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Laboratory Measurements of Sea Ice: 

Connections to Microwave Remote Sensing
Ronald Kwok, M ember, IEEE, Son V. Nghiem, M ember, IEEE, S. Martin, D. P. Winebrenner, Senior M ember, IEEE, 
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Abstract— The connections between laboratory measurements 
and remote-sensing observations of sea ice are explored. The 
focus of this paper is on thin ice, which is more easily sim­
ulated in a laboratory environment. We summarize results of 
C-band scatterometer measurements and discuss how they may 
help in the interpretation of remote-sensing data. We compare 
the measurements with observations of thin ice from ERS and 
airborne radar data sets. We suggest that laboratory backscat- 
ter signatures should serve as bounds on the interpretation 
of remote-sensing data. We examine these bounds from the 
perspective of thin ice signatures, the effect of temperature, 
and surface processes, such as frost flowers and slush on these 
signatures. Controlled experiments also suggest new directions 
in remote-sensing measurements. The potential of polarimetric 
radar measurements in the retrieval of thickness of thin ice 
is discussed. In addition to the radar results, we discuss the 
importance of low-frequency passive measurements with respect 
to the thickness of thin ice.

I. INTRODUCTION

E
VEN though thin ice occupies a small areal fraction 

o f the Arctic sea ice cover, the flux o f heat from  the 

relatively w arm  ocean through this ice is com parable to that
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integrated over the larger fraction of thicker ice [16]. Hence, 

the identification o f thin ice in rem ote-sensing data has been 

an im portant goal for providing m easurem ents to support a 

variety of process studies and climate change research. Active 

and passive m icrowave sensors are the current sensors o f 

choice because o f their day and night viewing capabilities 

and because they are relatively unaffected by clouds and 

other atm ospheric conditions. An additional quality o f active 

m icrowave sensors, like scatterometers and synthetic aperture 

radars (SA R 's), is that they provide high-resolution mapping 

o f the polar ice covers. However, the goal o f deriving ice 

thickness from  m icrowave data sets has proved elusive because 

these sensors do not provide direct m easurem ents o f ice 

thickness. The em issivity and backscatter are measurem ents 

o f the surface and volum e electrom agnetic properties o f sea 

ice, which are only sometimes correlated to ice thickness. 

Rather than classify the m icrowave observations into specific 

thickness categories, current routine analyses [3], [12] o f these 

data sets provide coarse ice types (e.g., m ultiyear ice, first-year 

ice, etc.) as proxy indicators o f ice thickness. The interpretation 

and resolution o f the thin ice category are typically rather poor 

due to the variability in the active and passive signatures of 

thin ice.

In this paper, we focus on the interpretation of thin ice 

signatures in m icrowave data in the context o f laboratory 

scatterom eter measurem ents. Generally, the interpretation of 

sea ice rem ote-sensing data have been guided by field experi­

m ents and laboratory m easurem ents. Field m easurem ents have 

provided observations that characterize, to a lim ited extent, 

the natural variability o f sea ice. Laboratory measurem ents 

are unique because the evolution o f the signature o f sea ice 

can be observed in a controlled environm ent and provide us 

with a  different perspective with respect to rem ote sensing. 

It is this connection, between laboratory m easurem ents and 

rem ote sensing, w hich we w ould like to explore here. We have 

observed the growth o f sea ice, w ith the Je t Propulsion Labora­

tory (JPL)1 C-band polarim etric scatterometer, under different 

conditions using the sea ice facilities at the U nited States 

Arm y C old Regions Research and Engineering Laboratory 

(CRREL), Hanover, NH. These experiments w ere conducted 

over a  period of three years from  1993 to 1995. One of 

the objectives was to understand the relationship betw een the 

m orphological and physical characteristics and the observed 

electrom agnetic properties o f sea ice. These relations are easier

1 JPL is part of the California Institute of Technology, Pasadena.
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to establish in a controlled environm ent, but the utility of 

such links have not been fully explored from  the remote- 

sensing point o f view. O ne obvious difference is the scale 

o f the observations between laboratory m easurem ents and 

rem ote-sensing data sets. In this paper, w e address the role of 

the laboratory m easurem ents in the interpretation of thin ice 

w ith rem ote-sensing data. Presently, several spaceborne S A R 's 

including ERS-1, ERS-2, and RADARSAT, all o f which 

are operated at C-band, are providing routine observations 

o f the polar regions. In particular, the recently launched 

RADARSAT is providing better than weekly coverage of the 

A rctic Ocean. If  algorithms could be devised to provide m ore 

definitive and quantitative results on thin ice, it w ould be a 

significant contribution to the understanding o f processes of 

the polar regions.

In the following sections, we describe several laboratory 

experiments and their relevance to rem ote sensing. These 

experiments w ere designed to investigate the effects o f surface 

and volum e processes on the backscatter signature o f thin ice. 

The processes include the growth o f frost flowers, the effect of 

a w et slush layer, and the responses o f sea ice due to diurnal 

cycles o f insolation and air temperature. The paper is organized 

as follows. In the next section, we discuss the possible role 

o f laboratory measurem ents. Section III describes our instru­

mentation and the experiments we have conducted at CRREL. 

In Section IV, we com pare our laboratory m easurem ents with 

the observations o f thin ice from  airborne and spaceborne 

radars and discuss w hether the laboratory m easurem ents could 

constrain our interpretation o f rem ote-sensing data. Section V  

presents the potential o f polarim etric radar observations for 

the retrieval o f thin ice thickness. We also discuss passive 

measurem ents with low -frequency radiom eters with respect 

to the thickness o f thin ice. The last section summarizes 

the paper.

II. ROLE OF LABORATORY MEASUREMENTS

The role o f laboratory m easurem ents in the observation of 

thin ice is discussed. We focus our attention on C -band signa­

tures since the current spaceborne SAR, w hich are providing 

routine observations o f the polar regions, are operated at this 

frequency. This ice type is m ost easily grown in a controlled 

environm ent due to its high growth rate. The sim ilarity o f the 

structural and physical properties o f laboratory grown sea ice 

and sea ice in its natural environm ent was discussed in [22].

We recognize that thin ice exists in a variety o f forms in 

its natural environm ent and that it is neither practical nor 

desirable to sim ulate all its expressions in the laboratory. 

As we alluded to above, there is a large-scale difference 

between the resolution o f a spaceborne SAR sensor (tens 

o f m eters) and a laboratory scatterom eter (m eters). W ithin 

a SAR resolution element, there are areal mixtures o f vari­

ous forms o f thin and thick ice, whereas a laboratory scat- 

terom eter typically provides m easurem ents o f a pure type. 

Some o f the surface processes (e.g., frost flowers, slush 

formation, etc.) that dom inate the backscatter properties of 

thin ice could be readily reproduced; other ice types (e.g., 

rafted ice, com posite pancake ice, etc.) that are created by

m echanical processes over extended scales are less read­

ily fabricated. Because of differences in sensor resolutions 

and variabilities in sea ice types, laboratory measurem ents 

should not be applied directly to the interpretation o f remote- 

sensing observations. In this regard, the role o f laboratory 

m easurem ents should be to establish the bounds and lim ­

its in the retrieval o f sea ice param eters in rem ote-sensing 

data sets.

Laboratory experiments also allow continuous monitoring 

o f ice growth as well as the surface processes associated with 

that growth. This is in contrast to the sparse sampling obtained 

from  spaceborne sensors. For example, continuous changes 

in thin ice signature (discussed later) due to diurnal cycles 

o f insolation and air tem perature are difficult to resolve with 

spaceborne sensors. In the laboratory, the mechanism s that 

contribute to such backscatter variability can be exam ined 

directly and correlated with their in-situ tem perature and 

salinity profiles together with ice properties from  ice cores. 

U nderstanding the physical processes that contribute to radar 

observables are im portant in the developm ent o f a retrieval 

algorithm  for sea ice properties using satellite radar data.

W ith the polarization capability of our scatterometer, lab­

oratory ice m easurem ents provide a full set o f polarim etric 

backscattering coefficients. In the experiments, polarim etric 

calibration instrum entation is setup accurately and calibration 

data are taken frequently. In view o f polarization differ­

ences between ERS and RADARSAT, understanding of the 

polarim etric responses o f sea ice are important. To fully 

utilize colocated data from  these sensors, the polarization 

differences need to be considered. Also, future spaceborne 

SA R ’s like LIG H TSA R and E SA ’s ENVISAT will likely 

provide m ultipolarization observations, and laboratory polari- 

m etric m easurem ents could provide indications of the potential 

o f these m easurem ents.

III. L a b o r a t o r y  E x p e r i m e n t s

A. CRREL Indoor and Outdoor Facilities

We conducted our experiments at the indoor and outdoor fa­

cilities at CRREL. The indoor facility is a room  that measures 

about 6 x 7 m  on the floor and approxim ately two stories 

high with the refrigeration units m ounted on the ceiling. The 

refrigeration system  is capable o f taking the air tem perature to 

below  —28 °C and controlling it to within 2 °C. The freezing 

pool, approxim ately 1.2 m  in depth, occupies m ost o f the area. 

We line the walls o f the room  with radar anechoic m aterial to 

reduce unw anted reflections and m ultipath contam ination of 

the returns from  the sea ice. The radar is m ounted about 3 

m  above the ice such that the surface is in the antenna far- 

field.

The outdoor facility, nam ed the CRREL Geophysical R e­

search Facility (GRF), is a pool o f approxim ately 18 x 7.5 m  

in dim ension w ith a depth o f 2 m. A structure with an insulated 

roof, w hich slides on rails, can be m oved over the ice sheet 

to shield the ice from  the elements, such as sun, snow, and 

rain. Cooling units are attached to this structure at one end of 

the pool. The refrigeration system  can cool the air tem perature
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to - 1 8  °C over the ice sheet when the structure covers the 

growing ice. A t the other end of the pool is a 4-m -high gantry, 

where the scatterom eter was m ounted during the experiments. 

The height o f the radar above the ice sheet was approxim ately 

4 m. The gantry was designed to m ove along the rails to 

different parts o f the pool for obtaining m easurem ents of 

different areas o f the ice sheet. The control and m easurem ent 

instrum entation w ere set up in  a tent located on one corner 

o f the GRF.

We successfully fabricated a variety o f saline ice sheets 

during the CRREL experiments (CRRELEX). Those ranged 

from  thin new  ice simulants to therm ally m odified ice sheets 

w hose physical and structural properties closely mim icked 

A rctic second-year ice. Depending on the nature of the exper­

iment, both under-the-roof refrigeration and natural freezing 

under open-air conditions w ere utilized in  the fabrication of 

CRRELEX ice sheets. Ice grown indoor and during roof-on 

at the GRF simulates, in  process and properties, those form ed 

under dark winter conditions (no insolation) in the Arctic.

B. Ice Growth and Physical Characteristics

Nature o f  the Freezing Process: Once a continuous ice 

sheet has formed, the underlying water is isolated from  the 

cold air, allowing latent heat to be extracted through the ice 

sheet by therm al conduction. D irect freezing o f salt w ater to 

the underside o f the ice is called congelation growth, typically 

yielding vertically elongated colum nar crystals. These crystals 

are characterized by a vertical substructure consisting of ice 

plates interspersed with parallel layers o f brine inclusions. 

Such a substructure results from  the dendritic nature o f the 

freezing interface, occurring in response to the buildup o f brine 

at the interface. Excess brine that cannot be expelled from  

the interface is system atically incorporated into the spaces 

betw een the dendrites. Actual incorporation o f brine into 

the ice structure occurs by pinching off o f the interdendrite 

spaces, leading to the formation of individual pockets o f brine 

and creation o f the characteristic ice plate and brine layer 

substructure o f the saline ice crystals. The overall process 

o f the freezing o f seawater in  the polar oceans is described 

in greater detail by [7] and [32]. An essentially identical 

process was duplicated in the freezing o f saline ice sheets 

at CRREL. The growth process and structural and physical 

properties o f the laboratory ice are shown to be sim ilar to 

A rctic sea ice [22].

Temperature and Salinity Effects: Changes with tim e in  the 

overall structure o f sea ice occur mainly in response to tem ­

perature changes in  the ice. Brine inclusions are particularly 

sensitive in  this regard. In the event o f protracted warming, 

brine pockets expand and their subsequent coalescence gen­

erally leads to channelization and dow nw ard drainage o f the 

brine, with resultant desalination o f the ice. The incorporation 

o f brine into sea ice is the most im portant param eter effecting 

the mechanical, thermal, and electrom agnetic properties o f the 

ice. In the case o f the electrom agnetic properties o f the ice, 

it is the concentration and distribution o f brine in the ice that 

largely determines the nature of the scattering signature and 

its interpretation. M any o f the salinity profile characteristics

exhibited by saline ice sheets fabricated during CRRELEX 

duplicated those o f Arctic sea ice, including the following:

1) high salinities at the top and bottom  o f thinner ice sheets, 

leading to the form ation o f the c-shaped profile;

2) general weakening o f the c-shaped profile with increas­

ing thickness and age o f the ice;

3) substantial desalination o f the upper levels o f older ice 

subjected to protracted warming or surface melting.

Characterization o f  Physical Properties: An ice character­

ization study conducted in  support o f the rem ote-sensing pro­

gram  at CRREL includes monitoring of ice thickness changes 

as influenced by such factors as surface air temperature, w ind 

chill, and radiation fluxes. Vertical profile m easurem ents of 

w ater and ice temperatures, salinity, and density and their 

derived properties, brine volum e and entrapped air content 

(porosity), are also perform ed. Thin sections cut from  samples 

from  the growing ice sheet are used to investigate crys­

talline structure and brine inclusion relationships essential 

to assessing both the qualitative and quantitative aspects 

o f salt entrapment. This w ork was supplem ented by im age 

processing o f thin section photographs to statistically describe 

volum e-scattering characteristics via correlation functions and 

inclusion size distribution statistics o f the various ice types 

[27]. C-shaped profiles, typical o f young sea ice growth in 

the Arctic, characterize the earlier stages o f growth o f the 

laboratory ice. Later profiles reflect the desalinating effects of 

elevated air tem perature occurring during the latter stages of 

saline ice growth. The elongated nature o f the crystals and the 

ice plate/brine inclusion substructures precisely duplicate the 

same features observed in young sea ice in  the Arctic.

Sea Ice Permittivities: Perm ittivities o f sea ice govern elec­

trom agnetic wave propagation, attenuation, and scattering. 

Thus, the perm ittivities are a determ ining factor o f the m i­

crow ave rem ote-sensing observables. It is useful to charac­

terize the bulk electrom agnetic behavior through an effective 

com plex perm ittivity e e iT that incorporates scattering effects. 

The geom etry and relative volum e fraction o f the brine in ­

clusions depend strongly on ice growth conditions, such as 

ice tem perature and salinity distribution in the ice layer. A 

com prehensive series o f rigorous bounds on eeS valid in the 

quasistatic regim e has been developed [5], [6], [30]. G iven an 

increasing am ount o f inform ation on the sea ice microstructure, 

such as the brine volum e fraction or further assuming statistical 

isotropy w ithin the horizontal plane, the bounds restrict t eff 

to an increasingly small region o f the com plex eeS -plane. A 

different approach based on strong fluctuation theory, account­

ing for sea ice therm odynam ic cycling, has been developed 

[21] to obtain com plex anisotropic effective perm ittivity tensor 

t eff, valid not only in the quasistatic regim e, but for higher 

frequencies as well.

C. JPL C-Band Polarim etric Scatterometer

The polarim etric scatterom eter operates at C-band with a 

center frequency o f 5 GHz and a bandw idth of 1 GHz. Stepped 

frequencies are synthesized by a netw ork analyzer and coupled 

to free space through a diagonal horn antenna. The antenna is 

dual-polarized with a beam w idth of 12° and a gain of 22.6 dBi
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at the center frequency. Raw data are com pressed and recorded 

in a com puter that also controls the polarization switching and 

the netw ork analyzer.

To prevent drift in the radio-frequency (RF) subsystem, 

the electronics are m aintained at room  tem perature (25 °C) 

with a tem perature controlling unit. The antenna is steered in 

azim uth and elevation using tw o independent motors attached 

to an assem bly containing the antenna and RF subsystem. Cal­

ibration targets include corner reflectors, spheres, and external 

backgrounds. Calibration m easurem ents are m ade periodically 

during the experiments. We estim ate the overall uncertainty 

in the radar m easurem ents to be approxim ately 1.2 dB. The 

recorded data w ere calibrated and processed into a polarim etric 

covariance m atrix form at after the experiments. The noise- 

equivalent oo o f the radar is at - 4 5  dB for copolarized 

m easurem ents and - 5 5  dB for cross-polarized m easurem ents. 

The low noise floor is achieved with a coherent-subtraction 

technique and a system  design that avoids internal signal 

reflections. A  m ore detailed description o f the scatterom eter 

can be found in  [22].

The polarim etric scatterom eter m easures the four elements 

o f the scattering matrix S ,  where

The conventional backscattering coefficients 

Ovh-,Ow and the copolarized polarim etric scattering co ­

efficient a hhvv are determ ined by ( f hhfZh) , ( f h v f Z v ), 

{ f v h f*h>, { f w f v v ), and { fhhfvv) , respectively. The angular 

brackets represent the ensem ble average, and the asterisk 

denotes the com plex conjugate. Two other frequently 

used param eters (norm alized) that are derived from  these 

coefficients are

w hich is the com plex correlation coefficient between the hh  

and v v  channels; the copolarized phase can be com puted 

directed from  this com plex quantity. A nd the ratio o f the 

m agnitude of the copolarized returns is

_  o vv

O'hh

D. The Experim ents

These experiments w ere designed to investigate the relation­

ship betw een the scatterom eter observations and the various 

physical surface conditions and volum e characteristics o f thin 

ice and support the validation sea ice scattering models. 

Here, we summ arize the experiments starting with the simple 

constant ice growth, then we present a m ore com plex growth 

o f frost flowers on ice surface, the flooding and slush layer on 

sea ice, and the effects o f diurnal therm al cycling.

Thin Ice Signature: The thin ice was grown under quies­

cent conditions w ithout w ind or w ave action in  the indoor 

facility, where the tem perature was well controlled. Saline ice 

was grown under constant air and water temperatures, repre­

senting the sim plest ice growth conditions. The experiments 

w ere repeated at slightly different air temperatures. In all cases,

the m ean air temperatures w ere kept below  - 2 0  °C. The 

indoor air tem peratures fluctuated slightly around the m ean and 

an rms deviation of ± 0 .1 °  was maintained. M easurem ents of 

thickness and growth rate, temperatures and salinities, crys- 

tallographic structures, brine layer, and cellular substructure 

spacing show that laboratory grown ice has characteristics very 

sim ilar com pared to those o f thin sea ice in  A rctic leads [22]. 

The results from  these experiments serve as a baseline for 

com parison with subsequent experiments that study the effects 

o f surface and volum e processes on thin ice signature. In all 

our m easurem ents, the thickness o f the ice reached 12 cm  in 

several days o f ice growth. A ll scatterom eter measurem ents 

w ere m ade at the incidence angle range from  20 to 40°.

Effect o f  Frost Flowers: In two o f our experiments, the 

tem perature in  the indoor facility was m aintained below 

- 2 8  °C. We found that low tem perature was conducive to 

the growth o f frost flowers. Polarim etric radar data w ere taken 

during the flower growth together with a tim e series o f still 

photography, video recording, and physical characteristics o f 

frost flowers. Further details o f the experim ent w ere described 

by [23]. The frost flowers consist o f 10-30-m m -high fragile 

saline ice crystals that grow on the ice surface and are 

accom panied by the formation o f a 1-4-m m -thick slush layer 

under the flowers. We characterize this surface process in 

terms o f the spreading rate of the flowers and slush layer, 

the height o f the flowers and its salinity, the thickness and 

salinity o f the slush layer, and the salinity o f the adjacent 

bare ice. F rost flowers close to 90% areal coverage o f the 

ice surface was achieved. Polarim etric m easurem ents were 

collected at frequent intervals throughout the experiment. 

M easurem ents w ere m ade with the full frost flower structure, 

with the flower ice crystals removed, and with the slush layer 

rem oved to assess the contribution o f these com ponents to the 

total scattering cross section o f thin ice. These experiments 

studied only the growth stage o f frost flower; the temporal 

evolution o f the decay stage and surface modifications with 

its associated backscatter response w ere no t investigated.

Effect o f  F looding and Slush Formation: We investigated 

the effect o f flooding and the form ation o f slush layer on 

the signature o f thin ice in  one experiment. Saline water was 

taken from  beneath the ice sheet and flushed onto the ice 

surface. O n the cold ice surface, the w ater on the surface 

started to freeze im m ediately, form ing a w et slushy layer. 

Polarim etric m easurem ents w ere obtained fo r norm al and 

oblique incidence angles. F or norm al incidence, the reflectivity 

is strongly modified because o f the high perm ittivity o f the 

slush layer. Backscatter at oblique angles is also changed 

significantly by the slush layer. The thickness of the slush 

layer was m easured im m ediately before scatterom eter data 

acquisition. Samples o f the slush layer and the ice layer were 

taken for ice characteristics m easurem ents.

Effect o f  D iurnal Cycling: We conducted this experim ent 

a t the outdoor G RF facility to study the effects o f diurnal 

tem perature cycles on polarim etric scattering signatures o f sea 

ice [24]. The roof o f the GRF was rem oved to take advantage 

o f the natural diurnal warming and cooling. An ice sheet 

was grown from  open water over a period o f 2.5 days. This 

duration allow ed us to investigate the repeatability o f the radar
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Fig. 1. C-band backscatter of thin ice grown under laboratory conditions. Capital letters represent measured data, and curves are model calculations [22] 
with a Gaussian thickness distribution with mean thickness from 2.5 to 12 cm.

signatures and determ ine w hether the diurnal therm al effects 

are reversible. During the experiment, the air tem perature 

varied between - 1 2  °C during day to - 3 6  °C at night. The 

initial growth rate was slow during the day due to the in ­

solation under clear sky conditions. Throughout the night, the 

growth rate increased significantly as the tem perature dropped. 

Polarim etric scatterom eter m easurem ents w ere carried out over 

tw o tem perature cycles for the duration o f the experiment. 

Calibration m easurem ents w ere also m ade throughout the 

experim ent to m onitor the scatterom eter system  stability. Data, 

including air temperatures, ice tem perature profiles, ice salinity 

profiles, and ice thicknesses, w ere taken periodically.

IV. RELEVANCE TO REMOTE SENSING

A. Thin Ice (0-12 cm) Backscatter

Thin ice backscatter signature at C-band over the ERS SAR 

spans a range o f look angles (19-26°), and V V -polarization 

spans a range from  approxim ately - 3 0  dB to as high as - 5  dB. 

The low er bound in the backscatter can be established by our 

scatterom eter m easurem ents in the laboratory. F ield programs

[4], [19] typically observe backscatter that are higher than what 

is obtained in the laboratory quiescent ice growth. The thin ice 

(dark nilas) grown in the quiescent conditions in the laboratory 

has very smooth surfaces. Any perturbation to that smooth 

surface introduces an additional com ponent to the total radar

cross section, resulting from  the superim posed roughness. 

Thus, the unperturbed laboratory m easurem ents provide a 

reasonable low er bound. The upper bound is established 

(disregarding any m echanical deform ation o f the thin ice) 

probably by frost-flow er-covered thin ice. We discuss in m ore 

detail the phenom enon o f frost flowers in the next subsection.

If  the scatterom eter m easurem ents establish the lower 

bounds o f backscatter for a range o f ice thicknesses, w hat can 

we say about the backscatter signature observed in spaceborne 

SA R ’s, such as ERS-1? Fig. 1 shows a p lot o f the dependence 

o f backscatter on thickness o f laboratory grown thin ice. It is 

clear that the level o f backscatter o f ice at these thicknesses 

are below the noise floor of the ERS radars (approximately 

- 2 4  dB) and therefore not resolved by the sensor if  thin ice 

sim ilar to that o f laboratory ice w ere observed. We could, 

however, say that if  an observed pixel is at or close to the 

noise floor of the ERS-1 sensor, there is a high likelihood 

that the pixel contains thin ice o f thickness less than, say, 10 

cm  (see Fig. 1). This is because thicker ice types generally 

have higher backscatter than thin ice in this thickness range 

[10]. O f course, thin ice could have a higher backscatter due 

to m echanical deformation, w hich we cannot address with the 

laboratory m easurem ents.

We show in Fig. 2 two ERS-1 images o f the same ge­

ographic area separated by three days. This im age pair o f 

the ice cover shows large openings that w ere created during
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Fig. 2. Upper panels are a pair of ERS-1 images showing large openings created during the observed time interval of three days. Lower panel shows 
backscatter of young sea ice in the opening.

the interval between the repeat observations. The ice in  this 

opening must be betw een zero and three days old, w hich is 

determ ined strictly from  ice m otion [9]. The structure o f the 

features suggests that the openings w ere not created by a single 

event, but rather several openings and maybe closings over 

the three days. If  the ice w ere three days old and the am bient 

tem perature was around - 2 0  °C, the thickness o f the ice is 

most likely less than 20 cm  thick, estim ated w ith a simple 

freezing-degree day calculation [17]. Sea ice with a range of 

backscatter (between - 2 4  and - 1 9  dB) can be seen in the

leads. The brightest backscatter is probably from  frost flowers 

in the leads. To explore the signature evolution further, we 

follow  the backscatter history o f these openings as the ice 

thickens with time. The tim e sequence presented in Fig. 3, 

which spans a period o f nine days, shows that the backscatter 

increases over time. N ote that the uncertainty o f the calibration 

is approxim ately 1-2  dB. This particular exam ple dem onstrates 

that the low er bound discussed above is reasonable for thin ice. 

For rem ote sensors with higher signal-to-noise ratio (SNR) or 

low er noise-equivalent a 0, such as an airborne SAR, the lower
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Fig. 3. Time-series of ERS-1 images in the Arctic showing the evolution of 
sea ice backscatter in openings as the ice thickens with time.

backscatter can indeed be observed. For example, if  the noise- 

equivalent a 0 =  - 3 0  dB, the low er lim it corresponds to ice 

thinner than 5 cm  (Fig. 1).

B. Frost F lowers on Thin Ice

On the other extrem e of radar return is the enhancem ent of 

the backscatter o f thin ice due to the growth o f frost flower 

on the surface. This high backscatter from  thin young ice 

has been attributed to the form ation o f frost flowers [25], 

[31]. A description o f the physical characteristics o f the frost 

flowers can be found in [13] and m ore recently in [15] and

[26]. The best illustration o f the evolution o f the signature of 

thin ice with frost flower is with the sequence o f five ERS- 

1 images, which spans a 12-day period (Fig. 4). The initial 

increase in backscatter during the first several days o f ice 

growth im m ediately after the opening of the lead and the 

slow decay of the signature to that o f thicker first-year ice 

are characteristic o f this surface process. We have observed 

in ERS-1 SAR (C-VV) im agery a large num ber o f new  leads 

containing sea ice with high initial backscatter and with sim ilar 

backscatter history. We have also observed cases in which the 

backscatter o f sea ice in leads that rem ained relatively low 

for an extended period o f tim e (days) and slowly attaining 

the higher backscatter o f thicker first-year ice. We cannot say, 

w ithout a m ore extensive and systematic study, which path 

o f backscatter evolution is m ore typical. It is dependent on 

local m eteorological conditions; however, the detailed in situ 

m easurem ents to support such investigations are typically not 

available.

We list three motivations for studying this phenom enon. 

First, field observations in the Beaufort [26] suggest that 

frost flowers appear with some frequency during the Arctic 

cold season. Second, the surface modification by the frost 

flowers alter the therm al and surface properties o f young 

sea ice. Third, the m echanism  that causes an enhancem ent 

in the backscatter (more than 200% increase) over that o f 

flower-free young ice. From  the rem ote-sensing perspective, 

the significance of flower growth and the associated changes in 

the surface salinity to radar observations is that understanding 

these processes is a step tow ard explaining the large variability 

in the signature of new ly form ed ice and better interpretation of 

radar rem ote-sensing data. If  indeed there is large modification 

to the therm al properties o f new  ice, this effect is significant 

in heat flux calculations over this ice type.

The growth o f frost flowers in the laboratory was first 

reported by [14]. Our C-band laboratory m easurem ent o f 

the scattering signature was discussed in detail by [23]. The 

laboratory experiments provided observations o f the initial 

evolution o f the signature and not the decay due to the length 

o f the process. Fig. 5 shows a tim e series o f the frost flower 

coverage o f the ice surface during our experim ent until a 90% 

areal coverage was achieved. Fig. 6 illustrates the effect on 

flower covered thin ice. The m easurem ents indicate that it is 

the slush layer below  the low -density ice crystals (Fig. 6) that 

contributes m ost to the enhancem ent in the backscatter. A fter 

the rem oval of this high-saline slush layer, the backscatter level 

returns to that o f thin ice (discussed above). The laboratory 

m easurem ents are low er than that observed in rem ote-sensing 

data, probably due to the density and height o f frost flowers 

grown in our environm ent and differences in ice thickness and 

surface roughness. Nevertheless, these results showing 3-5-dB  

backscatter increase due to frost flowers are consistent with the 

backscatter increase (up to 6 dB) in ERS-1 data in Fig. 6. The 

experim ent suggests that a transient increase o f 5 dB in thin 

ice backscatter can be used as an indicator for a full coverage 

( ~ 90%) in the growth stage o f frost flowers.

From  the perspective o f rem ote sensing, frost flowers are 

difficult to identify unam biguously in single SAR images due 

to the range o f backscatter level and its tim e-dependent be­
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so n  so

Day of Tu t  10CE

Fig. 4. Sequence of ERS-1 images over a 12-day period, illustrating the growth and decay of frost flowers in an Arctic leads with the corresponding 
transient response in backscatter.

havior. Kwok and Cunningham  [11] described a procedure that 

uses a series o f images to identify the presence o f frost flowers 

as well as their backscatter history. If  a Lagrangian elem ent 

o f the ice cover and its associated backscatter histogram  can 

be recorded, any area change and backscatter transients in  that 

Lagrangian elem ent could be identified as that due to thin 

ice. Given that the older ice (multiyear and thick first-year) 

has very stable signatures [10] during the winter, the pixel 

population, w hich is changing, could be tracked by examining 

the differences in backscatter histogram s o f that tim e series. 

In view o f the laboratory results, if  the initial backscatter is 

close to the lower limit, the ice is thin. In this case, if  a strong 

transient increase in  backscatter is observed, it is likely that 

frost flowers exist on the ice surface. However, we are at 

a fairly early stage in understanding all processes associated 

with the growth o f frost flowers. Certain conditions seem  to be 

conducive to the form ation o f this surface layer but are not well 

docum ented. As m entioned above, frost flowers seem  to be 

quite prevalent in the w inter Arctic. Laboratory measurements 

help to characterize the signatures variability and provide a 

link to the physical properties.

C. Flooding and Slush Form ation on Thin Ice

M icrow ave signatures from  sea ice are significantly affected 

by a wet slushy layer on the ice surface. Experim ental results 

show a 1.7-dB increase in reflectivity at norm al incidence from  

- 4 .4  dB for bare saline ice to - 2 .7  dB m easured im m ediately 

after the flooding. This increase corresponds to a large increase 

in  the perm ittivity o f the flooded surface.

The slush layer contains high salinity and has a large 

relative perm ittivity with high attenuation o f electrom agnetic 

waves. Fig. 7 presents backscatter m easurem ents o f bare saline 

ice and slush covered ice for VV -polarization (top panel of 

Fig. 7) and H H -polarization (bottom  panel o f Fig. 7). The 

ice thickness in these case is 12.6 cm, and the slush layer 

is approxim ately 3 mm  thick. The results reveal significant 

decreases in backscatter at both polarizations. The decrease in

a vv is 4 -5  dB, and c;/(/( is reduced by 4 -8  dB at different 

incidence angles. This m ay be caused by changes in the 

therm odynam ic phase distribution in  the slush layer during the 

scatterom eter measurements. These strong decreases defini­

tively indicate that the wetness in  the surface layer is im portant 

to sea ice backscatter signatures. A sim ilar situation is that 

the top surface or the snow cover on sea ice melts when 

the tem perature is above the freezing point. In this case, the 

w et slushy layer significantly reduces backscatter. M ultiyear 

ice backscatter can decrease significantly due to flooding or 

the wet surface layer, and its backscatter level becomes low er 

than that o f younger ice, causing a reversal in  the backscatter 

contrast o f these ice types. This phenom enon is im portant 

during seasonal transition periods, such as onsets o f summer 

m elt and fall freeze-up (reverse effect), when transitions in 

rem ote-sensing data can be applied to study the spatial and 

tem poral evolutions induced by the seasonal events.

D. D iurnal E ffect and Temperature Change

We exam ined the diurnal changes in  the backscatter o f thin 

ice during one o f our experiments at the outdoor CRREL 

GRF. M easurem ents w ere taken over a 60-h period, during 

w hich the ice sheet grew to a thickness o f 10 cm. The effects 

o f the diurnal cycle are shown in Fig. 8. The measurements 

began during daytim e hours w hen the ice tem perature was not 

too cold due to higher air tem perature and insolation. During 

the night, the tem perature decreases as well as the backscat- 

ter. In fact, the backscatter closely follows the ice surface 

tem perature variations over both o f the diurnal tem perature 

cycles. The experim ental results indicate that diurnal effects 

on backscatter are substantial, there is a positive correlation 

betw een backscatter and temperature, and the therm al effect 

on backscatter is reversible.

In the range o f ERS-1 look angles, backscatter m easure­

ments o f the thin ice sheet show a 3-5-dB  increase in the 

backscatter level during the day, corresponding to the rise in 

ice surface temperature. It should be noted that the air tem-
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(d) (h)

Fig. 5. Growth of frost flowers with increasing areal coverage during a three-day experiment in the CRREL indoor refrigerated facility. White horizontal 
object indicated by the arrow in panel (a) is a 10-cm ruler for reference.

perature rem ained below  - 1 0 °  during the entire experiment, due to the ice warming. In terms o f the absorption o f shortwave

The peaks in the backscatter occur during the afternoon. We radiation energy, brine pocket enlargem ent transforms and

attribute this increase to the therm al expansion of the brine consumes energy and becomes a com ponent o f the radiative

inclusions and to the increase in sea ice effective perm ittivity distribution in the heat budget balance [18]. N otice that the
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Fig. 6. Effects of frost flowers on backscatter measured with all frost flowers 
left intact, with flower ice crystals removed leaving slush patches on the ice 
surface, and then with the slush removed to expose the bare ice surface.

Fig. 7. Effects of a wet or slush layer formation on backscatter measured 
by comparing backscatter from bare ice and backscatter with slush cover by 
surface flooding.

diurnal effect is opposite to the effect o f surface wetness on 

thin ice; the backscatter drops in the case o f surface wetness.

A sim ilar increase in backscatter due to increasing ice 

tem perature is evident in ERS-1 SAR data from  Arctic field 

experiments. We conducted the experiments in the Canadian 

A rctic Archipelago to extend laboratory results to natural 

conditions o f the Arctic. We exam ine bivariate histograms 

for early consolidation (thick) and late consolidation (thin) 

ice types in the areas enclosed by rectangles in Fig. 9(a). 

The results indicate that, when the air tem perature increases 

between tw o different data sets, there is a detectable increase in 

backscatter o f sea ice with an initial backscattering coefficient 

below  - 1 9  dB, as seen in Fig. 9(b). The bivariate plots 

for these two thickness classes show that the smooth thick 

ice responds to the tem perature change w ith an increase in 

scattering (slope in the tail o f the histogram  outside o f the 

agreem ent bounds). N ote that backscatter o f the thin ice type 

increases m ore under this therm odynam ic cycle than does the 

thick ice area.

These effects o f diurnal variations or tem perature changes 

are im portant in the interpretation o f sea ice data [24]. Sun 

synchronous orbits of ERS and RADARSAT along ascending 

and descending paths o f the satellites provide observations of 

sea ice usually in the late m orning and at the end o f the day. 

From  field m easurem ents in the Beaufort Sea, [29] indicate 

that the diurnal cycle o f solar radiation in late w inter and

Fig. 8. Variations in backscatter caused by diurnal thermal cycling. The close 
circles are for backscatter data at incidence angle , and the open
circles are for ice surface temperature data.

early spring in the A rctic is sim ilar to that o f a m idlatitude 

winter. The diurnal effects on air tem perature and backscatter 

are strong. Therefore, in the late winter, spring, and early 

fall, variabilities in the backscatter level o f thin ice should 

be interpreted with care; the backscatter variations could be 

a response to the therm al environm ent. For consistency in
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(a) (b)

Fig. 9. Field experiments for sea ice in the Canadian Arctic Archipelago: (a) ERS-1 SAR scene of the experimental site, including the subscene enclosed 
in the large upper box for an early consolidation surface with thick first-year, multiyear, and rubble ice types, and the subscene enclosed in the lower 
box for a late consolidation ice surface with only thin first-year sea ice. (b) Bivariate plots of backscatter in decibels taken at cold temperature for the 
horizontal axis and at warmer temperature for the vertical axis.

view o f the diurnal effects and corresponding tem perature 

changes, data in ascending and descending paths should be 

separated in the data interpretation o f sea ice geophysics. 

Furtherm ore, because of the correlation o f backscatter with 

tem perature [24], backscatter changes can be exploited to study 

the corresponding changes in air and ice tem peratures.

V. RETRIEVAL OF THIN ICE THICKNESS

Recent analyses of polarim etric SA R  observations o f sea 

ice clearly show variations in backscattering signatures with 

apparent ice thickness, where the apparent thickness is esti­

m ated from  ancillary data and contextual inform ation in the 

SA R im agery itself. A lthough the data sets exam ined here 

have yet to include direct in  situ  observations o f the actual 

ice thickness, the evidence for signatures variations of useful 

m agnitude over roughly the range o f geophysically im portant 

ice thicknesses is compelling.

A. L-Band Polarim etric Observations

W inebrenner et al. [34] studied the variations in backscat- 

tering signature at 24-cm  wavelength. The observed signature 

variations are not easily explained in term s o f conventional 

modeling o f sea ice backscattering, but they have shown that 

an interaction m echanism  directly involving reflection from  the 

ice-w ater interface and scattering from  the a ir-ice  interface 

can explain the observations. M oreover, this explanation of 

the signature variations indicates a potential for direct sensing 

o f the thickness o f undeform ed new ice in the thickness range 

0 -5 0  cm  using 24-cm  wavelength SAR.

The copolar phase o f the backscattered signal depends pri­

m arily on the range to the target area. The difference between 

the phases o f signals in these tw o distinct backscattering 

m easurem ents, however, is characteristic o f the scattering 

process that gives rise to the signal. The copolar phase 

is typically defined as the (mean) difference in phase be­

tw een HH- and V V -polarized backscattered signals. Fig. 10 

[34] shows copolar ratios and phases at 24-cm  wavelength

(L-band), as functions o f incidence angles, for several distinct 

ice types, as observed with the JPL A irSAR in the Beaufort 

Sea, AK, during 1988. M ultiyear ice and (apparently) thick 

first-year ice display copolar ratios near those expected for 

scattering from  a small-roughness surface bounding effectively 

infinite thick ice. The corresponding copolar phases cluster 

around a constant reference value, taken here on theoretical 

grounds to be 0°. Two different regions o f apparently thin, 

new sea ice, however, display very different signatures. O ne 

lead area shows copolar phases approxim ately 15° less than 

the reference value (i.e., negative copolar phases), together 

w ith copolar ratios interm ediate between those expected, and 

observed, for thick ice and open sea water. A second area from  

apparently thin first-year ice shows copolar phases 25° above 

the reference value (positive copolar phases) and copolar ratios 

slightly below those o f thick ice. A lthough the correlation 

o f HH- and VV-polarized returns for new ice are low er 

than for thick ice or water, the difference betw een new 

ice and other signatures exceeds the uncertainties in their 

estimation. M oreover, observations o f leads in Antarctic pack 

ice show [33] several examples o f leads containing ice of 

two different ages, evidently due to distinct opening events; 

the apparently younger ice shows negative copolar phases, 

whereas the neighboring, apparently older new  ice shows 

positive copolar phases (again, relative to nearby, apparently 

thick ice). Thus, observations in the two polar regions show 

new ice types with copolar ratios and phases strongly different 

from  either open water or thick ice. The variation of signatures 

with apparent thickness suggests a nonm onotonic relation, 

m aking it essential to understand the variation physically to 

infer ice thickness from  observations.

An exam ination of perm ittivity, perm ittivity fluctuations, 

and roughness of new  sea ice indicates scattering from  the 

rough a ir-ice  interface to be the dom inant source of backscat- 

tering from  this ice type [35]. However, neither classical 

rough surface-scattering (assum ing an infinite depth of m a­

terial beneath the rough surface) nor volum e-scattering m od­

els appropriate to sea ice readily predict nonzero copolar
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Fig. 10. (a)-(c) Copolar ratios, phases, and correlation magnitudes for multiyear ice and lead ice, and (d)-(f) and (g)-(i) for two distinct groups of 
first-year ice samples of apparently differing thickness.

phases. This apparent contradiction o f observations can be 

resolved by noting that 24-cm  radiation can propagate far 

enough into new  sea ice to be partly reflected back from  

the ice-w ater transition zone; partially coherent interference 

betw een up- and down-going w ave fields in the ice is translated 

across the rough a ir-ice  interface into the scattered fields in 

accordance with the boundary conditions at that interface. 

Variations in this interference with varying thickness lead 

to varying values o f copolar ratios and phases that differ 

from  thick ice or open water values. R andom  variations in 

ice thickness over SAR pixels diminishes, but it does not 

elim inate, this interference. (It is very im portant, though, that 

the backscattering observations not be averaged over the large 

bandw idths com m on in ground-based radar systems— this does 

average out all o f the interference upon w hich the signature 

variation depends.) Quantitative predictions o f copolar ratios 

and phases, as functions o f m ean ice thickness, show variations 

o f the m agnitude observed w ithout tuning param eters in the 

signature m odel [34].

M oreover, the predicted trajectory of copolar phase and 

ratio  with increasing thickness is single-valued— thus, time- 

series observations o f polarim etric backscattering, w ith proper 

tem poral resolution, should be sufficient to estim ate new  ice

thickness. N ote that such an estim ation w ould be based on 

physics directly involving ice thickness and not on observation 

o f any proxy for thickness, such as ice type or the ice 

surface condition. Clearly the next, urgently necessary step in 

developing polarim etric thickness estim ation is a  quantitative 

test o f our understanding using polarim etric observations (o f 

sufficiently narrow bandwidth) and direct, in situ observations 

o f ice thickness. A irborne polarim etric SA R ’s are excellent 

platform s for collecting data for pursuing such experim ental 

work.

B. Combined C- and L-Band Polarim etric Observations

K wok et al. [8] dem onstrated in one case study that the 

thickness o f thin ice can be retrieved using a neural netw ork 

trained with results from  a scattering model. The results from  

their polarim etric scattering m odel seem  to explain a large 

part o f the variability o f thin ice signature extracted from  the 

JPL polarim etric A irSA R observations. Realistic properties o f 

the sea ice w ere used in their m odeling effort. The details 

o f the scattering model, w hich accounts for layer effects on 

both volume- and surface-scattering m echanism s, can be found 

in [20]. The m odel was verified with radar measurem ents 

o f laboratory grown ice [22], [24] and Arctic sea ice [19].

Authorized licensed use lim ited to: The University of Utah. Downloaded on A pril 23, 2009 at 10:45 from  IEEE Xplore. Restrictions apply.



1728 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 5, SEPTEMBER 1998

PDLAHIMETFIIC 3 AR DATA M FUVED ICE THICK HESS

Fig. 11. Retrieval of ice thickness from JPL polarimetric SAR data for young ice in the newly opened leads shown in the sea ice scene on the left 
panel. Right panel shows the derived thickness and the ice thickness distribution.

This represents an attem pt to integrate the know ledge from  

laboratory m easurem ents, m odel calculations, and results from  

field program s to retrieve ice thickness from  rem ote-sensing 

data sets. In their study, several leads with thin ice were 

identified using ancillary inform ation and coincident passive 

m icrowave observations. The basis o f their algorithm  was to 

first m ask out potentially confusing thick ice signatures and 

focus the retrieval process on open leads where there is a 

higher likelihood o f finding thin ice. This is by no means 

an operational algorithm  but an experim ental approach. The 

results for ice thickness derived from  JPL C- and L-band 

polarim etric SAR data are presented in Fig. 11 for thin ice 

in newly open leads in a  Beaufort sea ice scene.

C. Low-Frequency Passive Sensing o f  Ice Thickness

It is advantageous to com bine active and passive m icrowave 

data to approach the problem  o f thickness retrieval for thin sea 

ice since the m echanism s responsible for active and passive 

signature of thin sea ice are different. Hence, the information 

contained in active and passive data regarding ice thickness 

are com plem entary. In this respect, we consider brightness 

tem perature m easurem ents with passive radiom eters for their 

sensitivity to the thickness o f thin ice.

For passive rem ote sensing o f sea ice, the research undertake 

by the U niversity o f M assachusetts, Amherst, focused on 

experim ental observations using low -frequency m icrowave 

radiom eters. The suite of instruments used to observe sea 

ice at CRREL includes P-, L-, and S-band linearly polarized 

radiom eters, w hich w ere m ounted on rigs placed alongside the 

GRF. The prim ary purpose o f the choice o f low frequencies to 

observe the ice is that these frequencies tend to penetrate deep 

into saline ice so that changes in observed brightness tem per­

ature can be correlated with changes in ice thickness during 

the growth phase. A lthough P-band will penetrate the deepest, 

it is doubtful that it will be used for passive m icrowave 

rem ote sensing from  space for several reasons, including large 

antennas, RF interference, and severe interaction with the
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Fig. 12. Brightness temperature measurements at L-band (solid curve) and 
S-band (dashed curve) frequencies. Data on the left are for smooth open water 
and on the right for the growth phase of thin ice.

ionosphere. In the followings, we present the case for L- and 

S-band data.

The attenuation coefficient for electrom agnetic waves prop­

agating into a lossy dielectric m ixture is given by

where /  is frequency, c is the speed o f light in free space, 

and ( v W e 0)" is the imaginary part o f the square root o f 

the relative effective perm ittivity, w hich m easures the loss of 

electrom agnetic w ave energy in the material. We note that a  

becomes smaller as the frequency decreases. Since the pen­

etration depth is the reciprocal o f the attenuation coefficient, 

w ave penetration increases with decreasing frequency, which 

forms the basis o f the choice o f low -frequency radiom eters 

for sea ice observations. Fig. 12 shows calibrated S-band 

(dashed line) and L-band brightness tem peratures for smooth 

w ater (at the left o f the figure) and during initial growth 

o f the saline ice sheet. N ote that during growth, the S-band 

brightness tem perature increases at a m uch greater rate as the
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ice thickness increases. These observations are consistent with 

the form ula for the attenuation, and is indeed indicative that S­

and L-band can be used to detect ice that is several centimeters 

thick. This capability to sense thin ice types will add value to 

future satellite rem ote-sensing systems.

VI. S u m m a r y

In this paper, we exam ined results o f m icrowave m easure­

ments o f sea ice in the laboratory environm ent to evaluate 

potential links to airborne and spaceborne rem ote-sensing ob­

servations. Such connections are essential in the interpretation 

o f sea ice rem ote-sensing data sets. We have focussed on thin 

sea ice types because it is im portant to a num ber o f processes 

affecting ocean and atm osphere interactions and because it is 

easily grown in the laboratory conditions.

We summ arize scatterom eter m easurem ents carried out dur­

ing a period o f three years from  1993 to 1995 at CRREL. 

Com parisons o f physical and structural characteristics o f lab­

oratory grown ice with those o f natural sea ice show their 

sim ilarities. We review  results o f C-band polarim etric scat- 

terom eter m easurem ents o f thin ice in view o f present and 

future aircraft and satellite SA R ’s, such as the JPL AirSAR, 

the D anish EM ISA R, the ERS satellites, RADARSAT, and 

ENVISAT. A ll o f these radars operate at C-band with a variety 

o f polarization capabilities.

From  laboratory backscatter data o f thin saline ice grown 

under quiescent conditions at constant temperatures, we sug­

gest lower bounds or limits for rem ote-sensing data because 

any perturbation in the natural sea ice growth will increase 

the backscatter. O n the other hand, frost flower experiments 

indicate strong transient (one-three days) increases in the 

backscatter o f thin ice; this can be used to detect frost flowers 

grown on new ice using backscatter history in rem ote-sensing 

data. A wet, slush layer on thin ice due to surface m elt or flood­

ing, as studied in the laboratory, causes significant decreases in 

backscatter; such effects can be applied to exam ine backscatter 

during seasonal transitions with the appearance of liquid water 

on the ice surface. Backscatter m easurem ents at the outdoor 

G R F facility reveal strong diurnal effects on backscatter due 

to therm al cycling o f the sea ice volume. This is im portant for 

interpretation o f satellite data acquired at different times of 

day (e.g., ascending and descending orbits) because o f effects 

o f insolation and tem perature cycles.

We also discussed one o f the m ore im portant problem s in 

sea ice rem ote sensing— the retrieval o f ice thickness from  

rem ote-sensing data. We surveyed several potential methods 

for estimating thickness o f thin ice. O ne is to utilize copolar 

phase betw een vertical and horizontal SAR returns at L-band, 

w hich relates to the thickness o f thin ice (0 -50  cm) through a 

coherent interaction m echanism  involving reflections from  the 

ice layer interfaces. The other m ethod is through the use of 

neural networks to derive ice thickness from  a com bination of 

C- and L-band SAR data trained with a sea ice polarim etric 

layer m odel. Finally, we considered passive m easurem ents at 

low  frequencies (S- and L-band), w hich show increases in 

brightness tem peratures as the ice thickens. These are potential 

thickness retrieval algorithms that could be used with future 

satellite systems for sea ice rem ote sensing.
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