
Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

1

Black Box Software Testing

(Professional Seminar)

Cem Kaner, J.D., Ph.D.
Professor of Computer Sciences
Florida Institute of Technology

Section:7

Bug Advocacy

Summer, 2002
Contact Information:
kaner@kaner.com

www.kaner.com (testing website)
www.badsoftware.com (legal website)

I grant permission to make digital or hard copies of this work for personal or classroom use, with or without fee,
provided that (a) copies are not made or distributed for profit or commercial advantage, (b) copies bear this
notice and full citation on the first page, and if you distribute the work in portions, the notice and citation must
appear on the first page of each portion, (c) each page bear the notice "Copyright (c) Cem Kaner" or if you
changed the page, "Adapted from Notes Provided by Cem Kaner". Abstracting with credit is permitted. The
proper citation for this work is Cem Kaner, A Course in Black Box Software Testing (Professional Version),
Summer-2002, www.testing-education.org. To copy otherwise, to republish or post on servers, or to distribute
to lists requires prior specific permission and a fee. Request permission to republish from kaner@kaner.com.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

2

Bug Advocacy:

How to

Win Friends,

and

SToMp BUGs.
(Not necessarily in that order.)

influence programmers

Black Box Software Testing

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

3

1. The point of testing is to find bugs.

2. Bug reports are your primary work product. This is
what people outside of the testing group will most notice and most remember
of your work.

3. The best t est er isn’t t he one who f inds t he most bugs or
who embar r asses t he most pr ogr ammer s. The best t est er is
t he one who get s t he most bugs f ixed.

4. Programmers operate under time constraints and competing priorities. For
example, outside of the 8-hour workday, some programmers prefer sleeping
and watching Star Wars to fixing bugs.

A bug report is a tool that you use to sell the
programmer on the idea of spending her time and
energy to fix a bug.
Note: When I say “the best tester is the one who gets the most bugs fixed,” I am not encouraging
bug counting metrics, which are almost always counterproductive. Instead, what I am suggesting
is that the effective tester looks to the effect of the bug report, and tries to write it in a way that
gives each bug its best chance of being fixed. Also, a bug report is successful if it enables an
informed business decision. Sometimes, the best decision is to not fix the bug. The excellent bug
report raises the issue and provides sufficient data for a good decision.

Bug Advocacy?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

4

Selling Bugs

Time is in short supply. If you want to convince the
programmer to spend his time fixing your bug, you may
have to sell him on it.

(Your bug? How can it be your bug? The programmer

made it, not you, right? It’s the programmer’s bug. Well,

yes, but you found it so now it’s yours too.)

Sales revolves around two fundamental objectives:

• Motivate the buyer (Make him WANT to fix the bug.)

• Overcome objections (Get past his excuses and reasons

for not fixing the bug.)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

5

Motivating the Bug Fixer

Some things that will often make programmers want to fix the bug:

• It looks really bad.

• It looks like an interesting puzzle and piques the programmer’s
curiosity.

• It will affect lots of people.

• Getting to it is trivially easy.

• It has embarrassed the company, or a bug like it embarrassed a
competitor.

• One of its cousins embarrassed the company or a competitor.

• Management (that is, someone with influence) has said that they
really want it fixed.

• You’ve said that you want the bug fixed, and the programmer likes
you, trusts your judgment, is susceptible to flattery from you, owes
you a favor or accepted bribes from you.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

6

Overcoming Objections

These make programmers resist spending time on a bug:

• The programmer can’t replicate the defect.

• Strange and complex set of steps required to induce the failure.

• Not enough information to know what steps are required, and it
will take a lot of work to figure them out.

• The programmer doesn’t understand the report.

• Unrealistic (e.g. “corner case”)

• It will take a lot of work to fix the defect.

• A fix will introduce too much risk into the code.

• No perceived customer impact

• Unimportant (no one will care if this is wrong: minor error or
unused feature.)

• That’s not a bug, it’s a feature.

• Management doesn’t care about bugs like this.

• The programmer doesn’t like / trust you (or the customer who is
complaining about the bug).

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

7

Bug Advocacy

Motivating Bug Fixes

By Better Researching

The Failure Conditions

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

8

Motivating The Bug Fix:

Looking At The Failure

Some vocabulary

• An error (or fault) is a design flaw or a deviation from a desired or

intended state.

• An error won’t yield a failure without the conditions that trigger it.

Example, if the program yields 2+2=5 on the 10th time you use it,

you won’t see the error before or after the 10th use.

• The failure is the program’s actual incorrect or missing behavior

under the error-triggering conditions.

• A symptom might be a characteristic of a failure that helps you

recognize that the program has failed.

• Defect is frequently used to refer to the failure or to the underlying

error.

Nancy Leveson (Safeware) draws useful distinctions between
errors, hazards, conditions, and failures.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

9

Motivating The Bug Fix:

Looking At The Failure

VOCABULARY EXAMPLE

Here’s a defective program

• INPUT A

• INPUT B

• PRINT A/B

What is the fault?

What is the critical condition?

What will we see as the failure?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

10

Motivating the Bug Fix

When you run a test and find a failure, you’re

looking at a symptom, not at the underlying fault.

You may or may not have found the best example of

a failure that can be caused by the underlying fault.

Therefore you should do some follow-up work to try

to prove that a defect:

• is more serious than it first appears.

• is more general than it first appears.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

11

Motivating the Bug Fix:

Make it More Serious
LOOK FOR FOLLOW-UP ERRORS

When you find a coding error, you have the program in a state that

the programmer did not intend and probably did not expect. There

might also be data with supposedly impossible values.

The program is now in a vulnerable state. Keep testing it and you

might find that the real impact of the underlying fault is a much worse

failure, such as a system crash or corrupted data.

I do three types of follow-up testing:

• Vary my behavior (change the conditions by changing what I do)

• Vary the options and settings of the program (change the conditions

by changing something about the program under test).

• Vary the software and hardware environment.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

12

Follow-Up: Vary Your Behavior

Keep using the program after you see the problem.

• Bring it to the failure case again (and again). If the program fails when
you do X, then do X many times. Is there a cumulative impact?

• Try things that are related to the task that failed. For example, if the
program unexpectedly but slightly scrolls the display when you add
two numbers, try tests that affect adding or that affect the numbers.
Do X, see the scroll. Do Y then do X, see the scroll. Do Z, then do X,
see the scroll, etc. (If the scrolling gets worse or better in one of these
tests, follow that up, you’re getting useful information for debugging.)

• Try things that are related to the failure. If the failure is unexpected
scrolling after adding, try scrolling first, then adding. Try repainting
the screen, then adding. Try resizing the display of the numbers, then
adding.

• Try entering the numbers more quickly or changing the speed of your
activity in some other way.

• And try the usual exploratory testing techniques. So, for example, you
might try some interference tests. Stop the program or pause it or
swap it just as the program is failing. Or try it while the program is
doing a background save. Does that cause data loss corruption along
with this failure?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

13

Follow-Up: Vary Options and Settings

In this case, the steps to achieve the failure are
taken as given. Try to reproduce the bug when the
program is in a different state:

• Use a different database.

• Change the values of persistent variables.

• Change how the program uses memory.

• Change anything that looks like it might be relevant
that allows you to change as an option.

For example, suppose the program scrolls
unexpectedly when you add two numbers. Maybe
you can change the size of the program window, or
the precision (or displayed number of digits) of the
numbers, or background the activity of the spell
checker.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

14

Follow-Up: Vary the Configuration

A bug might show a more serious failure if you run the program
with less memory, a higher resolution printer, more (or fewer)
device interrupts coming in etc.

• If there is anything involving timing, use a really slow (or very fast)
computer, link, modem or printer, etc..

• If there is a video problem, try other resolutions on the video card. Try
displaying MUCH more (less) complex images.

Note that we are not:

• checking standard configurations

• asking how broad the circumstances that produces the bug.

What we’re asking is whether there is a particular configuration that
will show the bug more spectacularly.

Returning to the example (unexpected scrolling when you add two
numbers), try things like:

• Different video resolutions

• Different mouse settings if you have a wheel mouse that does semi-
automated scrolling

• An NTSC (television) signal output instead of a traditional (XGA or SVGA,
etc.) monitor output.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

15

Follow-up: Bug New to This Version?

In many projects, an old bug (from a previous shipping release

of the program) might not be taken very seriously if there

weren’t lots of customer complaints.

• (If you know it’s an old bug, check its complaint history.)

• The bug will be taken more seriously if it is new.

• You can argue that it should be treated as new if you can find a

new variation or a new symptom that didn’t exist in the

previous release. What you are showing is that the new

version’s code interacts with this error in new ways. That’s a

new problem.

• This type of follow-up testing is especially important during a

maintenance release that is just getting rid of a few bugs. Bugs

won’t be fixed unless they were (a) scheduled to be fixed

because they are critical or (b) new side effects of the new bug

fixing code.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

16

Motivating the Bug Fix:

Show it is More General

LOOK FOR CONFIGURATION DEPENDENCE

Bugs that don’t fail on the programmer’s machine

are much less credible (to that programmer). If they

are configuration dependent, the report will be

much more credible if it identifies the configuration

dependence directly (and so the programmer starts

out with the expectation that it won’t fail on all

machines.)

Question: How many programmers does it take to

change a light bulb?

Answer: What’s the problem? The bulb at my desk works fine!

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

17

LOOK FOR CONFIGURATION DEPENDENCE

In the ideal case (standard in many companies), test on 2 machines

• Do your main testing on Machine 1. Maybe this is your powerhouse: latest
processor, newest updates to the operating system, fancy printer, video
card, USB devices, huge hard disk, lots of RAM, cable modem, etc.

• When you find a defect, use Machine 1 as your bug reporting machine and
replicate on Machine 2. Machine 2 is totally different. Different processor,
different keyboard and keyboard driver, different video, barely enough
RAM, slow, small hard drive, dial-up connection with a link that makes
turtles look fast.

• Some people do their main testing on the turtle and use the power machine
for replication.

• Write the steps, one by one, on the bug form at Machine 1. As you write
them, try them on Machine 2. If you get the same failure, you’ve checked
your bug report while you wrote it. (A valuable thing to do.)

• If you don’t get the same failure, you have a configuration dependent bug.
Time to do troubleshooting. But at least you know that you have to.

AS A MATTER OF GENERAL GOOD PRACTICE, IT PAYS TO
REPLICATE EVERY BUG ON A SECOND MACHINE.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

18

Motivating the Bug Fix:

Show it is More General

UNCORNER YOUR CORNER CASES

We test at extreme values because these are the

most likely places to show a defect. But once we find

the defect, we don’t have to stick with extreme value tests.

• Try mainstream values. These are easy settings that

should pose no problem to the program. Do you replicate

the bug? If yes, write it up, referring primarily to these

mainstream settings. This will be a very credible bug

report.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

19

Motivating the Bug Fix:

Show it is More General

UNCORNER YOUR CORNER CASES

• If the mainstream values don’t yield failure, but the extremes do, then

do some troubleshooting around the extremes.

» Is the bug tied to a single setting (a true corner case)?

» Or is there a small range of cases? What is it?

» In your report, identify the narrow range that yields failures.
The range might be so narrow that the bug gets deferred.
That might be the right decision. In some companies, the
product has several hundred open bugs a few weeks before
shipping. They have to decide which 300 to fix (the rest will
be deferred). Your reports help the company choose the
right 300 bugs to fix, and help people size the risks
associated with the remaining ones.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

20

Bug Advocacy

Overcoming

OBJECTIONS
By Better Researching

The Failure Conditions

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

21

Overcoming Objections:

Analysis of the Failure

Things that will make programmers resist spending

their time on the bug:

• The programmer can’t replicate the

defect.
• Strange and complex set of steps required to induce the

failure.

• Not enough information to know what steps are required,

and it will take a lot of work to figure them out.

• The programmer doesn’t understand the report.

• Unrealistic (e.g. “corner case”)

• It’s a feature.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

22

Objection, Objection:

Non-Reproducible Errors
Always report non-reproducible errors. If you report them well,
programmers can often figure out the underlying problem.

You must describe the failure as precisely as possible. If you can
identify a display or a message well enough, the programmer can often
identify a specific point in the code that the failure had to pass through.

• When you realize that you can’t reproduce the bug, write down everything
you can remember. Do it now, before you forget even more. As you write,
ask yourself whether you’re sure that you did this step (or saw this thing)
exactly as you are describing it. If not, say so. Draw these distinctions right
away. The longer you wait, the more you’ll forget.

• Maybe the failure was a delayed reaction to something you did before
starting this test or series of tests. Before you forget, note the tasks you did
before running this test.

• Check the bug tracking system. Are there similar failures? Maybe you can
find a pattern.

• Find ways to affect timing of the program or devices, Slow down, speed up.

• Talk to the programmer and/or read the code.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

23

Non-Reproducible Errors

• The fact that a bug is not reproducible is data. The program is telling you
that you have a hole in your logic. You are not entertaining certain relevant
conditions. Why not?

• See Watts Humphrey, Personal Software Process, for recommendations to
programmers of a system for discovering and then eliminating
characteristic errors from their code. A non-reproducible bug is a tester’s
error, just like a design bug is a programmer’s error. It’s valuable to
develop a system for discovering your blind spots. To improve over time,
keep track of the bugs you’re missing and what conditions you are not
attending to (or find too hard to manipulate).

• The following pages give a list of some conditions commonly ignored or
missed by testers. Your personal list will be different in some ways, but
maybe this is a good start. When you run into a irreproducible defect look
at this list and ask whether any of these conditions could be the critical
one. If it could, vary your tests on that basis and you might reproduce the
failure.

--

(Note: Watts Humphrey suggested to me the idea of keeping a list of
commonly missed conditions. It has been a valuable idea.)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

24

Non-Reproducible Errors:

Examples of Conditions Often Missed

Some problems have delayed effects:

• a memory leak might not show up until after you cut

and paste 20 times.

• stack corruption might not turn into a stack overflow

until you do the same task many times.

• a wild pointer might not have an easily observable

effect until hours after it was mis-set.

If you suspect that you have time-delayed failures, use tools

such as videotape, capture programs, debuggers, debug-

loggers, or memory meters to record a long series of events

over time.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

25

Non-Reproducible Errors:

Examples of Conditions Often Missed

• I highlighted the first three in lecture because so many

people have trouble with time-delayed bugs. Until you think

backwards in time and ask how you could find a defect that

has a delayed reaction effect, you won’t be able to easily

recreate these problems.

• The following pages give additional examples. There are

plenty of other conditions that are relevant in your

environment. Start with these but add others as you learn of

them. How do you learn? Sometimes, someone will fix a

bug that you reported as non-reproducible. Call the

programmer, ask him how to reproduce it, what are the

critical steps that you have to take? You need to know this

anyway, so that you can confirm that a bug fix actually

worked.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

26

Non-Reproducible Errors:

Examples of Conditions Often Missed

• The bug depends on the value of a hidden input variable. (Bob
Stahl teaches this well.) In any test, there are the variables that
we think are relevant and there is everything else. If the data
you think are relevant don’t help you reproduce the bug, ask
what other variables were set, and what their values were.

• Some conditions are hidden and others are invisible. You
cannot manipulate them and so it is harder to recognize that
they’re present. You might have to talk with the programmer
about what state variables or flags get set in the course of
using a particular feature.

• Some conditions are catalysts. They make failures more likely
to be seen. Example: low memory for a leak; slow machine for a
race. But sometimes catalysts are more subtle, such as use of
one feature that has a subtle interaction with another.

• Some bugs are predicated on corrupted data. They don’t appear
unless there are impossible configuration settings in the config
files or impossible values in the database. What could you have
done earlier today to corrupt this data?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

27

Non-Reproducible Errors:

Examples of Conditions Often Missed

• The bug might appear only at a specific time of day or day of the

month or year. Look for week-end, month-end, quarter-end and

year-end bugs, for example.

• Programs have various degrees of data coupling. When two

modules use the same variable, oddness can happen in the

second module after the variable is changed by the first. (Books

on structured design, such as Yourdon/Constantine often analyze

different types of coupling in programs and discuss strengths and

vulnerabilities that these can create.) In some programs,

interrupts share data with main routines in ways that cause bugs

that will only show up after a specific interrupt.

• Special cases appear in the code because of time or space

optimizations or because the underlying algorithm for a function

depends on the specific values fed to the function (talk to your

programmer).

• The bug depends on you doing related tasks in a specific order.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

28

Non-Reproducible Errors:

Examples of Conditions Often Missed

The bug is caused by a race condition or other time-dependent
event, such as:

• An interrupt was received at an unexpected time.

• The program received a message from another device or
system at an inappropriate time (e.g. after a time-out.)

• Data was received or changed at an unexpected time.

The bug is caused by an error in error-handling. You have to
generate a previous error message or bug to set up the
program for this one.

Time-outs trigger a special class of multiprocessing error
handling failures. These used to be mainly of interest to real-
time applications, but they come up in client/server work and
are very pesky.

Process A sends a message to Process B and expects a
response. B fails to respond. What should A do? What if B
responds later?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

29

Non-Reproducible Errors:

Examples of Conditions Often Missed

Another inter-process error handling failure -- Process A
sends a message to B and expects a response. B sends a
response to a different message, or a new message of its own.
What does A do?

You’re being careful in your attempt to reproduce the bug, and
you’re typing too slowly to recreate it.

The program might be showing an initial state bug, such as:

• The bug appears only the first time after you install the program (so it
happens once on every machine.)

• The bug appears once after you load the program but won’t appear
again until you exit and reload the program.

• (See Testing Computer Software’s Appendix’s discussion of
initial state bugs.)

The program may depend on one version of a DLL. A different
program loads a different version of the same DLL into
memory. Depending on which program is run first, the bug
appears or doesn’t.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

30

Non-Reproducible Errors:

Examples of Conditions Often Missed

• The problem depends on a file that you think you’ve thrown
away, but it’s actually still in the Trash (where the system
can still find it).

• A program was incompletely deleted, or one of the current
program’s files was accidentally deleted when that other
program was deleted. (Now that you’ve reloaded the
program, the problem is gone.)

• The program was installed by being copied from a network
drive, and the drive settings were inappropriate or some
files were missing. (This is an invalid installation, but it
happens on many customer sites.)

• The bug depends on co-resident software, such as a virus
checker or some other process, running in the background.
Some programs run in the background to intercept
foreground programs’ failures. These may sometimes
trigger failures (make errors appear more quickly).

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

31

Non-Reproducible Errors:

Examples of Conditions Often Missed

• You forgot some of the details of the test you ran, including
the critical one(s) or you ran an automated test that lets you
see that a crash occurred but doesn’t tell you what
happened.

• The bug depends on a crash or exit of an associated
process.

• The program might appear only under a peak load, and be
hard to reproduce because you can’t bring the heavily
loaded machine under debug control (perhaps it’s a
customer’s system).

• On a multi-tasking or multi-user system, look for spikes in
background activity.

• The bug occurred because a device that it was attempting
to write to or read from was busy or unavailable.

• It might be caused by keyboard keybounce or by other
hardware noise.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

32

Non-Reproducible Errors:

Examples of Conditions Often Missed

• Code written for a cooperative multitasking system can be
thoroughly confused, sometimes, when running on a
preemptive multitasking system. (In the cooperative case,
the foreground task surrenders control when it is ready. In
the preemptive case, the operating system allocates time
slices to processes. Control switches automatically when
the foreground task has used up its time. The application is
suspended until its next time slice. This switch occurs at an
arbitrary point in the application’s code, and that can cause
failures.

• The bug occurs only the first time you run the program or
the first time you do a task after booting the program. To
recreate the bug, you might have to reinstall the program. If
the program doesn’t uninstall cleanly, you might have to
install on a fresh machine (or restore a copy of your system
taken before you installed this software) before you can see
the problem.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

33

Non-Reproducible Errors:

Examples of Conditions Often Missed

• The bug is specific to your machine’s hardware and system
software configuration. (This common problem is hard to
track down later, after you’ve changed something on your
machine. That’s why good reporting practice involves
replicating the bug on a second configuration.)

• The apparent bug is a side-effect of a hardware failure. For
example, a flaky power supply creates irreproducible
failures. Another example: one prototype system had a high
rate of irreproducible firmware failures. Eventually, these
were traced to a problem in the building’s air conditioning.
The test lab wasn’t being cooled, no fan was blowing on the
unit under test, and prototype boards in the machine ran
very hot. The machine was failing at high temperatures.

• Elves tinkered with your machine when you weren’t looking.

• There are several other ideas (focused on web testing) at
http://www.logigear.com/whats_new.html#article

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

34

Putting Bugs in the Dumpster

Problem:

• Non-reproducible bugs burn a huge amount of programmer troubleshooting time, then get
closed (usually abandoned). Until they’re closed, they show up in open-bug statistics. In
companies that manage more by bug numbers than by good sense, there is tremendous
pressure to close irreproducible bugs quickly.

The Dumpster:

• A resolution code that puts the bug into an ignored storage place. The bug shows up as
resolved (or is just never counted) in the bug statistics, but it is not closed. It is in a holding
pattern.

• Assign a non-reproducible bug to the dumpster whenever you (testers and programmers)
spend enough time on it that you don’t think that more work on the bug will be fruitful at
this time.

Dumpster Diving:

• Every week or two, (testers and/or programmers) go through the dumpster bugs looking for
similar failures. At some point, you’ll find a collection of several similar reports. If you (or
the programmer) think there are enough variations in the reports to provide useful hints on
how to repro the bug, spend time on the collection. If you (or the programmer) can repro
the bugs, reopen them with the extra info (status is now open, resolution is pending)

• Near the end of the project, do a final review of bugs in the dumpster. These will either
close non-repro or be put through one last scrutiny

(This is an unusual practical suggestion, but it has worked for clients of mine.)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

35

Overcoming Objections:

Analysis of the Failure
Things that will make programmers resist spending their time

on the bug:

• The programmer can’t replicate the defect.

• Strange and complex set of steps required to

induce the failure.

• Not enough information to know what steps

are required, and it will take a lot of work to

figure them out.

• The programmer doesn’t understand the

report.
• Unrealistic (e.g. “corner case”)

• It’s a feature!

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

36

Bug Advocacy

Writing the Bug Report

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

37

Reporting Errors

As soon as you run into a problem in the software, fill out a
Problem Report form. In the well written report, you:

• Explain how to reproduce the problem.

• Analyze the error so you can describe it in a minimum number
of steps.

• Include all the steps.

• Make the report easy to understand.

• Keep your tone neutral and non-antagonistic.

• Keep it simple: one bug per report.

• If a sample test file is essential to reproducing a problem,
reference it and attach the test file.

• To the extent that you have time, describe the dimensions of
the bug and characterize it. Describe what events are and are
not relevant to the bug. And what the results are (any
characteristics of the failure) and how they varied across tests.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

38

The Problem Report Form

A typical form includes many of the following fields

• Problem report number: must be unique

• Reported by: original reporter’s name. Some forms add an
editor’s name.

• Date reported: date of initial report

• Program (or component) name: the visible item under test

• Release number: like Release 2.0

• Version (build) identifier: like version C or version
20000802a

• Configuration(s): h/w and s/w configs under which the bug
was found and replicated

• Report type: e.g. coding error, design issue, documentation
mismatch, suggestion, query

• Can reproduce: yes / no / sometimes / unknown. (Unknown
can arise, for example, when the repro configuration is at a
customer site and not available to the lab.)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

39

The Problem Report Form

A typical form includes many of the following fields

• Severity: assigned by tester. Some variation on small /
medium / large

• Priority: assigned by programmer/project manager

• Customer impact: often left blank. When used, typically
filled in by tech support or someone else predicting actual
customer reaction (such as support cost or sales impact)

• Problem summary: 1-line summary of the problem

• Key words: use these for searching later, anyone can add
to key words at any time

• Problem description and how to reproduce it: step by step
repro description

• Suggested fix: leave it blank unless you have something
useful to say

• Assigned to: typically used by project manager to identify
who has responsibility for researching/fixing the problem

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

40

The Problem Report Form

A typical form includes many of the following fields

• Status: Tester fills this in. Open / closed / dumpster—see
previous slide on dumpsters.

• Resolution: The project manager owns this field. Common
resolutions include:

• Pending: the bug is still being worked on.

• Fixed: the programmer says it’s fixed. Now you should check it.

• Cannot reproduce: The programmer can’t make the failure happen. You
must add details, reset the resolution to Pending, and notify the
programmer.

• Deferred: It’s a bug, but we’ll fix it later.

• As Designed: The program works as it’s supposed to.

• Need Info: The programmer needs more info from you. She has probably
asked a question in the comments.

• Duplicate: This is just a repeat of another bug report (XREF it on this
report.) Duplicates should not close until the duplicated bug closes.

• Withdrawn: The tester who reported this bug is withdrawing the report.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

41

The Problem Report Form

A typical form includes many of the following fields
• Resolution version: build identifier

• Resolved by: programmer, project manager, tester (if
withdrawn by tester), etc.

• Resolution tested by: originating tester, or a tester if
originator was a non-tester

• Change history: datestamped list of all changes to the record,
including name and fields changed.

• Comments: free-form, arbitrarily long field, typically accepts
comments from anyone on the project. Testers programmers,
tech support (in some companies) and others have an
ongoing discussion of repro conditions, etc., until the bug is
resolved. Closing comments (why a deferral is OK, or how it
was fixed for example) go here.

• This field is especially valuable for recording progress and difficulties with
difficult or politically charged bugs.

• Write carefully. Just like e-mail and usenet postings, it’s easy to read a joke or
a remark as a flame. Never flame.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

42

The Problem Report Form:

Further Reading
• The best discussion in print of bug reporting and bug

tracking system design is probably still the one in my book,
Testing Computer Software, chapters 5 & 6. (Not because
it’s so wonderful but because not enough good stuff has
been written since.)

• Brian Marick has captured some useful material at his site,
www.testingcraft.com. (You should get to know this site,
and ideally, contribute to it. This is a collection point for
examples.)

• Hung Quoc Nguyen (who co-authored TCS 2.0 and is
working with us on 3.0) published TrackGear, a web based
bug tracking system that has a lot of thought behind it. You
can get a 30-day free eval at www.logigear.com.

• The Testing Tools FAQ lists other bug tracking software
that you can get eval copies. The FAQ is linked from the
main comp.software.testing FAQ at
http://www.rstcorp.com/resources/hosted.html

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

43

Important Parts of the Report:

Problem Summary

This one-line description of the problem is the most
important part of the report.

• The project manager will use it in when reviewing the list of bugs
that haven’t been fixed.

• Executives will read it when reviewing the list of bugs that won’t
be fixed. They might only spend additional time on bugs with
“interesting” summaries.

The ideal summary gives the reader enough information to
help her decide whether to ask for more information. It
should include:

• A brief description that is specific enough that the reader can
visualize the failure.

• A brief indication of the limits or dependencies of the bug (how
narrow or broad are the circumstances involved in this bug)?

• Some other indication of the severity (not a rating but helping the
reader envision the consequences of the bug.)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

44

The Report:

Can You Reproduce The Problem?

You may not see this on your form, but you should always
provide this information.

• Never say it’s reproducible unless you have recreated the bug.
(Always try to recreate the bug before writing the report.)

• If you’ve tried and tried but you can’t recreate the bug, say “No”.
Then explain what steps you tried in your attempt to recreate it.

• If the bug appears sporadically and you don’t yet know why, say
“Sometimes” and explain.

• You may not be able to try to replicate some bugs. Example:
customer-reported bugs where the setup is too hard to recreate.

The following policy is not uncommon:

• If the tester says that a bug is reproducible and the programmer
says it is not, then the tester has to recreate it in the presence of
the programmer.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

45

The Report--Description;

How to Reproduce It.

First, describe the problem. What’s the bug? Don’t rely on the
summary to do this -- some reports will print this field without
the summary.

Next, go through the steps that you use to recreate this bug.

• Start from a known place (e.g. boot the program) and

• Then describe each step until you hit the bug.

• NUMBER THE STEPS. Take it one step at a time.

• If anything interesting happens on the way, describe it. (You
are giving people directions to a bug. Especially in long
reports, people need landmarks.)

Describe the erroneous behavior and, if necessary, explain
what should have happened. (Why is this a bug? Be clear.)

List the environmental variables (config, etc.) that are not
covered elsewhere in the bug tracking form.

If you expect the reader to have any trouble reproducing the
bug (special circumstances are required), be clear about them.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

46

The Report-- Description;

How to Reproduce It.

It is essential keep the description focused:

The first part of the description should be the

shortest step-by-step statement of how to get to the

problem.

Add “Notes” after the description if you have them.

Typical notes include:

• Comment that the bug won’t show up if you do step X

between step Y and step Z.

• Comment explaining your reasoning for running this test.

• Comment explaining why you think this is an interesting

bug.

• Comment describing other variants of the bug.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

47

Keeping the Report Simple

If you see two failures, write two reports.

Combining failures on one report creates problems:

• The summary description is typically vague. You say words
like “fails” or “doesn’t work” instead of describing the failure
more vividly. This weakens the impact of the summary.

• The detailed report is typically lengthened. It’s common to see
bug reports that read like something written by an inept lawyer.
Do this unless that happens in which case don’t do this unless
the first thing and then the testcase of the second part and
sometimes you see this but if not then that.

• Even if the detailed report is rationally organized, it is longer
(there are two failures and two sets of conditions, even if they
are related) and therefore more intimidating.

• You’ll often see one bug get fixed but not the other.

• When you report related problems on separate reports, it is a
courtesy to cross-reference them.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

48

Keeping it Simple:

Eliminate Unnecessary Steps (1)

Sometimes it’s not immediately obvious what steps can be
dropped from a long sequence of steps in a bug.

• Look for critical steps -- Sometimes the first symptoms of an
error are subtle.

You have a list of the steps you took to show the error. You’re
now trying to shorten the list. Look carefully for any hint of an
error as you take each step -- A few things to look for:

• Error messages (you got a message 10 minutes ago. The program
didn’t fully recover from the error, and the problem you see now
is caused by that poor recovery.)

• Delays or unexpectedly fast responses.

• Display oddities, such as a flash, a repainted screen, a cursor that
jumps back and forth, multiple cursors, misaligned text, slightly
distorted graphics, doubled characters, omitted characters, or
display droppings (pixels that are still colored even though the
character or graphic that contained them was erased or moved).

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

49

Keeping it Simple:

Eliminate Unnecessary Steps (2)

• Sometimes the first indicator that the system is working
differently is that it sounds a little different than normal.

• An in-use light or other indicator that a device is in use
when nothing is being sent to it (or a light that is off
when it shouldn’t be).

• Debug messages—turn on the debug monitor on your
system (if you have one) and see if/when a message is
sent to it.

If you’ve found what looks like a critical step, try to
eliminate almost everything else from the bug
report. Go directly from that step to the last one
(or few) that shows the bug. If this doesn’t work,
try taking out individual steps or small groups of
steps.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

50

Keep it Simple:

Put Variations After the Main Report
Suppose that the failure looks different under slightly different
circumstances. For example, suppose that:

• The timing changes if you do two additional sub-tasks before hitting the
final reproduction step

• The failure won’t show up or is much less serious if you put something
else at a specific place on the screen

• The printer prints different garbage (instead of the garbage you
describe) if you make the file a few bytes longer

This is all useful information for the programmer and you should
include it. But to make the report clear:

• Start the report with a simple, step-by-step description of the shortest
series of steps that you need to produce the failure.

• Identify the failure. (Say whatever you have to say about it, such as
what it looks like or what impact it will have.)

• Then add a section that says “ADDITIONAL CONDITIONS” and
describe, one by one, in this section the additional variations and the
effect on the observed failure.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

51

Overcoming Objections:

Analysis of the Failure

Things that will make programmers resist spending

their time on the bug:

• The programmer can’t replicate the defect.

• Strange and complex set of steps required to induce the failure.

• Not enough information to know what steps are required, and it

will take a lot of work to figure them out.

• The programmer doesn’t understand the report.

• Unrealistic (e.g. “corner case”)
• It’s a feature!

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

52

Overcoming Objections:

Unrealistic (e.g., Corner Conditions)

Some reports are inevitably dismissed as unrealistic (having no importance in
real use).

• If you’re dealing with an extreme value, do follow-up testing with less extreme values.

• If you’re protesting a bug that has been left unfixed for several versions, realized that it
has earned tenure in some people’s minds. Perhaps, though, customer complaints about
this bug have simply never filtered through to developers.

• If your report of some other type of defect or design issue is dismissed as having “no
customer impact,” ask yourself:

Hey, how do they know the customer impact?
• Then check with people who might know:

-- Technical marketing -- Technical support

-- Human factors -- Documentation

-- Network administrators-- Training

-- In-house power users -- Maybe sales

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

53

Overcoming Objections:

Analysis of the Failure

Things that will make programmers resist spending their time

on the bug:

• The programmer can’t replicate the defect.

• Strange and complex set of steps required to induce the failure.

• Not enough information to know what steps are required, and it will take a lot

of work to figure them out.

• The programmer doesn’t understand the report.

• Unrealistic (e.g. “corner case”)

• It’s a feature!

Later in the course, we’ll think about this. The
usual issues involve the costs of fixing bugs,
the company’s understanding of the
definitions of bugs, and your personal
credibility.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

54

Bug Advocacy

Editing Bug Reports

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

55

Editing Bug Reports

Some groups have a second tester (usually a senior tester)

review reported defects before they go to the programmer. The

second tester:

• checks that critical information is present and intelligible

• checks whether she can reproduce the bug

• asks whether the report might be simplified, generalized or

strengthened.

If there are problems, she takes the bug back to the original

reporter.

• If the reporter was outside the test group, she simply checks

basic facts with him.

• If the reporter was a tester, she points out problems with an

objective of furthering the tester’s training.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

56

Editing Bug Reports

This tester might review:

• all defects

• all defects in her area

• all of her buddy’s defects.

In designing a system like this, beware of

overburdening the reviewing testers. The reviewer

will often go through a learning curve (learning

about parts of the system or types of tests that she

hasn’t studied before). This takes time. Additionally,

you have to decide whether the reviewer is doing an

actual reproduction of the test or thinking about the

plausibility and understandability of the report when

she reads it.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

57

Editing Bugs--Practice at Home

Go through your bug database and find some bugs that

look interesting

• Do an initial review of them

• Replicate them

• Revise the descriptions to make them clearer and more useful.

Assignment:

• Give two improved bugs to a co-worker

• Review two improved bugs from a co-worker

• Compare notes

(Note: When I teach this course to undergraduates, I

require them to successfully edit bugs before they can

write any. It is effective training.)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

58

Editing Bugs

Assignment Procedure

First times: The tester gives you the bug report before entering it into the bug
tracking system.

• The reporter should give you a hard copy of the proposed bug report or a file in a
format you can read. If you can’t read the reporter’s file format, the reporter has to give
you the bug in some other format. This is the reporter’s responsibility, not yours.

• Read over the report. If you can’t understand it or if there are obvious problems, note
those problems and return it to the reporter. If there are significant problems when you
try to read the report, don’t spend any time trying to replicate it. Just give it back and
deal with it again later, when it has been fixed.

• If the report is OK to read (not perfect, but OK), make some comments (maybe on a
printout, maybe in the text file that the reporter gave you) and then try to replicate the
bug. Make comments as appropriate. Then hand the commented report back to the
reporter. The reporter can review your comments, decide what to change, and then
either:

» Submit the bug directly into the bug tracking system, or
» Give the bug back to you for a second review.

• You are only obligated to review a bug once. If you review the bug and bounce it
because it is unintelligible, you don’t have to accept it back for replication. If you
replicated it and gave feedback, you don’t have to review the improved version.

• If the reporter is submitting a bug to you that was previously reviewed by
someone else, she MUST give you a copy of the report that she gave to that other
person and their comments, along with the new improved report.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

59

Editing Bugs

Assignment Procedure

Later times:
If the tester gives you the bug report before entering it into the bug tracking system.

• Same procedure as before

If the tester gives you the report AFTER entering it into the bug tracking system
• Review the report for clarity and tone (see “first impressions”, next slide) and send comments back

to the reporter by email

• Attempt to replicate the bug and send comments back to the reporter by email on the replication
steps, your overall impressions, and any follow-up tests you recommend

• You may edit the bug report yourself, but ONLY in the following ways.
» Add a comment indicating that you successfully replicated the bug on XXX configuration in YYY

build. (This is only valuable if the configuration or build is different from the reporter’s.)
» Add a comment describing a simpler set of replication steps. Make sure these are clear and

accurate.
» Add a comment describing why this bug would be important to customers (this is only needed if the

bug looks minor or like it won’t be fixed. It is only useful if you clearly know what you are talking
about, your tone is respectful).

» Your comments should NEVER appear critical or disrespectful of the original report or of the person
who wrote it. You are adding information, not criticizing what was there.

• If you edit the report in the database, never change what the reporter has actually written. You
are not changing his work, you are adding comments to it at the end of the report

• Your comments should have your name and the comment date, usually at the start of the comment,
for example: “(Cem Kaner, 12/14/01) Here is an alternative set of replication steps:”)

• Send the reporter an email, telling her that you have reviewed the report and made changes.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

60

Editing Bugs—A Checklist

The bug editor should check the bug report for the following characteristics:

1. First impressions—when you first read the report:
• Is the summary short (about 50-70 characters) and descriptive? (see the

slide: Important Parts of the Report: Problem Summaries)
• Can you understand the report? As you read the description, do you

understand what the reporter did? Can you envision what the program did in
response? Do you understand what the failure was?

• Is it obvious where to start (what state to bring the program to, to replicate the
bug)?

• Is it obvious what files to use (if any)? Is it obvious what you would type?
• Is the replication sequence provided as a numbered set of steps, which tell

you exactly what to do and, when useful, what you will see?
• Does the report include unnecessary information, personal opinions or

anecdotes that seem out of place?
• Is the tone of the report insulting? Are any words in the report potentially

insulting?
• Does the report seem too long? Too short? Does it seem to have a lot of

unnecessary steps? (This is your first impression—you might be mistaken.
After all, you haven’t replicated it yet. But does it LOOK like there’s a lot of
excess in the report?)

• Does the report seem overly general (“Insert a file and you will see” – what
file? What kind of file? Is there an example, like “Insert a file like blah.foo or
blah2.fee”?)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

61

Editing Bugs—A Checklist

The bug editor should check the bug report for the following
characteristics:

2. When you replicate the report:

• Can you replicate the bug?

• Did you need additional additional?

• Did you get lost or wonder whether you had done a step correctly?
Would additional feedback (like, “the program will respond like
this...”) have helped?

• Did you have to guess about what to do next?

• Did you have to change your configuration or environment in any
way that wasn’t specified in the report?

• Did some steps appear unnecessary? Were they unnecessary?

• Did the description accurately describe the failure?

• Did the summary accurate describe the failure?

• Does the description include non-factual information (such as the
tester’s guesses about the underlying fault) and if so, does this
information seem credible and useful or not?

• Does the description include

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

62

Editing Bugs—A Checklist

The bug editor should check the bug report for the following

characteristics:

3. Closing impressions:

• Does the description include non-factual information (such
as the tester’s guesses about the underlying fault) and if so,
does this information seem credible and useful or not? (The
report need not include information like this. But it should not
include non-credible or non-useful speculation.)

• Does the description include statements about why this bug
would be important to the customer or to someone else?
(The report need not include such information, but if it does,
it should be credible, accurate, and useful.)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

63

Editing Bugs—A Checklist

The bug editor should check the bug report for the following
characteristics:

4. Follow-up tests:
• Are there follow-up tests that you would run on this report if you had

the time? (Refer to the slides on follow-up testing)?

• What would you hope to learn from these tests?
• How important would these tests be?
• You will probably NOT have time to run follow-up tests yourself, or if

you run any, you will not / should not take the time to run more than
1 or 3 such tests.

• Are some tests so obvious that you feel the reporter should run
them before resubmitting the bug? Can you briefly describe them to
the reporter?

• Some obvious style issues that call for follow-up tests—if the report
describes a corner case without apparently having checked non-
extreme values. Or the report relies on other specific values, with
no indication about whether the program just fails on those or on
anything in the same class (what is the class?) Or the report is so
general that you doubt that it is accurate (“Insert any file at this
point” – really? Any file? Any type of file? Any size? Maybe this is
accurate, but are there examples or other reasons for you to believe
this generalization is credible?)

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

64

Editing Bugs—Grading Issues

After you have finished editing a bug, send me a copy of the
report you received and the comments you sent or the report
as you revised it. IF THE REPORTER HAS ENTERED THE BUG
INTO THE DATABASE, PLEASE TELL ME WHERE TO FIND
THE FINAL BUG REPORT. (What file, what bug number or
what to search for.)

You are welcome to send me additional comments that
describe how easy or hard it was to work with the reporter or
how hard (or not hard) the reporter tried to improve his bug
report. YOU ARE NOT REQUIRED TO SEND SUCH
COMMENTS. DON’T SEND ANYTHING TO ME THAT YOU
DON’T WANT THE REPORTER TO SEE. I MAY SHOW THE
REPORTER ANY COMMENTS THAT I RECEIVE.

• I will evaluate whether the final report is worth credits to the
tester

• I will evaluate whether your edits are worth credits to you.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

65

Editing Bugs—Notes to the Bug Reporter

If you are the tester who wrote the bug report (the reporter), send me
a note when you have written a report, entered it into the database
and consider it finished. Here are some ground rules:

• Your first two bugs must go through an editing pass by a bug replicator
before you can put them into the database. After that, it is up to you
whether to submit bugs to replicators or just enter them into the
database directly.

• It is up to you to make changes or not make changes to your report,
based on the editor’s comments. This is your bug report, it carries your
signature, write it your way.

• Never, ever write a report under someone else’s name.

• If you submitted a report to one editor and their edit was not helpful,
you can submit it to another editor. However, when you do this, you
must give the second editor a copy of the report that you gave to the
first editor and a copy of the first editor’s comments.

• When you are satisfied with your bug report, enter it into the bug
tracking system in the form you consider final, and send me a note
telling me where to find the report. I’ll look it over and assign credit (or
not).

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

66

Black Box Testing

Bug Reporting Exercises

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

67

Bug Reporting Exercise 1 (1)

Create a sample database of cheques. Enter many new cheques.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

68

Bug Reporting Exercise 1 (2)

Now search the cheques to find one.
Here, I searched for the word “testing”.
The program searches backwards, from
the currently selected cheque to the start
of the register. It doesn’t find any
instances of “testing” so it asks whether
it should keep searching from the end of
the register backwards.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

69

Bug Reporting Exercise 1 (3)

Kaboom! A General Protection Fault!
• The “First Aid” application tries to protect the customer from losing

data when there is a GP fault. It’s always possible that the crash was

caused by an interaction between Quicken and First Aid, so try the

test again after turning off First Aid.

• When I re-ran the test, Quicken crashed again, with a Win 95 system

window that identifies a GP Fault. (These are harder to screen shoot,

so it’s not here.) Therefore the bug was not due to First Aid.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

70

Bug Reporting Exercise 1 (4)

When analyzing a bug, it’s wise to try to
recreate it on another computer. I did that.
This time, the search didn’t crash. The
crashing computer is a Pentium with 32 megs
RAM, a Logitech trackball, the MS keyboard,
a 1.6 gig hard drive, no disk compression, a 4
meg high res MPEG video card and a big
monitor. The other is an 8 meg 486 with an
MS Mouse, an old standard keyboard, a 540
meg hard drive (compressed) and basic
SVGA video.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

71

Bug Reporting Exercise 1 (5)

Because this is a crash, you decide to get it into the

tracking system right away. You’ll do more troubleshooting

later. So here is your assignment.

1 Write these two sections of the bug report:

» Problem Summary

» Problem Description

2 What other tests should you run? Why? Write down your list.

3 Meet with your group to read each other’s reports.

» How good is the summary?

» How clear is the description?

» How complete is the description?

» How accurate is the description?

» How promising is your list of ideas?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

72

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

73

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

74

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

75

Notes on Exercise

I do some analysis before writing. Here’s a structure for

making your notes:

NOTESOTHER CONDITIONS

(maybe irrelevant)

•Configurations (list them all)

CONDITIONS

•search for non-existent text

•search backwards

•Yes to query, search from end

of register

OBSERVED FAILURES

•General protection fault

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

76

Notes on Exercise

MY SUMMARY

GPF on search for non-existent text. (Configuration dependent.)

MY PROBLEM DESCRIPTION

1. Start the program

2. Open a database (I used the TESTING file)

3. Search (backwards) for a string that doesn’t appear in the database

4. When the program asks whether to search from end of register, click YES

5. Result = GPF

NOTES: This bug is configuration dependent. The two machines involved are

the two at my desk, if you need to replicate while I’m gone. I’ll do further

analysis later, but I put this into the database now in order to give you an

early warning of a serious bug. The configurations of the two machines are:

Replicates Fails to Replicate

Pentium 486

etc etc

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

77

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

78

Bug Reporting Exercise 2 (1)

The following group of slides are from Windows Paint 95.

Please don’t spend your time replicating the steps or the bug.

(You’re welcome to do so if you are curious, but it is not

necessary for analysis of this exercise.)

Treat the steps that follow as fully reproducible. If you go back

to ANY step, you can reproduce it.

In case you aren’t familiar with paint programs, the key idea is

that you lay down dots. For example, when you draw a circle,

the result is a set of dots, not an object. If you were using a

draw program, you could draw the circle and then later select

the circle, move it, cut it, etc. In a paint program, you cannot

select the circle once you’ve drawn it. You can select an area

that includes the dots that make up the circle, but that area is

simply a bitmap and none of the dots in it have any

relationship to any of the others.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

79

Bug Exercise 2 Continued

Here’s the opening
screen. The
background is
white. The first
thing that we’ll do
is select the Paint
Can

We’ll use this to lay
down a layer of
grey paint on top of
the background.
Then, when we cut
or move an area,
we’ll see the white
background behind
what was moved.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

80

Bug Exercise 2 Continued

Here’s the screen

again, but the

background has been

painted gray.

The star in the upper

left corner is a

freehand selection

tool. After you click

on it, you can trace

around any part of

the picture. The

tracing selects that

part of the picture.

Then you can cut it,

copy it, move it, etc.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

81

Bug Exercise 2 Continued

This shows an area

selected with the

freehand selection tool.

The bottom right corner is

selected. (The dashed line

surrounds the selected

area.)

NOTE: The actual area

selected might not be

perfectly rectangular. The

freehand tool shows a

rectangle that is just big

enough to enclose the

selected area. For our

purposes, this is not a bug.

This is a design decision by

Microsoft.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

82

Bug Exercise 2 Continued

Next, we’ll draw a circle
(so you can see what’s
selected), then use the
freehand select tool to
select the area around
it.

When you use the
freehand selection tool,
you select an area by
moving the mouse. The
real area selected is
not a perfect rectangle.
The rectangle just
shows us where the
selected area is.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

83

Bug Exercise 2 Continued

Now we cut the

selection. (To do

this, press Ctrl-X.)

The jagged border

shows exactly the

area that was

selected.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

84

Bug Exercise 2 Continued

Next, select the area

around the circle and

drag it up and to the

right.

This works.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

85

Bug Exercise 2 Continued

This time, we’ll try the

Rectangular Selection tool.

With this one, if you move

the mouse to select an area,

the area that is actually

selected is the smallest

rectangle that encloses the

path that your mouse drew.

So, draw a circle, click the

Rectangular Selection tool,

select the area around the

circle and move it up. It

works.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

86

Bug Exercise 2 Continued

Well, this was just too boring, because

everything is working. When you don’t find a

bug while testing a feature, one tactic is to

keep testing the feature but combine it with

some other test.

In this case, we’ll try Zooming the image.

When you zoom 200%, the picture itself

doesn’t change size, but the display doubles

in size. Every dot is displayed as twice as tall

and twice as wide.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

87

Bug Exercise 2 Continued

Bring up the

Custom Zoom

dialog, and select

200% zoom, click

OK.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

88

Bug Exercise 2 Continued

It worked. The paint

area is displayed

twice as tall and twice

as wide. We’re looking

at the bottom right

corner. To see the

rest, we could move

the scroll bars up or

left.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

89

Bug Exercise 2 Continued

So, we select part of

the circle using the

freehand selection

tool. We’ll try the

move and cut

features.

Cutting fails.

When we try to cut the

selection, the dashed

line disappears, but

nothing goes away.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

90

Bug Exercise 2 Continued

Draw the circle, zoom

to 200%, select the

area.

Drag the area up and

to the right. It works.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

91

Bug Exercise 2 Continued

Draw the circle, zoom to 200%, select the area.

Now try this. Select the area and move it a bit. THEN

press Ctrl-X to cut. This time, cutting works.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

92

Bug Exercise 2 Continued

Draw the circle, zoom

to 200%, and this

time, grow the window

so you can see the

whole drawing area.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

93

Bug Exercise 2 Continued

Now, select the

circle. That seems

to work.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

94

Bug Exercise 2 Continued

But when you

press Ctrl-X to cut

the circle, the

program cuts the

wrong area.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

95

Bug Exercise 2 Continued

Now, write a bug report. I want two sections:

• The Problem summary (or title)

• The Problem Description (how to reproduce the

problem)

Additionally, please describe three follow-up tests

that you would run with this bug

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

96

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

97

Bug Advocacy

Advocating for

bug fixes

by alerting people

to costs.

Supplementary Reading:

Kaner, Quality Cost Analysis: Benefits & Risks.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

98

Money Talks:

Cost of Finding and Fixing Software Errors

This curve maps the traditionally expected increase of cost as

you find and fix errors later and later in development.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

99

Money Talks:

Cost of Finding and Fixing Software Errors

This is the most commonly taught cost

curve in software engineering.

Usually people describe it from the

developers-eye view. That is, the

discussion centers around

•how much it costs to find the bug

•how much it costs to fix the bug

•and how much it costs to distribute

the bug fix.

But sometimes, it pays to adopt the

viewpoints of other stakeholders, who

might stand to lose more money than the

development and support organizations.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

100

Money Talks:

Cost of Finding and Fixing Software Errors

Costs escalate because more people in and out
of the company are affected by bugs, and more
severely affected, as the product gets closer to
release. We all know the obvious stuff

• if we find bugs in requirements, we can fix
them without having to recode anything;

• programmers who find their own bugs can fix
them without taking time to file bug reports or
explain them to someone else;

• it is hugely expensive to deal with bugs in the
field (in customers’ hands).

Along with this, there are many effects on other
stakeholders in the company. For example, think
of the marketing assistant who wastes days trying
to create a demo, but can’t because of bugs.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

101

Money Talks:

Cost of Finding and Fixing Software Errors

It is important to recognize that this cost curve is
predicated on a family of development practices.

When you see a curve that says,

“Late changes are expensive”

you can reasonably respond in either of two ways:

• Make fewer late changes.

• This is the traditional recommendation

• Make it cheaper to make late changes.

• This is a key value of the agile development

movement (see Beck’s Extreme Programming

Explained, or go to www.agilealliance.org)

In this testing course, I will push you to find ways to
find bugs earlier, but my development philosophy
is agile.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

102

Quality Cost Analysis

Quality Cost Measurement is a cost control system used
to identify opportunities for reducing the controllable
quality-related costs

The Cost of Quality is the total amount the company
spends to achieve and cope with the quality of its
product.

This includes the company’s investments in improving
quality, and its expenses arising from inadequate quality.

A key goal of the quality engineer is to help the company
minimize its cost of quality.

» Refer to the paper, “Quality Cost Analysis: Benefits & Risks.”

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

103

Quality-Related Costs

External FailureInternal Failure

Cost of dealing with errors that

affect your customers, after the

product is released.

Cost of dealing with errors

discovered during development

and testing. Note that the

company loses money as a user

(who can’t make the product

work) and as a developer (who

has to investigate, and possibly

fix and retest it).

Cost of inspection (testing,

reviews, etc.).

Cost of preventing customer

dissatisfaction, including errors

or weaknesses in software,

design, documentation, and

support.

AppraisalPrevention

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

104

Examples of Quality Costs

External FailureInternal Failure

• Lost sales and lost customer goodwill

• Technical support calls

• Writing answer books (for Support)

• Investigating complaints

• Supporting multiple versions in the field

• Refunds, recalls, warranty, liability costs

• Interim bug fix releases

• Shipping updated product

• PR to soften bad reviews

• Discounts to resellers

• Bug fixes
• Regression testing
• Wasted in-house user time
• Wasted tester time
• Wasted writer time
• Wasted marketer time
• Wasted advertisements
• Direct cost of late shipment
• Opportunity cost of late shipment

• Design review
• Code inspection
• Glass box testing
• Black box testing
• Training testers
• Beta testing
• Usability testing
• Pre-release out-of-box testing by customer

service staff

• Staff training
• Requirements analysis & early prototyping
• Fault-tolerant design
• Defensive programming
• Usability analysis
• Clear specification
• Accurate internal documentation
• Pre-purchase evaluation of the reliability

of development tools

AppraisalPrevention

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

105

Customers’ Quality Costs

These illustrate costs absorbed by the

customer who buys a defective product.

• Wasted time

• Lost data

• Lost business

• Embarrassment

• Frustrated employees quit

• Failure during one-time-only tasks,

e.g. demos to prospective customers

• Cost of replacing product

• Reconfiguring the system

• Cost of recovery software

• Tech support fees

• Injury / death

These illustrate costs absorbed by the

seller that releases a defective product.

• Lost sales and lost customer

goodwill

• Technical support calls

• Writing answer books (for Support)

• Investigating complaints

• Refunds, recalls, warranty, liability

costs

• Government investigations

• Supporting multiple versions in the

field

• Interim bug fix releases

• Shipping updated product

• PR to soften bad reviews

• Discounts to resellers

Customer: failure costs

(seller’s externalized costs)

Seller: external costs

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

106

Influencing Others

Based on Costs
It’s often impossible to fix every bug. But sometimes the

development team will choose to not fix a bug based on their

assessment of its risks for them, without thinking of the costs to

other stakeholders in the company.

• Probable tech support cost.

• Risk to the customer.

• Risk to the customer’s data or equipment.

• Visibility in an area of interest to reviewers.

• Extent to which the bug detracts from the use of the program.

• How often will a customer see it?

• How many customers will see it?

• Does it block any testing tasks?

• Degree to which it will block OEM deals or other sales.

To argue against a deferral, ask yourself which stakeholder(s) will

pay the cost of keeping this bug. Flag the bug to them.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

107

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

108

Bug Advocacy

What About the

Objection That It Is

Not Really A Bug?

• Really, it’s a feature.

• Or, at least, it’s not a problem for my release so I don’t

have to fix it.

• It won’t matter until we ship it to Germany. Let them fix it.

Supplemental reading: Kaner, What is a Software Defect?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

109

Software Errors:

What is Quality?

Here are some of the traditional definitions:

• Fitness for use (Dr. Joseph M. Juran)

• The totality of features and characteristics of a product

that bear on its ability to satisfy a given need (ASQ)

• Conformance with requirements (Philip Cosby)

• The total composite product and service characteristics of

marketing, engineering, manufacturing and maintenance

through which the product and service in use will meet

expectations of the customer (Armand V. Feigenbaum)

Note the absence of “conforms to specifications.”

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

110

Software Errors:

What is Quality?

Juran distinguishes between Customer Satisfiers and

Dissatisfiers as key dimensions of quality:

Customer Satisfiers

• the right features

• adequate instruction

Dissatisfiers

• unreliable

• hard to use

• too slow

• incompatible with the customer’s equipment

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

111

Software Errors:

What Should We Report?
I like Gerald Weinberg’s definition:

Quality is value to some person

But consider the implication:

• It’s appropriate to report any deviation from high

quality as a software error.

• Therefore many issues will be reported that will

be errors to some and non-errors to others.

Glen Myers’ definition:

• A software error is present when the program does not do what its

user reasonably expects it to do.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

112

Quality is Multidimensional

Project
Manager

Programming
User Interface

Design Marketing

Glass Box
Testing

Black Box

Testing

Customer
Service

Writing

Manufacturing

When you sit in a project team meeting, discussing a bug, a new
feature, or some other issue in the project, you must understand that
each person in the room has a different vision of what a “quality”
product would be. Fixing bugs is just one issue.
The next slide gives some examples.

Multimedia
Production

Content
Development

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

113

Quality is Multidimensional:

Different People, Different Visions

Localization Manager: A good product is easy to translate and to modify

to make it suitable for another country and culture. Few expereienced

localization managers would consider acceptable a product that must

be recompiled or relinked to be localized.

Tech Writers: A high quality program is easily explainable. Aspects of

the design that are confusing, unnecessarily inconsistent, or hard to

describe are marks of bad quality.

Marketing: Customer satisfiers are the things that drive people to buy the

product and to tell their friends about it. A Marketing Manager who is

trying to add new features to the product generally believes that he is

trying to improve the product.

Customer Service: Good products are supportable. They have been

designed to help people solve their own problems or to get help quickly.

Programmers: Great code is maintainable, well documented, easy to

understand, well organized, fast and compact.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

114

Software Errors:

What Kind of Error?

You will report all of these types of problems, but it’s valuable

to keep straight in your mind, and on the bug report, which

type you’re reporting.

• Coding Error: The program doesn’t do what the programmer would

expect it to do.

• Design Issue: It’s doing what the programmer intended, but a

reasonable customer would be confused or unhappy with it.

• Requirements Issue: The program is well designed and well

implemented, but it won’t meet one of the customer’s requirements.

• Documentation / Code Mismatch: Report this to the programmer (via

a bug report) and to the writer (usually via a memo or a comment on

the manuscript).

• Specification / Code Mismatch: Sometimes the spec is right;

sometimes the code is right and the spec should be changed.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

115

Software Errors:

Why are there Errors?

New testers often conclude that the programmers on their

project are incompetent or unprofessional.

• This is counterproductive. It leads to infighting instead of

communication, and it leads to squabbling over bugs instead of

research and bug fixing.

• And as we saw when we discussed private bug rates, programmers

actually find and fix the large majority of their own bugs.

• Bugs come into the code for many reasons. It’s worth considering

some common systematic (as distinct from poor individual

performance) factors. You will learn to vary your strategic approaches

as you learn your companies’ weaknesses.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

116

Software Errors:

Why are there Errors?

Bugs come into the code for many reasons:

• The major cause of error is that programmers deal with tasks that

aren’t fully understood or fully defined. This is said in many different

ways. For example:

» Tom Gilb and Dick Bender quote industry-summary statistics
that 80% of the errors, or 80% of the effort required to fix the
errors, are caused by bad requirements;

» Roger Sherman recently summarized research at Microsoft
that the most common underlying issue in bug reports
involved a need for new code.

If you graduated from a Computer Science program, how much

training did you have in task analysis? Requirements definition?

Usability analysis? Negotiation and clear communication of

negotiated agreements? Not much? Hmmmm

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

117

Software Errors:

Why are there Errors?
• Some companies drive their programmers too hard. They don’t have

enough time to design, bulletproof, or test their code. Another Sherman

quote: “Bad schedules are responsible for most quality problems.”

• Late design changes result in last minute code changes, which are

likely to have errors.

• Some third-party components introduce bugs. Your program might rely

on a large suite of small components that display a specific type of

object, filter data in a special way, drive a specific printer, etc. Many of

these tools, bought from tool vendors or hardware vendors, are

surprisingly buggy. Others work, but they aren’t fully compatible with

common test automation tools.

• Failure to use source control tools creates characteristic bugs. For

example, if a bug goes away, comes back, goes away, comes back,

goes away, comes back, then ask how the programming staff makes

sure it’s linking the most recent version of each module when it builds

a version for you to test.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

118

Software Errors:

Why are there Errors?
• Some programs or tasks are inherently complex. Boris Beizer talks

perceptively about the locality problem in software. Think about an
underlying bug, and then about symptoms caused by the bug. When
symptoms appear, there’s no assurance that they’ll be close in time, space,
or severity to the underlying bug. They may appear much later, or when
working with a different part of the program, and they may seem much
more or much less serious than the bug.

• Some programmers (some platforms) work with poor tools. Weak
compilers, style checkers, debuggers, profilers, etc. make it too easy to get
bugs or too hard to find bugs.

• Similarly, some third party hardware, or its drivers, are non-standard and
don’t respond properly to standard system calls. Incompatibility with
hardware is often cited as the largest single source of customer complaints
into technical support groups.

• When one programmer tries to fix bugs, or otherwise modify another
programmer’s code, there’s lots of room for miscommunication and error.

• And, sometimes people just make mistakes.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

119

Quality: Family Drug Store v. Gulf

States Computer
(563 So.2d 1324, Louisiana Court of Appeal, 1990). The basic holding of

this case is that a computer program that is honestly marketed can be

extremely awkward to use without imposing liability on the seller.

Two pharmacists bought a computer program known as the Medical
Supply System from Gulf States. After they realized what they had bought,
they asked for, and then sued for, a refund. Here were some of the
problems of the system:

“1 all data had to be printed out, and could not be viewed on the monitor;

2 the information on the monitor would appear in code;

3 numerical codes were needed in order to open a new patient file

4 the system was unable to scroll.”

The court found that the seller had not in any way misrepresented the
system, and that it was not useless even though it was awkward to use.
Further, the price of the software was about $2500 compared to $10,000
for other packages. The plaintiffs had gotten what they’d paid for.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

120

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

121

Bug Advocacy

Decision Making,

Information Flow, and

Credibility

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

122

The Signal Detection & Recognition

Problem

Refer to Testing Computer Software, pages 24, 116-118

Response
Bug Feature

A
c
tu

a
l
e

v
e

n
t

F
e
a
tu

re
B

u
g

Hit Miss

False
Alarm

Correct
Rejection

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

123

Lessons From Signal Detection:

We Make Decisions Under Uncertainty

When you try to decide whether an item belongs to one
category or the other (bug or feature), your decision will be
influenced by your expectations and your motivation.

• Can you cut down on the number of false alarms without

increasing the number of misses?

• Can you increase the number of hits without increasing the

number of false alarms?

• Pushing people to make fewer of one type of reporting error

will inevitably result in an increase in another type of reporting

error.

• Training, specs, etc. help, but the basic problem remains.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

124

Lessons From Signal Detection: Decisions Are

Subject To Bias

We make decisions under uncertainty.

Decisions are subject to bias, and much of this is

unconscious.

The prime biasing variables are:

• perceived probability:

If you think that an event is unlikely, you will be substantially

less likely (beyond the actual probability) to report it.

• perceived consequence of a decision:

What happens if you make a False Alarm? Is this worse than a

Miss or less serious?

• perceived importance of the task:

The degree to which you care / don’t care can affect your

willingness to adopt a decision rule that you might otherwise be

more skeptical about

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

125

Lessons From Signal Detection:

Decisions Are Subject To Bias

Decisions are made by a series of people.

• Bug reporting policies must consider the effects on the overall

decision-making system, not just on the tester and first-level

bug reader.

Trace these factors through the decisions and decision-makers
(next slides). For example, what happens to your reputation if
you

• Report every bug, no matter how minor, in order to make sure that

no bug is ever missed?

• Report only the serious problems (the “good bugs”)?

• Fully analyze each bug?

• Only lightly analyze bugs?

• Insist that every bug get fixed?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

126

Decisions Made

During Bug Processing
Bug handling involves many decisions by different people, such as:

Tester:

• Should I report this bug?

• Should I report these similar bugs as one bug or many?

• Should I report this awkwardness in the user interface?

• Should I stop reporting bugs that look minor?

• How much time should I spend on analysis and styling of this report?

Your decisions will reflect on you. They will cumulatively have an

effect on your credibility, because they reflect your judgment.

The comprehensibility of your reports and the extent and skill of your

analysis will also have a substantial impact on your credibility.

Refer to Testing Computer Software, pages 90-97, 115-118

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

127

Decisions Made

During Bug Processing-2
Bug handling involves many decisions by different people, such as:

Programmer:

• Should I fix this bug or defer it?

Project Manager:

• Should I approve the deferral of this bug?

Tester:

• Should I appeal the deferral of this bug?

• How much time should I spend analyzing this bug further?

Test Group Manager:

• Should I make an issue about this bug?

• Should I encourage my tester to

» investigate the bug further

» argue the bug further,

» or to quit worrying about this one,

» or should I just keep out of the discussion this time?

Refer to Testing Computer Software, pages 90-97, 115-118

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

128

Decisions Made

During Bug Processing - 3

Customer Service, Marketing, Documentation:

• Should I ask the project manager to reopen this bug?

• (The tester appealed the deferral) Should I support the tester this

time?

• Should I spend time trying to figure this thing out?

• Will this call for extra work in the answer book / advertising / manual

/ help?

Director, Vice President, other senior staff:

• Should I override the project manager’s deferral of this bug?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

129

Decisions Made

During Bug Processing - 4

Who else is in your decision loop?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

130

Issues That Will Bias People

Who Evaluate Bug Reports

These reduce the probability that the bug will be

taken seriously and fixed.

• Language critical of the programmer.

• Severity inflation.

• Pestering & refusing to ever take “No” for an answer.

• Tight schedule.

• Incomprehensibility, excessive detail, or apparent

narrowness of the report.

• Weak reputation of the reporter.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

131

Issues That Will Bias People

Who Evaluate Bug Reports

These increase the probability that the bug will

be taken seriously and fixed.

• Reliability requirements in this market.

• Ties to real-world applications.

• Report from customer/beta rather than from

development.

• Strong reputation of the reporter.

• Weak reputation of the programmer.

• Poor quality/performance comparing to competitive

product(s).

• News of litigation in the press.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

132

Clarify Expectations

One of the important tasks of a test manager is to clarify

everyone’s understanding of the use of the bug tracking

database and to facilitate agreements that this approach is

acceptable to the stakeholders.

• Track open issues / tasks or just bugs?

• Track documentation issues or just code?

• Track minor issues late in the schedule or not?

• Track issues outside of the published spec and requirements or not?

• How to deal with similarity?

Make the rules explicit.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

133

Biasing People Who Report Bugs

These will reduce the probability that bugs will be reported, by

discouraging reporters, by convincing them that their work is

pointless or will be filtered out, or by creating incentives for

other people to pressure people not to report bugs.

• Never use bug statistics for employee bonus or discipline.

• Never use bug statistics to embarrass people.

• Never filter reports that you disagree with.

• Never change an in-house bug reporter’s language, or at least not

without free permission. Add your comments as additional notes, not

as replacement text.

• Monitor language in the reports that is critical of the programmer or

the tester.

• Beware of accepting lowball estimates of bug probabilities.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

134

Biasing People Who Report Bugs

These help increase the probability that people will report

bugs.

• Give results feedback to non-testers who report bugs.

• Encourage testers to report all anomalies.

• Adopt a formal system for challenging bug deferrals.

• Weigh schedule urgency consequences against an appraisal of quality

costs. (Early in the schedule, people will report more bugs; later

people will be more hesitant to report minor problems).

• Late in the schedule, set up a separate database for design issues

(which will be evaluated for the start of the next release).

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

135

Notes

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

136

Bug Reporting Practice Example

You will be given a copy of a computer screen.

• Please write a description (all words, no pictures) of that

screen

• When asked, please pass your description to your partner

• You will receive a description of a different screen from

your partner.

• Please draw the screen that your partner is describing.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

137

Sample Exam Question

Give three different definitions of “software error.”

Which do you prefer? Why?

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

138

Sample Exam Question

Suppose that you find a reproducible failure that

doesn’t look very serious.

• Describe three tactics for testing whether the defect

is more serious than it first appeared.

• As a particular example, suppose that the display

got a little corrupted (stray dots on the screen, an

unexpected font change, that kind of stuff) in the TI

program when you entered data into a matrix.

Describe some follow-up tests that you would run.

Copyright (c) 1994-2000 Cem Kaner.

All rights reserved.

139

Notes
