
Fast and stable evaluation of box-splines via the

BB-form

Minho Kim Jörg Peters

September 7, 2008

Abstract

To repeatedly evaluate linear combinations of box-splines in a fast and
stable way, in particular along knot planes, the box-spline is converted
to and tabulated as piecewise polynomial in BB-form (Bernstein-Bézier-
form). We show that the BB-coefficients can be derived and stored as
integers plus a rational scale factor and derive a hash table for efficiently
accessing the polynomial pieces. This pre-processing, the resulting eval-
uation algorithm and use in a widely-used ray-tracing package are illus-
trated for splines based on two trivariate box-splines: the 7-directional
box-spline on the Cartesian lattice and the 6-directional box-spline on the
Face-Centered Cubic lattice.

1 Introduction

As a generalization of the univariate uniform B-spline to multivariate shift-
invariant lattices, box-splines are useful in many applications. For example,
they can be used to create a continuous field from data sampled at the lattice
points via quasi-interpolation or cardinal interpolation. This requires exact
values of the box-splines, but evaluation on lattice edges and faces requires care.
Already de Boor [8] and later Kobbelt [16] observed a fundamental combinatorial
challenge due to the inclusion or exclusion of certain knot planes (Section 3.1.5)
and dealt with it in two different ways in their respective recursive box-spline
evaluation algorithms. Our interest was piqued by the example of Figure 1a,
where the otherwise carefully constructed algorithm of [16] fails due to subtle
numerical round-off in the underlying MATLAB® routine.

An alternative approach to direct recursion is to evaluate after conversion
to the BB-form. This approach was pioneered by Chui and Lai [3, 17] in two
variables, and recently extended to a class of trivariate box-splines by Casciola
et al. [1]. Since the splines we want to evaluate are linear combinations of shifts
of one or more box-splines, we focus attention on these box-spline (basis or
generator) functions. The point of the conversion is that the BB-form of the
polynomial pieces (Section 3.2.1) has a stable evaluation algorithm also on the
knot planes where the recursive algorithms encounter difficulties. In fact, along

1



(a) (b)

Figure 1: Isosurfaces for 10−1 (blue), 10−2 (green), 10−3 (red) and 10−10 (pur-
ple) of the 6-directional box-spline (Section 6.2), (a) evaluated by [16] and (b)
the correct isosurface.

knot planes, the standard de Casteljau’s algorithm for evaluating polynomials in
the BB-form is of even lower complexity. The key challenges for this approach
are the derivation and exact representation of the change of basis. Our first
contribution, generalizing [17, 1], is Theorem 1:

(1) the BB-coefficients, expressing the polynomial pieces of a box-spline with
an integer direction matrix, are rational.

This allows us to use a simple interpolation-based approach for deriving a
change-of-basis matrix with exact integer entries, scaled by a rational number.

While both the recursive and the conversion approach benefit from local-
ization, i.e. from determining which box-splines influence the evaluation, the
conversion approach must efficiently determine the polynomial piece to be eval-
uated. This forces an understanding of the decomposition of the domain by the
knot planes implied by the box-spline directions. Our second contribution is

(2) an indexing strategy, based on the box-spline directions, for finding the
domain simplex of the polynomial piece for a given parameter (Section
4.1).

The one-time determination of the combinatorics of the box-splines required by
the indexing strategy is at the core of the improved speed: compared to recursive
evaluators that resolve the combinatorics at run time, evaluation based on the
BB-form is faster by orders of magnitude (Table 3). Conversion plus indexing,
both pre-computed, stored and quickly accessed, yield

(3) an algorithm for fast evaluation of splines generated by box-splines that
is stable, in particular along knot planes (Algorithm 5.1).

2



2 Review of Existing Evaluation Techniques

Two different MATLAB® packages for evaluating box-splines, [8] and [16], are
based on the recursive formula (4). These packages, which are freely available
from the Internet, are immensely useful because they accommodate arbitrary
direction matrices Ξ (Section 3.1.1), and are well-explained in their companion
papers. As the papers point out, evaluators based on recursion face a key
difficulty when evaluating a combination of shifts of the characteristic function.
Unless the combinatorics of inclusion and exclusion of knot planes are correctly
and consistently addressed, evaluation along knot planes yields incorrect results.
If the evaluation is done correctly, it is called ‘stable’.

De Boor [8] addresses the stability problem by perturbing evaluation points
that are deemed too close to knot planes. Kobbelt [16] untangles the combina-
torics explicitly to avoid round-off by deferring translation of evaluation points
until the base level of the recursion where piecewise constant functions, the
characteristic functions, are evaluated. This algorithm also pre-computes the
normals of the knot planes in a deterministic way to avoid that a knot plane
is doubly included or completely excluded by two adjacent characteristic func-
tions. We found that [16] works well for bivariate box-splines, but the released
code fails in higher dimensions as the example in Figure 1a illustrates. After
analyzing the problem in more detail than we had intended, we found the flaw
in the application of the MATLAB® null function call. Generically, the null space
is determined by Singular Vector Decomposition [18]. But even minute SVD
round-off errors create instability. Tellingly, we were often able to remove the
instability, in the trivariate cases we tested, by adding the ’r’ parameter to the
null function call, i.e. by enforcing close-to-rational representation via Gaussian
elimination.

The algorithms of Jetter and McCool [14, 20] evaluate box-splines approx-
imately by sampling in the Fourier domain followed by the inverse FFT. This
way, they leverage the closed form of box-splines in the Fourier domain.

Explicit formulas for the conversion of box-splines to the polynomials in BB-
form have been derived by Chui and Lai [3, 17] in two variables and by Casciola
et al. [1] for a class of trivariate box-splines. The approach of [3] generates
the BB-form of bivariate box-splines by comparing directional derivatives of
box-splines with those of the BB-form. Applying this approach to 3- and 4-
directional bivariate box-splines, [17] provides explicit Fortran codes and shows
that the BB-coefficients are rational. Similarly, [1] converts the important class
of trivariate box-splines spanned by four directions.

Condat and Van De Ville [5] based the evaluation of 3-directional bivari-
ate box-splines on reduction of the box-splines to cone splines, i.e. truncated
powers. Dæhlen [13] went one step further by converting the cone splines to
simplex splines of one dimension lower. The approach is shown to be efficient
for bivariate box-splines and, with explicit guidance along knot lines, for the
4-directional trivariate box-spline.

Cavaretta et al. [2, page 18] (see also de Boor [8, page 11]) show that, for
functions satisfying refinement relations and for box-splines in particular, the

3



exact values on a lattice can be computed by solving an eigenvalue problem
(listed as Equation (16) in Section 4.2). Values on a refined lattice can then be
computed by the refinement relation (Equation (6) in Section 3.1.8). We use
this fact in Section 4.2 to independently verify exactness of the BB-coefficients
we compute.

Except for [14], where the goal is interpolation, all the above aim at evalu-
ating individual box-splines. Splines in box-spline form would offhand be eval-
uated by evaluating shifts of the underlying box-splines individually, and then
adding their contributions weighted by the coefficients.

3 Box-splines and Polynomials in BB-form

In Section 3.1, we briefly review the basic definitions and properties of box-
splines and in Section 3.2, we review the multivariate polynomials in BB-form.
In Section 3.3, we prove that the BB-coefficients of the polynomial pieces of a
box-spline with integer directions are rational.

3.1 Box-splines

We use the notation and definitions made standard by [9]. In particular, a
box-spline is a smooth piecewise polynomial of finite support and a spline in
box-spline form is a linear combination of the shifts of a box-spline. If the shifts
of a box-spline are linearly independent, the box-spline is a basis function.

3.1.1 Definition

Geometrically, the value of a box-spline with direction matrix Ξ ∈ Rs×n at
x ∈ ranΞ ⊂ Rs is the shadow-density [9, (I.3)]

MΞ(x) := voln−dim ranΞ

(
Ξ−1{x} ∩

)
/| detΞ|,

i.e. the normalized volume of the intersection of a cube ⊂ Rn, n ≥ s, with
the preimage Ξ−1{x} of x, an (n− dim ranΞ)-dimensional subspace in Rn. The
cube or box gives the box-spline its name. In more detail,� := [0..1)n is an n-dimensional half-open unit cube,� Ξ is the s × n direction matrix, possibly with repeated columns, of the

box-spline MΞ (Section 6 gives examples),� ranΞ is the subspace spanned by the column vectors {ξ : ξ ∈ Ξ},� Ξ−1{x} is the preimage of x when viewing Ξ as a linear transformation
Ξ : Rn → Rs and� vold (·) is the d-dimensional volume of its argument.

In the following, we assume

rank(Ξ) = s hence ranΞ = Rs.

4



3.1.2 Degree and Continuity

A box-spline MΞ is a piecewise polynomial on ranΞ. Its degree is less than or
equal to k := k(Ξ) := #Ξ − s where #Ξ denotes the number of columns of Ξ.
The polynomial pieces join to form a function in Cm−1(ranΞ) where [9, page 9]

m := m(Ξ) := min{#Z : Z ∈ A(Ξ)} − 1

and [9, page 8] A(Ξ) := {Z ⊆ Ξ : Ξ\Z does not span Rs}.

3.1.3 Spline Space

A spline f spanned by a box-spline MΞ is an infinite linear combination of the
shifts of the box-splines on the integer grid [9, page 33]:

f :=
∑

j∈Zs

MΞ(· − j)a(j) (1)

where a : Zs → R is a mesh function that returns the coefficient corresponding
to a mesh location.

3.1.4 Differentiation

With� DZ :=
∏

ζ∈Z Dζ a composition of differential operators Dζ :=
∑s

ν=1 ζ(ν)Dν

and� ∇Z :=
∏

ζ∈Z∇ζ a composition of backward difference operators such that
∇ζφ := φ− φ(· − ζ),

a derivative of MΞ in the directions Z ⊆ Ξ equals the backward differences of
MΞ\Z along them [9, (I.30)]:

DZMΞ = ∇ZMΞ\Z. (2)

3.1.5 Knot Planes

According to [9, (I.37)], a box-spline is a piecewise polynomial with pieces delin-
eated by a shift-invariant mesh on Zs generated by the collection of knot planes
(hyperplanes spanned by columns of Ξ) H(Ξ) [9, page 16]:

Γ(Ξ) :=
⋃

H∈H(Ξ)

H + Zs. (3)

The mesh Γ(Ξ) decomposes Rs into convex polytopes.

5



3.1.6 The Recurrence Relation

As long as MΞ\ξ for ξ ∈ Ξ is continuous at x = Ξt :=
∑

ξ∈Ξ tξξ ∈ Rs, t ∈ Rn,
the box-spline MΞ can be evaluated recursively with the recurrence [9, (I.43)]:

(n− s)MΞ(x) =
∑

ξ∈Ξ

tξMΞ\ξ(x) + (1− tξ)MΞ\ξ(x − ξ). (4)

Here tξ is the component of the vector t associated with the column ξ ∈ Ξ by
x = Ξt.

3.1.7 Discrete Box-splines

A discrete box-spline bh
Ξ associated with the direction matrix Ξ ∈ Zs×n and

h ∈ 1/N can be constructed by the recurrence relation: [9, (VI.5)]

bh
Ξ = h

1/h−1∑

j=0

bh
Ξ\ξ(· − jhξ) (5)

with the base case of bh
[] = δ, the Dirac delta function.

3.1.8 The Refinement equation

A box-spline MΞ with Ξ ∈ Zs×n has the refinement equation [9, (VI.10)]

MΞ =
∑

k∈hZs

MΞ((· − k)/h)mh
Ξ(k) (6)

where the refinement mask mh
Ξ := bh

Ξ/hs [9, (VII.7)].

3.1.9 Change of Variables

Given a square generator matrix [6] M of a non-Cartesian lattice, one can show
with the help of [9, (I.23)] that a spline, generated by MMΞ shifted on the non-
Cartesian lattice MZs, is equivalent to the one generated by MΞ shifted on the
Cartesian lattice (integer grid) Zs:

∑

j∈MZs

| detM|MMΞ (· − j) b(j) =
∑

k∈Zs

MΞ

(
M−1 · −k

)
b(Mk) (7)

where b : MZs → R. Note that we need to scale MMΞ by | detM| to obtain the
partition of unity property of the spline.

3.2 The BB-Form of a Multivariate Polynomial

3.2.1 Definition

Let {vj ∈ Rs : j ∈ {1, ..., s + 1}} be the vertices of a non-degenerate simplex σ.
The map

βσ : Rs → Rs+1 : x 7→

[
v1 · · · vs+1

1 · · · 1

]−1 [
x
1

]
(8)

6



is called the barycentric coordinate function with respect to σ [7]. The BB-form
of an s-variate polynomial of total degree ≤ d and coefficients {cα ∈ R : |α| =
d, α ∈ Zs+1

+ } defined on σ, is

P (u) :=
∑

|α|=d

cαbα(u)

where� u is in barycentric coordinates w.r.t. σ,� |α| := ∑s+1
i=1 α(i),� (

d
α

)
:= d!/

∏s+1
i=1 α(i)!,� uα :=

∏s+1
i=1 u(i)α(i) and� {bα(u) :=

(
d
α

)
uα : |α| = d} are the Bernstein basis polynomials of degree

d.

Denote the j-th unit vector by ij . Then bα(ij) = 1 if α = dij and zero otherwise.
Therefore, P |vj

= P (ij) = cdij . In other words, the BB-form of a multivariate
polynomial interpolates its vertex coefficients {cα : α = dij , j ∈ {1, ..., s + 1}}.

3.2.2 Differentiation

The directional derivative of P along one of the edges of σ, vi − vj , is

Dvi−vj
P = Dvi−vj

∑

|α|=d

cαbα = d
∑

|β|=d−1

(cβ+ii − cβ+ij )bβ. (9)

3.3 Box-splines with Rational BB-coefficients

In [17], Lai proved for 3- and 4-directional bivariate box-splines and in [1], Cas-
ciola et al. proved for 4-directional trivariate box-splines that the BB-coefficients
of those box-splines are rational. In this section, we generalize this observation.

We start by showing that rationality is preserved by box-splines with rational
direction matrices.

Lemma 1. Let Ξ ∈ Qs×n and rank(Ξ) = s. If x ∈ Qs then MΞ(x) ∈ Q.

Proof. We use induction on #Ξ. Let Ξ ∈ Qs×s. Then 1/| detΞ| ∈ Q and
MΞ(x) = χΞ /| detΞ| ∈ Q where χΞ is the characteristic function of paral-
lelepiped Ξ , a linear transformation of the unit cube .

Now assume the claim holds for MΞ\ξ. That is MΞ\ξ(x) ∈ Q and MΞ\ξ(x−
ξ) ∈ Q since x− ξ ∈ Qs. Since rank(Ξ) = s, there exists an invertible submatrix
Z ∈ Qs×s of Ξ. Since Z−1 ∈ Qs×s, there also exists t ∈ Qn so that x = Ξt. The
recursion (4),

(n− s)MΞ(x) =
∑

ξ∈Ξ

tξMΞ\ξ(x) + (1− tξ)MΞ\ξ(x − ξ),

7



then implies that MΞ(x) ∈ Q.

Now denote by Γ(Ξ) the collection of all shifts of (s-1)-dimensional hyper-
planes spanned by columns of Ξ (Equation (3)). Each Hi ∈ Γ(Ξ) is defined by
a plane equation nT

i (· − ji) = 0. We denote by knot vertex the intersection x of
s hyperplanes H1, · · · , Hs ∈ Γ(Ξ) whose normals span Rs:

x = N−1η, where N :=



nT

1
...

nT
s


 and η :=



nT

1 j1
...

nT
s js


 . (10)

Lemma 2. Let Ξ ∈ Qs×n and rank(Ξ) = s. Then the polynomial pieces of MΞ

can be represented in BB-form with vertex coefficients in Q.

Proof. By Section 3.1.5, the piecewise polynomials of MΞ can be expressed
over convex polytopes delineated by knot planes with rational normals. Since
Ξ ∈ Qs×n, we have ni ∈ Qs and hence N−1 ∈ Qs×s in (10). Since the shifts are
on the integer grid, ji ∈ Zs, and therefore all knot vertices are in Qs. Since any
s-dimensional convex polytope can be decomposed into s-dimensional simplices
without introducing any new vertex, the claim follows from Lemma 1.

Lemma 2 can be extended to yield the main conclusion. To accommodate
shifts on the Cartesian lattice, Ξ is required to have integer entries.

Theorem 1. Let Ξ ∈ Zs×n and rank(Ξ) = s. Then the polynomial pieces of
MΞ can be represented in BB-form with coefficients in Q.

Proof. We use induction on #Ξ. If Ξ ∈ Zs×s, then the polynomial is constant
and equals the value at the vertex. By Lemma 2, this value is rational.

Since rank(Ξ) = s, for any w ∈ Qs there exists an y ∈ Qn so that w = Ξy.
By linearity of differentiation and (2),

DwMΞ =
∑

ξ∈Ξ

yξDξMΞ =
∑

ξ∈Ξ

yξ∇ξMΞ\ξ.

By the induction hypothesis, MΞ\ξ is piecewise polynomial in BB-form with
coefficients in Q. Since the knot planes are invariant under integer shifts and
Ξ ∈ Zs×n, ∇ξMΞ\ξ is a difference of polynomials in BB-form with coefficients
in Q. Therefore DwMΞ is a polynomial in BB-form with coefficients in Q.

Now let vi and vj be any two knot vertices of the domain simplex of a poly-
nomial piece, possibly obtained by decomposition of an s-dimensional convex
polytope. Then w := vi − vj ∈ Qs and Dvi−vj

MΞ has rational coefficients, i.e.,
in the notation of (9), (cβ+ii − cβ+ij ) ∈ Q. The vertex coefficients are rational
by Lemma 2. So rational differences propagate membership in Q to all the
BB-coefficients cα in (9).

8



4 Preprocessing Box-Splines

We first discuss how to encode (or index) the domain simplices of the polynomial
pieces for a particular direction matrix Ξ and then describe how to find the
change-of-basis for conversion of box-splines to the BB-form. We note that the
combinatorial work of defining the partition into domain simplices is done only
once ever per box-spline generator or basis function since the result is tabulated
and quickly accessed by the following indexing strategy.

4.1 Indexing Polynomial Pieces (Domains)

Unless the directions form a tensor-product, the most convenient representation
of the polynomial pieces of a box-spline is the BB-form on a simplex (Section
3.2.1). The challenge is to smartly index each domain piece in suppMΞ to derive,
store and efficiently access the BB-coefficients. Our decomposition is inspired
by BSP (Binary Space Partitioning) trees (see e.g. [12, 21]). Let Γ (Ξ) ⊂ Γ(Ξ)
be the set of knot planes of MΞ, each of which splits into two s-dimensional
subspaces. Then each path of the tree is converted into a pair of index vectors
(i�, i△) ∈ Zs × {0, 1}q where q := q(Ξ) := #Γ (Ξ) is the number of knot planes
in Γ (Ξ).

Specifically (cf. Figure 2), we first circumscribe the support of the box-spline
as follows. Let IΞ ∈ Zs be the minimal set of grid points such that

suppMΞ ⊂ IΞ + ,

i.e. IΞ := {j ∈ Zs : (j + ∩suppMΞ) 6= ∅}. Each cube j + for j ∈ IΞ is
further partitioned into convex polytopes by the knot planes in j + Γ (Ξ). By

i� i△

Figure 2: Indexing of the box-spline MΞZP
where ΞZP :=

[
1 0 1 −1
0 1 1 1

]
and IΞZP

=
{−1, 0, 1}× {0, 1, 2}.

shift-invariance, each cube is partitioned alike. We now index a domain piece
by

i� ∈ IΞ and

i△ ∈ {0, 1}q.

In other words, i� := ⌊·⌋ identifies a cube intersecting suppMΞ and i△ identifies
a polynomial piece (Figure 2). The index vector i△ is computed by membership

9



test against all the knot planes in Γ (Ξ):

i△(x) := U(NΞ(x− ⌊x⌋)− ηΞ), U(t) :=

{
1, t ≥ 0

0, t < 0,
(11)

where NΞ ∈ Qq×s and ηΞ ∈ Qq define the knot planes in Γ (Ξ).

4.2 Computing the Change of Basis

To convert MΞ to polynomial pieces in BB–form in the pre-processing step,
we first need to determine a domain simplex for each piece. The domain of
the polynomial piece is a convex polytope τ delineated by the knot planes.
Typically, the polytope is a simplex. If not, we have several options.� We can choose any s + 1 vertices from τ to define the domain simplex.

This, however, implies loss of the convex hull property as the BB-form
will also be evaluated outside the simplex.� We can split τ into simplices without introducing new vertices. But this
makes the evaluation process more complex.� The most practical strategy is to choose any simplex with rational vertices
that encloses τ .

In the last case, it does not matter that the domain simplices of different polyno-
mial pieces overlap, because the domain is already determined before evaluating
the BB–form and we only evaluate the BB-form for points in the domain rather
than on the whole enclosing simplex.

Once the domain simplex σ is determined, the change-of-basis equality for
x in the domain is

MΞ(x) =
∑

|α|=n−s

cαbα (βσ(x)) . (12)

We want to determine the
(
n
s

)
BB-coefficients cα of the polynomial MΞ of degree

d := n− s in s variables. We set up and solve the
(
n
s

)
by

(
n
s

)
linear system of

constraints [(
d

α

) (
β

d

)α] [
cα

]
=

[
MΞ

(
Veσβ

d

)]
(13)

arising from (12) when we choose uniformly distributed rational points x :=
Veσβ/d in a simplex σ̃ (6= σ) with vertices Veσ :=

[
ṽ1 · · · ṽs+1

]
, ṽj ∈ Qs for

1 ≤ j ≤ s + 1,
α, β ∈ Zs+1

+ , |α| = |β| = d.

For exactness, the vertices Veσ of σ̃ should lie at rational points and for stability
strictly inside the domain polytope: σ̃ ( τ ⊆ σ. The existence and uniqueness
of a solution cα of this linear system is guaranteed by [22], a special case of

Chung-Yao interpolation [4]. Note that the matrix B :=
[(

d
α

)(
β
d

)α]
depends

10



only on the dimensions, s and n, of Ξ. In particular, it is independent of the
simplex σ̃ so that its inverse can be computed once to be used for all polynomial
pieces of a box-spline.

While the matrix B is easily exactly inverted, the challenge is to obtain
an exact right hand side MΞ(Veσβ/d). Reimplementing [8] (or [16]) in rational
(integer-based) arithmetic does not seem practical; and rational arithmetic can
be slow for high n even when we can take advantage of symmetries in the box-
spline definition.

We therefore apply the following alternative approach.

(a) Choose the s + 1 vertices of Veσ strictly inside the polynomial piece’s do-
main, away from the knot planes.

(b) Compute MΞ(Veσβ/d) with the help of [8] (or [16]) in MATLAB® (due to
(a), the evaluations are stable).

(c) Solve (13) in MATLAB® to obtain approximate coefficients c̃α.

(d) Round c̃α to cα using the MATLAB® rat function call to round to rational
numbers [19].

Even though the rounding is in our experience no more than 10−10 times the
coefficient size, formally one has to check correctness of the rounding. The
refinement equation (6) provides the appropriate and efficient tool. We use the
fact that mh

Ξ can be computed using only integer arithmetic.

Lemma 3. On hZs, mh
Ξ, Ξ ∈ Zs×n, can be computed exactly using integer

computation.

Proof. Let

Bh
Ξ :=

1

h#Ξ
bh
Ξ(h·) =

1

h#Ξ−s
mh

Ξ(h·)

hence, for k = hi ∈ hZs, i ∈ Zs, bh
Ξ(k) = h#ΞBh

Ξ(i). Then the recurrence
relation (5) becomes

Bh
Ξ =

1/h−1∑

j=0

Bh
Ξ\ξ (· − jξ) . (14)

Since Ξ ∈ Zs×n, this allows Bh
Ξ to be computed by integer computation on

Zs. Therefore bh
Ξ and hence mh

Ξ can be computed exactly on hZs and has the
denominator 1/h#Ξ−s.

To verify correct rounding of the BB-coefficients of MΞ, we observe that the
refinement equation (6) can be converted to

MΞ(α) =
∑

β∈Zs

MΞ(α/h− β)mh
Ξ(hβ), α ∈ Zs. (15)

Since suppMΞ is finite, so is suppMΞ∩Zs and we can choose any finite superset
K ⊂ Zs containing suppMΞ ∩ Zs. Cavaretta et al. [2, page 18] proved that any

11



convergent subdivision scheme has the simple (or single) eigenvalue 1 so that the
eigenvalue problem (15), augmented with the condition

∑
j∈suppMΞ∩Zs M(j) =

1, results in the system

MΞ(α) =
∑

β∈Zs

MΞ(α/h− β)mh
Ξ(hβ), α ∈ K,

∑

α∈K

M(α) = 1 (16)

and the unique eigenvector

{MΞ(α) : α ∈ K}, (17)

whose entries are the box-spline evaluated on Zs.
We can now construct what we hope to be the exact eigenvector (17) by eval-

uating the BB-form with its rational coefficients that we obtained by rounding
to a rational representation. Since each polynomial piece has finite degree, it
suffices to test on a refined grid hZs so that each domain contains more eval-
uation points than its BB-coefficients. We emphasize that we do not solve the
eigenvalue problem (16) but only verify, by comparing the values, that equality
holds. Since we know all the exact denominators involved in the verification,
we can pre-scale (6) and (16) so that only integer computations are required.

We also pre-compute the matrices in Equation (8) that compute barycentric
coordinates u with respect to a domain simplex σ for a point x ∈ Rs in Cartesian
coordinates.

5 The Spline Evaluation Algorithm

Given the indexing (hash table), the table of BB-coefficients and the pre-computed
inverse matrices for computing barycentric coordinates, we can evaluate splines,
i.e. linear combinations of the shifts of box-splines, efficiently and stably. The
following algorithm evaluates a spline with box-spline directions Ξ and box-
spline coefficients a (treated as a mesh function) at a point x. The steps are as
follows. First, we find the domain index i△ of the point x using the membership
test (11). We then compute the barycentric coordinates u of x with respect to
the domain simplex. Shifts of the index are used to pick up, via the hash table,
all BB-coefficients that stem from box-spline shifts whose supports overlap x;
and to form their linear combination with weights from a. The coefficients of
the resulting polynomial are stored in P . Finally, the algorithm evaluates this
polynomial with coefficient vector P . The following is the pseudocode for the

12



spline evaluation.

Algorithm 5.1: EvaluateSpline Ξ (a, x)

i△ ← U(NΞ(x− ⌊x⌋)− ηΞ)

u← ComputeBarycentric(i△, x− ⌊x⌋)

P ←
∑

i�∈IΞ
a(⌊x⌋ − i�) CΞ(i�, i△)

return EvaluateBB(P, u)

Here the subscript Ξ, rather than an argument Ξ, emphasizes that the algorithm
requires the pre-processing with respect to Ξ according to Section 4,� a(⌊x⌋ − i�) ∈ R is the box-spline coefficient with index ⌊x⌋ − i� ∈ Zs,� x is the input point (in Cartesian coordinates) to be evaluated,� NΞ and ηΞ define the knot planes in Γ (Ξ), (Section 4.1)� ComputeBarycentric computes the barycentric coordinate using (8),� CΞ(i�, i△) is a vector of all coefficients of the polynomial piece in BB-form

with index (i�, i△), retrieved from the hash table, and� EvaluateBB evaluates the polynomial in BB–form with coefficients P
at u.

6 Examples

We illustrate the initial conversion and generation of the index function for two
trivariate box-splines that are useful for reconstructing volumetric data: the 7-
directional box-spline on the Cartesian lattice [24, 25, 11] and the 6-directional
box-spline on the FCC lattice [10]. Both box-splines are symmetric and of low
degree given their smoothness.

6.1 The 7-directional Box-Spline

6.1.1 Definition

We consider the 7-directional trivariate box-spline defined by the direction ma-
trix

Ξ7 :=




1 0 0 1 1 −1 −1
0 1 0 1 −1 1 −1
0 0 1 1 −1 −1 1



 .

13



6.1.2 Degree and Continuity

The box-spline is piecewise polynomial of degree k(Ξ7) = 7 − 3 = 4. It is re-
markable, since MΞ7

∈ C2(R3), because at most 3 directions span a hyperplane,
m(Ξ7) = (7 − 3)− 1 = 3.

6.1.3 Indexing Domain Tetrahedra

The cube is decomposed by q = #Γ (Ξ7) = 6 planes (Figure 3):

NΞ7
x :=




0 −1 1
−1 0 1
−1 1 0

1 1 0
1 0 1
0 1 1




x =




0
0
0
1
1
1




=: ηΞ7
.

The knot planes in Γ (Ξ7) split into the 24 tetrahedra listed in Table 1 and
Figure 4.

Figure 3: Six knot planes in Γ (Ξ7).

Table 1: The 7-directional box-spline MΞ7
. The knot planes in Γ (Ξ7) split

into 24 tetrahedra. (vc := (½, ½, ½))
i△ vertices i△ vertices

0 0 0 1 1 1 vc 1 ½ ½ 1 1 0 1 1 1 0 1 1 0 0 1 vc 0 ½ ½ 0 1 1 0 1 0
1 0 0 1 1 0 vc 1 ½ ½ 1 0 1 1 0 0 1 1 1 0 0 0 vc 0 ½ ½ 0 0 0 0 0 1
1 0 0 1 1 1 vc 1 ½ ½ 1 1 1 1 0 1 1 1 1 0 0 1 vc 0 ½ ½ 0 0 1 0 1 1
0 0 0 1 1 0 vc 1 ½ ½ 1 0 0 1 1 0 0 1 1 0 0 0 vc 0 ½ ½ 0 1 0 0 0 0

0 0 1 1 1 1 vc ½ 1 ½ 1 1 1 1 1 0 1 0 0 0 1 0 vc ½ 0 ½ 1 0 0 1 0 1
0 1 1 1 0 1 vc ½ 1 ½ 0 1 0 0 1 1 1 1 0 0 0 0 vc ½ 0 ½ 0 0 1 0 0 0
0 1 1 1 1 1 vc ½ 1 ½ 0 1 1 1 1 1 1 1 0 0 1 0 vc ½ 0 ½ 1 0 1 0 0 1
0 0 1 1 0 1 vc ½ 1 ½ 1 1 0 0 1 0 1 0 0 0 0 0 vc ½ 0 ½ 0 0 0 1 0 0

1 1 0 1 1 1 vc ½ ½ 1 1 0 1 1 1 1 0 0 0 1 0 0 vc ½ ½ 0 1 1 0 1 0 0
1 1 1 0 1 1 vc ½ ½ 1 0 1 1 0 0 1 0 0 1 0 0 0 vc ½ ½ 0 0 0 0 0 1 0
1 1 1 1 1 1 vc ½ ½ 1 1 1 1 0 1 1 0 0 1 1 0 0 vc ½ ½ 0 0 1 0 1 1 0
1 1 0 0 1 1 vc ½ ½ 1 0 0 1 1 0 1 0 0 0 0 0 0 vc ½ ½ 0 1 0 0 0 0 0

14



000111 100110 100111 000110 011001 111000 111001 011000

001111 011101 011111 001101 100010 110000 110010 100000

110111 111011 111111 110011 000100 001000 001100 000000

Figure 4: 24 tetrahedra generated by 6 knot planes in Γ (Ξ7).

6.2 The 6-directional Box-Spline on the FCC Lattice

6.2.1 Definition

A 6-directional trivariate box-spline can be defined by the following direction
matrix [10]:

Ξ̃6 := MfccΞ6 :=




0 0 1 −1 1 1
1 −1 1 1 0 0
1 1 0 0 1 −1





where

Mfcc :=




0 1 1
1 0 1
1 1 0



 and Ξ6 :=




1 0 0 1 0 −1
0 1 0 −1 1 0
0 −1 1 0 0 1



 .

6.2.2 Spline Space

The 6-directional box-spline is associated with the FCC (Face-Centered Cubic)
lattice. By (7), splines on the FCC lattice are generated by the shifts of the
(scaled) box-spline | detMfcc|MMfccΞ6

since Mfcc is the generator matrix for the
FCC lattice [6].

6.2.3 Degree and Continuity

The box-spline MeΞ6
is piecewise polynomial of total degree ≤ k(Ξ̃6) = 6−3 = 3.

At most 3 directions in Ξ̃6 span a hyperplane. Therefore m(Ξ̃6) = (6−3)−1 = 2
and MeΞ6

∈ C1(R3).

15



6.2.4 Indexing Domain Tetrahedra

We have q = #Γ (Ξ6) = 5 planes defined by (Figure 5)

NΞ6
:=




1 1 1 1 0
1 1 1 0 1
1 1 0 1 1




T

and ηΞ6
:=

[
1 2 1 1 1

]T
.

is split into 10 tetrahedra as specified in Table 2 and Figure 6.

(1, 1, 1) (1, 1, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1)

Figure 5: 5 knot planes in Γ (Ξ6).

Table 2: The 6-directional box-spline MΞ6
. The knot planes in Γ (Ξ6) split

into 10 tetrahedra.
i△ vertices i△ vertices

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0
1 0 0 1 0 vc 1 0 1 0 0 1 1 0 0 1 0 0 1 1 vc 0 1 1 0 0 1 1 0 1
1 0 0 0 1 vc 0 0 1 0 1 1 0 1 0 1 0 0 0 0 vc 0 0 1 0 1 0 1 0 0
1 0 1 1 0 vc 1 0 1 1 0 0 1 1 0 1 0 1 1 1 vc 0 1 1 1 0 1 1 1 0
1 0 1 0 0 vc 0 1 0 1 1 0 1 0 0 1 0 1 0 1 vc 0 1 1 1 1 0 0 1 0

7 Comparison and an Application

Table 3 illustrates the relative efficiency of [8], [16] and Algorithm 5.1. The ta-
ble entries are the result of densely evaluating in one octant of the 6-directional
trivariate box-spline, respectively of the 7-directional trivariate box-spline. No
linear combination of box-splines is evaluated. All three MATLAB® implementa-
tions are designed to handle vector input and avoid for-loops. The measurements
used MATLAB® on a Linux system with Intel® Core�2 CPU 6400 @2.13GHz
(2MB cache) and 2GB memory. The comparison shows Algorithm 5.1 to be
faster by orders of magnitude. We explain the difference in speed as the result
of pre-resolution of box-spline combinatorics, as encoded in the indexing and
the tabulation of BB-coefficients prior to running Algorithm 5.1. The other two
packages are more general and resolve the combinatorics at run time.

To compute high-quality ray-tracing of level sets of a 3D field reconstructed
by the shifts of a trivariate box-spline, we implemented a MATLAB® script that
exports the BB-form of a spline formed by a box-spline [15]. Specifically, we

16



00000 10010 10001 10110 10100

11111 10011 10000 10111 10101

Figure 6: 10 tetrahedra generated by the 5 knot planes in Γ (Ξ6).

output POV-Ray[23] script format. POV-Ray is a popular and freely available
ray-tracing engine. The setup requires only adding one internal function to
POV-Ray that evaluates a polynomial in BB-form, e.g. using de Casteljau’s
algorithm. Figures 7 and 8 show examples.

Figure 7: Ray-traced images of several level sets of the 7-directional box-spline.
In the bottom images, a random color is assigned to each polynomial piece. The
images are rendered by POV-Ray [23].

Such high-quality ray-tracing is hard to obtain by subdivision, unless the
ray-tracing algorithm is carefully designed for recursion. Use of [8] or [16] is
precluded by their lack of speed.

17



Figure 8: Ray-traced images of several level sets of the un-scaled 6-directional
box-spline MeΞ6

. In the bottom images, a random color is assigned to each
polynomial piece. The images are rendered by POV-Ray [23].

References

[1] Giulio Casciola, Elena Franchini, and Lucia Romani, The mixed directional
difference-summation algorithm for generating the Bézier net of a trivariate
four-direction box-spline, Numerical Algorithms 43 (2006), no. 1, 1017–
1398.

[2] Alfred S. Cavaretta, Charles A. Micchelli, and Wolfgang Dahmen, Station-
ary subdivision, American Mathematical Society, Boston, MA, USA, 1991.

[3] Charles K. Chui and Ming-Jun Lai, Algorithms for generating B-nets and
graphically displaying spline surfaces on three- and four-directional meshes,
Computer Aided Geometric Design 8 (1991), no. 6, 479–493.

[4] K. C. Chung and T. H. Yao, On lattices admitting unique lagrange inter-
polations, SIAM Journal on Numerical Analysis 14 (1977), no. 4, 735–743.

[5] Laurent Condat and Dimitri Van De Ville, Three-directional box-splines:
Characterization and efficient evaluation, Signal Processing Letters, IEEE
13 (2006), no. 7, 417–420.

[6] John Horton Conway and Neil J. A. Sloane, Sphere packings, lattices and
groups, third ed., Springer-Verlag New York, Inc., New York, NY, USA,
1998.

[7] Carl de Boor, B-form basics, Geometric modeling, SIAM, Philadelphia,
PA, 1987, pp. 131–148.

[8] Carl de Boor, On the evaluation of box splines, Numerical Algorithms 5

(1993), no. 1–4, 5–23.

18



Table 3: Comparison of evaluation time of three packages for N3 points dis-
tributed over: [0.5..3]3 for the 7-directional box-spline and [1..3]3 for the 6-
directional box-spline.

algorithm spline
time (× multiple of Alg. 5.1)

213 313 413

[8]
7-dir 20.273 (×144) 75.297 (×154) 187.716 (×153)
6-dir 1.867 (×34) 7.088 (×39) 18.147 (×41)

[16]
7-dir 52.728 (×375) 207.841 (×424) 550.423 (×450)
6-dir 3.645 (×66) 14.035 (×78) 37.232 (×84)

Alg. 5.1
7-dir 0.141 0.490 1.223
6-dir 0.055 0.181 0.445

[9] Carl de Boor, Klaus Höllig, and Sherman Riemenschneider, Box splines,
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[10] Alireza Entezari, Optimal sampling lattices and trivariate box splines, Ph.D.
thesis, Simon Fraser University, Vancouver, Canada, July 2007.

[11] Alireza Entezari and Torsten Möller, Extensions of the Zwart-Powell box
spline for volumetric data reconstruction on the Cartesian lattice, IEEE
Transactions on Visualization and Computer Graphics 12 (2006), no. 5,
1337–1344.

[12] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor, On visible surface gen-
eration by a priori tree structures, SIGGRAPH ’80: Proceedings of the 7th
annual conference on Computer graphics and interactive techniques (New
York, NY, USA), ACM Press, 1980, pp. 124–133.

[13] Morten Dæhlen, On the evaluation of box splines, Mathematical methods in
computer aided geometric design (San Diego, CA, USA), Academic Press
Professional, Inc., 1989, pp. 167–179.

[14] Kurt Jetter and Joachim Stöckler, Algorithms for cardinal interpolation
using box splines and radial basis functions, Numerische Mathematik 60

(1991), no. 1, 97–114.

[15] Minho Kim, tribox: Matlab packages for evalu-
ation of 6- and 7-directional trivariate box-splines,
http://www.cise.ufl.edu/research/SurfLab/tribox.

[16] Leif Kobbelt, Stable evaluation of box-splines, Numerical Algorithms 14

(1997), no. 4, 377–382.

[17] Ming-Jun Lai, Fortran subroutines for B-nets of box splines on three- and
four-directional meshes, Numerical Algorithms 2 (1992), no. 1, 33–38.

19



[18] MathWorks, Matlab 7 Function Reference: Volume 2 (F-O), 2006.

[19] , Matlab 7 Function Reference: Volume 3 (P-Z), 2006.

[20] Michael D. McCool, Accelerated evaluation of box splines via a parallel
inverse FFT, Computer Graphics Forum 15 (1996), no. 1, 35–45.

[21] Bruce F. Naylor, Binary space partitioning trees, Handbook of Data Struc-
tures and Applications, Chapman & Hall/CRC, 2005 (Mehta and Sahni,
eds.), 2005.

[22] R. A. Nicolaides, On a class of finite elements generated by lagrange inter-
polation, SIAM Journal on Numerical Analysis 9 (1972), no. 3, 435–445.

[23] Persistence of Vision Pty. Ltd., POV-Ray: The Persistence of Vision Ray-
tracer, http://www.povray.org.

[24] Jörg Peters, C2 surfaces built from zero sets of the 7-direction box spline,
IMA Conference on the Mathematics of Surfaces (Glen Mullineux, ed.),
Clarendon Press, 1994, pp. 463–474.

[25] Jörg Peters and Michael Wittman, Box-spline based CSG blends, Proceed-
ings of the fourth ACM symposium on Solid modeling and applications,
SIGGRAPH, ACM Press, 1997, pp. 195–205.

20


