Engine

CSC301 University of Toronto 10

Example: Meeting Scheduler

Provide
constraints

Edit
ConstraintsWithdraw

Validate
User

Schedule
meeing

Initiator Participant

<<uses>>

<<extends>>

<<uses>>

Generate
Schedule

<<uses>>

<
<

u
s
e
s
>

> <<
us

es
>>

CSC340 University of Toronto 11

Identifying Actors

� Look for:
� the users who directly use the system

� also others who need services from the system

� To find actors that are people/roles ask:
� Who will be a primary user of the system? (primary actor)

� Who will need support from the system to do her daily tasks?

� Who will maintain, administrate, keep the system working?
(secondary actor)

� Who or what has an interest in the results that the system
produces ?

� To find actors that are external systems ask:
� Which hardware devices does the system need?

� With which other systems does the system need to interact with?

CSC301 University of Toronto 12

Finding Use Cases

� For each actor, ask the following questions:
� Which functions does the actor require from the system?

� What does the actor need to do ?

� Does the actor need to read, create, destroy, modify, or store
some kinds of information in the system ?

� Does the actor have to be notified about events in the system?

� Does the actor need to notify the system about something?

� What do those events require in terms of system functionality?

� Could the actor�s daily work be simplified or made more efficient
through new functions provided by the system?

4

CSC301 University of Toronto 13

Generalization relations: “is a”

Generalizations
• Actor classes

– It’s sometimes useful to identify
classes of actor

• E.g. where several actors belong
to a single class

• Some use cases are needed by
all members in the class

• Other use cases are only needed
by some members of the class

– Actors inherit use cases from
the class

• Use Case classes
– Sometimes useful to identify a

generalization of several use
cases

CSC301 University of Toronto 14

UML Sequence Diagrams

• Describe a Use Case using Sequence Diagrams
– Sequence diagrams show step-by-step what’s

involved in a use case
• Which objects are relevant to the use case

• How those objects participate in the function

– You may need several sequence diagrams to
describe a single use case.

• Each sequence diagram describes one possible scenario for
the use case

– Sequence diagrams…
• …should remain easy to read and understand.

• …do not include complex control logic

CSC301 University of Toronto 15

Example:
Place book order

:Customer :OnlineStore :OrderDepartment

search for book

[book exists] order book

submit order request

:Bank

debit account

Customer

Place
book order

Customer

initiates the

sequence

Time

Customer Invokes

the search method

in OnlineStore

CSC301 University of Toronto 16

Example: Calculate staff bonuses

:Accountant :PayrollSystem :Bank

list payroll

*[for each staff] schedule direct deposit

[for each staff] *calculate bonus

update payroll

:Staff

[for each staff] *get account

*[for each staff] update account

iteration

Activation

5

CSC301 University of Toronto 17

Example: Add an advertisement

CSC340 University of Toronto 18

Modelling Sequences of Events

• Objects “own” information and behaviour
– Objects don’t “know” about other objects’

information, but can ask for it.

– To carry out business processes, objects
have to collaborate.

• …by sending messages to one another to invoke
each others’ operations

– Objects can only send messages to one
another if they “know” each other

• I.e. if there is an association between them.

CSC301 University of Toronto 19

UML Activity Diagrams:
Legend

Activity

Initial State

Final State

Fork/Join

Decision

CSC301 University of Toronto 20

Example 1:
Credit Card Activation

The customer receives the card, and then

activates the card.

Initial state Final stateActivities

The customer receives the card, and then

activates the card.

Receive Credit Card Activate Credit CardReceive Credit Card Activate Credit Card

6

CSC301 University of Toronto 21

Example 2: Order System

Decision

GuardReceive

Order
Authorize

Payment

Assign Items

to Order

Cancel Order
[failed]

[succeeded]
Dispatch Order

Fork

Join

Receive

Order
Authorize

Payment

Assign Items

to Order

[failed]
Cancel Order

[succeeded]
Dispatch Order

CSC301 University of Toronto 22

Example 3: Order System
(with loop)

Receive

Order
Authorize

Payment

Assign Item

to Order

Cancel Order
[failed]

[succeeded]
Dispatch Order* [for each

item in order]

CSC301 University of Toronto 23

A few style guidelines

• The diagram should have start and end state(s).
• Diagrams are read from top-left to bottom-right

– put the initial and final states in those locations

• Each activity should have at least one transition
into it and at least one transition out of it.

• The diagram should be decidable
– transitions out of a decision points should have

mutually exclusive guards
– the set of guards should be complete

• Each fork should have a corresponding join.

[Amb03]
CSC301 University of Toronto 24

Swimlanes

• Swimlanes can be used to group activities

based on the actor (person, business unit,

etc) who performs them.

• If an activity diagram is partitioned into

swimlanes, than each activity must appear

in exactly one swimlane.

• Transitions may cross swimlanes.

7

CSC301 University of Toronto 25

Example 3: Diagram with Swimlanes

Request

Product

Process Line Item Pull Materials

Add Remainder
to Stock

SalesCustomer Warehouse

Receive Order
Bill Customer

Pay Bill Close Order
[BRJ99]

Request

Product

Process Line Item Pull Materials

Ship OrderShip Order

Receive Order
Bill Customer

Pay Bill Close Order

CSC301 University of Toronto 26

Classes
• A class describes a group of objects with

– similar properties (attributes),
– common behaviour (operations),

– common relationships to other objects,

– and common meaning (“semantics”).

• Example:
– Employee: has a name, employee number and department;

an employee is hired, and fired; an employee works on one
or more projects

:Employee

name
employee number
department

hire
fire
works on projects

Name (mandatory)
Attributes
(optional)

Operations
(optional)

CSC301 University of Toronto 27

Objects vs. Classes
• The instances of a class are called objects.

– Two different objects may have identical attribute values (like two
people with identical name and address)

• Objects have associations with other objects
– E.g. Fred_Bloggs:employee is associated with the KillerApp:project

object

– But we will capture these relationships at the class level (why?)

– Note: Make sure attributes are associated with the right class
• E.g. you don’t want both managerName and manager# as attributes of

Project! (…Why??)

Fred_Bloggs:Employee

name: Fred Bloggs

employee number: 234609234

department: Marketing

CSC301 University of Toronto 28

UML Class Diagrams

• UML Class Diagrams show classes and their
relationships

• Relationships: connections between classes

– Objects do not exist in isolation from one another

– Types of UML relationships:

• Association

• Aggregation and Composition

• Generalization

• Dependency

• Realization } not useful for analysis

8

CSC301 University of Toronto 29

Class Associations

:StaffMember

name
id number
start date

:Client

company name
mailing address
email
fax
phone

1 0..*assigned to

contact

person

Name
of the

association

Multiplicity
A StaffMember is
assigned zero or

more Clients

Multiplicity
A Client has

exactly one StaffMember
as a contact person

Direction
The “assigned to”

association should be
read in this directionRole

The StaffMember’s
role in this association
is as a contact person

CSC301 University of Toronto 30

Association Multiplicity

• Multiplicity: the minimum and maximum
times an object can be associated with the
related object

• Examples:
– Optional (0 or 1) 0..1
– Exactly one 1 = 1..1
– Zero or more 0..*
– One or more 1..*
– A range of values 1..6
– A set of ranges 1..3,7..10,15,19..*

CSC301 University of Toronto 31

Exercise: Multiplicities

• Does an appointment need be
scheduled by a patient?

– Yes! An appointment is
scheduled by at least one patient.

• Can the same appointment be
schedule by multiple patients?

– If not, then exactly one Patient
schedules each appointment.

• Does a patient have to schedule
an appointment?

– No.

• Can a patient schedule more than
one appointment?

– If yes, then the multiplicity is 0..*

1..?1 0..?0..* 0..?0..* 1..?1..*

• Does a doctor need to attend
appointments?

– No.

• Can a doctor attend multiple
appointments?

– Yes.

• Does an appointment need to be
attended by at least one doctor?

– Yes.

• Can an appointment be attended
by multiple doctors?

– If yes, then the multiplicity is
1..*.

[DWT05]

:Patient

insurance carrier

book appointment

explain symptoms

:Appointment

time
date

reason

cancel without

notice

:Doctor

primary office

specialization

assess patient

schedules attends

CSC301 University of Toronto 32

Association Classes
Sometimes the association is itself a class
• …because we need to retain information about the association

• …and that information doesn’t naturally live in the classes at the
ends of the association

• E.g. a “title” is an object that represents information about the relationship
between an owner and her car

:Car

VIN(vehicle Id Number)
year made
mileage

0..* 1owns

owner

:Title
year bought
initial mileage
price paid
licence plate number

:Person
name
address
drivers licence number

9

CSC301 University of Toronto 33

Aggregation
The “is part of” or “whole-part” relationship

:Team :Employee

0..* 1..*

An employee is part of a team.

[Amb03]
CSC301 University of Toronto 34

Composition

• Strong form of aggregation that implies ownership:

– if the whole is removed from the model, so is the part

– the whole is responsible for the disposition of its parts

Note: The multiplicity should be 1 when the
association is compostion (i.e., a car should always
have (at least) one engine).

:Car :Engine

1 1

CSC301 University of Toronto 35

Generalization

:Person

name

SIN

:Professor

employee id
department

salary

teach course

:Student

student id

major

add course

drop course

:Address

street
city

province

postal code

lives at 10..*

Subclasses inherit attributes, associations, & operations from

the superclass

[Amb03]
CSC301 University of Toronto 36

More on Generalization

• Usefulness
– Can easily add new subclasses if the organization

changes

• Look for generalizations in two ways:
– Top Down

• Subdivide an existing class
• Or you have an association that expresses a “kind of”

relationship
• E.g. “Most of our work is on advertising for the press, that’s

newspapers and magazines.”

– Bottom Up
• You notice similarities between classes you have identified
• E.g. “We have books and we have CDs in the collection, but

they are all filed using the Dewey system, and they can all be
lent out and reserved”

10

CSC301 University of Toronto 37

More on Generalization [2]

• Don’t generalize just for the sake of it

– Be sure that everything about the superclass
applies to the subclasses

– Be sure that the superclass is useful as a
class in its own right

– Don’t add subclasses or superclasses that are
not relevant to your analysis

CSC301 University of Toronto 38

Finding Classes

• Look for nouns and noun phrases in
stakeholders’ descriptions of the problem
– include in the model if they explain the nature

or structure of information in the application.

• It’s better to include many candidate
classes at first
– You can always eliminate them later if they

turn out not to be useful

– Explicitly deciding to discard classes is better
than just not thinking about them

CSC301 University of Toronto 39

Possible Classes

• External Entities
– …that interact with the system

being modeled
• E.g. people, devices, other

systems

• Things
– …that are part of the domain

being modeled
• E.g. reports, displays, signals,

etc.

• Occurrences or Events
– …that occur in the context of

the system
• E.g. transfer of resources, a

control action, etc.

[Pre97]

:PayrollSystem

:Invoice

:LandTransfer

CSC301 University of Toronto 40

Possible Classes [2]

[Pre97]

• Roles
– played by people who interact

with the system

• Organizational Units
– that are relevant to the

application
• E.g. division, group, team,

etc.

• Places
– …that establish the context of

the problem being modeled
• E.g. manufacturing floor,

loading dock, etc.

• Structures
– that define a class or

assembly of objects
• E.g. sensors, four-wheeled

vehicles, computers, etc.

:PrimeMinister

:HumanResources

:Warehouse

:Sensor

11

CSC301 University of Toronto 41

Selecting Classes

• Discard classes for concepts which:
– Are beyond the scope of the analysis

– Refer to the system as a whole

– Duplicate other classes

– Are too vague or too specific
• e.g. have too many or too few instances

• Include external entities as classes if they:
– Produce or consume information essential to

the system

CSC301 University of Toronto 42

Coad & Yourdon’s Criteria
for Selecting Classes

• Retained information: Will the system need to
remember information about this class of objects?

• Needed Services: Do objects in this class have
identifiable operations that change the values of their
attributes?

• Multiple Attributes: Does the class have multiple
attributes?

• Common Attributes: Does the class have attributes that
are shared with all instances of its objects?

• Common Operations: Does the class have operations
that are shared with all instances of its objects?

[Pre97]

CSC301 University of Toronto 43

Object Behaviour

• All objects have “state”
– An object has a value for each of its attributes

– Each possible assignment of values to attributes is a state
• (and non-existence is a state, although we normally ignore it)

• Example: Invoice object:

unpaid partially paid
partialPayment()

fully paid

partialPayment()

finalPayment()

finalPayment()

[Mac01]

partialPayment()

finalPayment()

:Invoice

initialBalance
currentBalance

CSC301 University of Toronto 44

Statecharts
• There are a finite number of states (all attributes have finite ranges)

• The model specifies a set of traces
– E.g. partialPayment();partialPayment;finalPayment()
– E.g. partialPayment();finalPayment()

– There may be an infinite number of traces (and traces may be of infinite length)

• The model excludes some behaviours
– E.g. no trace may have a finalPayment() followed by a partialPayment()

unpaid partially paid
partialPayment()

fully paid

finalPayment()

finalPayment()

partialPayment()initial state

final state

transition

state

event

12

CSC301 University of Toronto 45

Abstraction
• The state space of most objects is enormous

– State space size is the product of the range of each attribute
• E.g. object with five boolean attributes: 2

5
+1 states

• E.g. object with five integer attributes: (maxint)
5
+1 states

• E.g. object with five real-valued attributes: …?

– If we ignore computer representation limits, the state space is
infinite

• Only part of that state space is “interesting”
– Some states are not reachable

– Integer and real values usually only vary within some relevant
range

– Often not interested in the actual values, just certain ranges:
• Example for Age: age<18, 18≤age≤65, age>65

• Example for Cost: cost ≤ budget, cost==0, cost > budget,

cost > (budget+10%)

CSC301 University of Toronto 46

Exercise: Abstraction

unpaid partially paid
partialPayment()

fully paid

finalPayment()

finalPayment()

initialBalance == currentBalance

initialBalance > currentBalance

currentBalance == 0

partialPayment()

[Mac01]

For each state, what are the properties or value ranges of
initialBalance and currentBalance that interest us?

partialPayment()

finalPayment()

:Invoice

initialBalance

currentBalance

CSC301 University of Toronto 47

Transitions
A transition consists of three parts:

event [guard] / action

• A transition is the movement from one state to another.
• States are either “on” or “off” at a given point in time.
• If a state is on, then transitions from it are enabled.
• Transitions are triggered by events.

[SJB05]

unpaid partially paid
partialPayment()

fully paid

finalPayment()

finalPayment()

partialPayment()

unpaid
partialPayment()

finalPayment()

CSC301 University of Toronto 48

Transitions [2]
event [guard] / action

• A guard is a Boolean condition that must be
true in order for a transition to “fire”.
– When an event occurs the guard conditions

are checked, and if they are met, then the
transition fires.

• The action is a procedural expression to be
performed when the transition fires.

[Amb03]

action

guard

()

()

()
()

()

: CourseRegistration

addStudent

removeStudent

openEnrollment
closeEnrollment

printClassList

maxCapacity

currCapacity
enrollmentStatus

classList

space available

full

closed to enrollment

closeEnrollment()/ printClassList

addStudent()[currCapacity = = maxCapacity]

removeStudent()

closeEnrollment()/ printClassList

addStudent() [currCapacity < = maxCapacity]

13

CSC301 University of Toronto 49

Events

• Call events occur when an object receives a call for one
of its operations to be performed
– Example: Bill class

• Signal events occur when an object receives an explicit
(real-time) signal
– Example signal: Mouse click

– More useful in design

– Syntax is the same as call events

unpaid paid

payBalance()

[BMF99] CSC301 University of Toronto 50

Events [2]

• Change events occur when a condition becomes true

– denoted by the keyword ‘when’

– Example: Invoice class

• Time events mark the passage of a designated period of
time

– Example: Exam class

[BMF99]

in progress complete

after: [3 hours]

unpaid paid

when: [currentBalance == 0]

CSC301 University of Toronto 51

Superstates

OR superstates
– when the superstate is “on”, only

one of its substates is “on”

AND superstates
(concurrent substates)

– When the superstate is “on”, all of
its states are also “on”

– Usually, the AND substates will be
nested further as OR superstates

States can be nested, to make diagrams simpler

– A superstate consists of one or more states.

– Superstates make it possible to view a state diagram at
different levels of abstraction.

employed

probationary

full

employed

on payroll

assigned

to project

after [6 months]

CSC301 University of Toronto 52

Example: Person

adult

single coupled

child

working age senior

unmarried

married

divorced

widowed

separated deceased

14

CSC301 University of Toronto 53

Class Diagrams and Statecharts

• Consistency Checks between diagrams

– Each statechart should correspond to one
class on the Class diagram.

– All events in a statechart should appear as:

• operations (methods) of an appropriate class in the
class diagram

– All actions in a statechart should appear as:

• operations (methods) of an appropriate class in the
class diagram

CSC301 University of Toronto 54

Style Tips

• The diagram should have start and end state(s).

• Diagrams are usually read from top-left to bottom-right,
so put the start and end states in those locations.

• Each state should have at least one transition into it and
at least one transition out of it.

• The diagram should be deterministic.

• Use a superstate when multiple states have a common
entry or exit condition.

• It is fine for guards on transitions from a state to not form
a complete set.

[Amb03]

CSC301 University of Toronto 55

Entity Relationship (ER) Schema

• Comparable to UML class diagrams

– Not equivalent

• Good for describing data requirements for a new
information system.

• Direct, easy-to-understand graphical notation

• Translates readily to relational schema for
database design
– more abstract than relational schema
– e.g. can represent an entity without knowing its

properties

CSC301 University of Toronto 56

Entities

• Classes of objects with properties in

common and an autonomous existence
– E.g. City, Department, Employee, and Sale

• An instance of an entity is an object in the
class represented by the entity

• E.g. Stockholm, Helsinki, are examples of
instances of the entity City

• Usually described using nouns.

City Department Employee Sale

15

CSC301 University of Toronto 57

Relationships

• Logical links between two or more entities.
– E.g. Resides is a relationship that can exist between

a City entity and a Person entity

• An instance of a relationship is an n-tuple of
instances of entities
– E.g. the pair (Johanssen,Stockholm), is an instance

in the relationship Resides.

• Usually described using verbs (sometimes
nouns)

ResidesMeets Owns

CSC301 University of Toronto 58

Examples

[RG00]

Student Writes Exam

Employee

Manages

Department

WorksIn

CSC301 University of Toronto 59

Student W rites Exam

Em ployee

M anages

Departm ent

W orksIn
SIN

studentID

nam e

year program course

since

since

nam e

budget

Attributes
• Associate a value belong to a set (domain) with each

instance of an entity or relationship.

Student Writes Exam

Employee

Manages

Department

WorksIn

[RG00] CSC301 University of Toronto 60

Internal Identifiers
• Identifiers are also known as keys.
• An identifier may be formed by one or more attributes of the entity

itself

• A relationship is identified using identifiers for all the entities it
relates
– E.g. the identifier for the relationship Person-Owns-Car is a tuple of

the Person and Car identifiers

internal, single-attributeinternal, multi-attribute

Car

registration

model

colour

Person

dateOfBirth

firstName

address

lastName

Owns

16

CSC301 University of Toronto 61

Example: Instances for Owns

����

• The unique identifiers for Person and Car clearly identify

each entity.

• Instances of the Owns relationship are tuples of (Person,

Car).

������ 	
�

P1

P2

P3

P4

P5

C1

C2

C3

o1

o2

o3

o4

o5

o6

CSC301 University of Toronto 62

Meaning of ER Diagrams
MeetsCourse Room

Course instancesCourse instances Room instancesRoom instances
Meets instancesMeets instances

• Course and Room are entities.
– Their instances are particular courses (eg CSC340S) and rooms

(eg BA1130)

• Meets is a relationship.
– Its instances describe particular meetings.

– Each meeting has exactly one associated course and room

CSC301 University of Toronto 63

Exercise: Selecting Identifiers

• What attributes should we use to describe Meets?

– <coursename,day,hour>
• Only one section of a course can meet at a time (day and

hour)

– <coursename>
• Only one meeting per given course name

– <courseinstructor,room>
• Only one meeting for a given instructor and room

– An instructor must have all her meetings in different rooms!

– <courseinstructor>
• An instructor participates in at most one meeting

MeetsCourse Room

CSC301 University of Toronto 64

Cardinalities

• Cardinalities constrain participation in relationships
– minimum and maximum number of relationship instances in which an

entity instance can participate.

– E.g.

Employee is assigned 1 to 5 tasks. Tasks are assigned to 0 to 50
employees.

• Cardinality is any pair of non-negative integers (min,max), where
min <= max
– (1,1) - One-to-One

– (1,N) - One-to-Many

– (N,1) - Many-to-One

– (M,N) - Many-to-Many

Employee Assigned Task
(1,5) (0,50)

17

CSC301 University of Toronto 65

Cardinalities of Attributes
• Attributes can also have cardinalities

– To describe the minimum and maximum number of values of the
attribute associated with each instance of an entity or a
relationship.

– The default is (1,1)

– Optional attributes have cardinality (0,1)

Person

CarRegistration

LicenceNumber

surname

(0,1)

(0,N)

CSC301 University of Toronto 66

Cardinalities of Attributes [2]
• Multi-valued attribute

cardinalities are
problematic
– Usually better

modelled with
additional entities
linked by one-to-many
(or many-to-many)
relationships

Person

Registration

LicenceNumbersurname

Owns

Car

(0,N)

(1,1)

Person

CarRegistration

LicenceNumber

surname

(0,1)

(0,N)

CSC301 University of Toronto 67

Weak Entities

Student Enrols University
(1,1) (1,N)

studentID

year

surname

name

city

address

Student Enrolls University
(1,1) (1,N)

studentID

year

surname

name

city

address

• Student is a weak entity.
– Cannot be uniquely identified using only the studentID.

– Need to know which university she is enrolled in.

• A weak entity can only be identified using the attributes
of another entity.
– It must be in a (1,1) relation with the relationship used to

uniquely identify it.

• Also called an external identifier

CSC301 University of Toronto 68

Recursive Relationships
• An entity can have

relationships with
itself…

• If the relationship is not
symmetric…

– …need to indicate the
two roles that the entity

plays in the relationship.

18

CSC301 University of Toronto 69

Ternary Relationships

CSC301 University of Toronto 70

Generalizations

• Show “is-a” relationships between entities

• Inheritance:
– Every instance of a child entity is also an instance of the parent entity

– Every property of the parent entity (attribute, identifier, relationship or
other generalization) is also a property of a child entity

Person

age
surname taxCode

WomanMan

maternityStatus

Professional

address taxCode

EngineerLawyer Doctor

specialization

CSC301 University of Toronto 71

Types of Generalizations
Total generalization

• every instance of
the parent entity is
an instance of one
of its children

Person

age
surname taxCode

ManWoman

maternityStatus

StudentEmployee

salary

ProgrammerManager Analyst

language

Programmer

Partial
generalization

CSC301 University of Toronto 72

In My Opinion

• Models are only as useful as the tools

used to work with them

• The act of modeling is more useful than

the models themselves

• But: the more concurrency there is in a

system, the more important modeling and

proofs become

