
Automatic Testing Program

Denise Coke
Undergraduate Researcher

dfcoke@yahoo.com

Monica Brockmeyer
Faculty Mentor

Technical Report
Department of Computer Science

Wayne State University
Nov. 25, 2005

Abstract

One of the primary functions of a computer science degree program is to instill in students the
ability to program. As a consequence, many courses in the undergraduate program involve significant
student programming exercises, designed to reinforce the concepts taught in the course. However,
programming assignments are notoriously difficult to grade in a fair, timely, and comprehensive
manner.
Programs which appear to work on certain test cases may fail on others and programs which are
partially correct must be graded on a relative scale which is consistent with academic objectives.
Traditionally, human grading has involved careful examination of each line of code to determine a
grade. This approach is error-prone and subjective, since it requires the human grader to serve as a
mental “compiler” of the code and since it tends to reward solutions which are closer to a “model”
solution well understood by the grader. Moreover, the effort required to manually grade programs
has often resulted in the assignment of fewer programming assignments than would be desirable
for student learning. Another challenge arises when the human grader executes student programs
to evaluate them. Typically a Teaching Assistant executes student programs using their computer
or account on the departmental computers, posing a significant security risk to the TA who is
running unfamiliar code in his or her own user space. To alleviate these problems, many computer
science departments have turned to automated testing mechanisms as a component in grading of
student assignments.

1 Introduction

There are several components involved in the grading of student assignments:

1. Correctness - Given a legal input, the program is produces the desired output.

2. Robustness - Given an illegal input, the program produces an appropriate error message
and continues to process input.

3. Efficiency- A program that performs its tasks without consuming too much processing time
and memory. (The notion of “too much” depends upon the specific task.)

4. Design- A program that is easily understood, employs appropriate error checking, utilizes
appropriate coding standards, and demonstrates other characteristics related to the
maintenance and portability of the program rather than to the functional behavior.

5. Human Interface - A program that makes it easy for a human being to interact with.

While automatic testing programs have sometimes been referred to as autograders, it is clear that
only some components of evaluation can be automated. However, evaluation of the first three
characteristics listed, correctness, robustness, and efficiency, can be tremendously enhanced and
facilitated by automatic testing. Therefore, the research was focused on these three with some
consideration of the other two, design and human interface. The remaining characteristics can be
more thoroughly evaluated by the grader who can devote more time to these tasks since the
evaluation of correctness has been mitigated by automatic testing.

Automatic testing programs typically work by the use of an oracle or something similar, which
accepts test input and provide the set of acceptable outputs corresponding to that input. The
oracle can either be a reference implementation of the assignment or simply just a set of output
files created for the comparison portion. For simple programming assignments, it is easy to use the
reference implementation as the oracle which can be written by the instructor or TA. (The
development of an oracle for programs where a single input can produce multiple correct outputs,
is slightly more difficult, but can be addressed in some semiautomatic ways.) For other more lengthy
assignments, a set of output files is usually more convenient. Student programs are tested by
execution of the student’s code using the test input and comparison of the resulting output with
the output produced by the oracle. The grading procedure involves creation of a set of tests which
demonstrate the various kind of functionality required by the program. The results of the tests
can then be used by the human grader in assigning the final grade to the student project. (It should
be emphasized that it is the human grader, not the testing mechanism, who is ultimately responsible
for assignment of the project grade.)

In addition to easing the burden of determining program correctness, many other useful benefits
can accrue to automatic testing of student programs. First, automatic testing of student programs
can be used in advance of the final submission to provide the student with early feedback of the
correctness of his or her code. This helps avoid the common frustration on the part of both students
and instructors, where students submit code that they believe to be correct, yet receive low marks
due to a lack of comprehension of program requirements. In this manner, the automated testing
environment supplements the formal specification of the program assignment in helping the student
to understand what exactly is required. Second, early feedback may promote earlier starting of
student programs, since feedback about incorrect behavior can then be corrected before the due
date. Third, automatic testing promotes a test-driven development process, characterized most
recently by the concept of extreme programming. A test-driven development process promotes
testing and it is easier for students to understand than traditional testing approaches and because
it tests during the development phase by running different/incomplete versions of the code. In
extreme programming, for example, new code is only developed in response to failed tests. This
approach mitigates large-scale integration problems often observed when students try to write a
comprehensive solution in its entirety before testing and increases the student’s confidence in the
code they have written.

2 Outline

Given the simple description of the project the outline is still very complex.

1. Create a program in Perl that executes another inside a shell specifically created for this
execution.

2. Adjust the program to accept redirection and Inter-process Communication (IPC) using
pipes.

3. Modularize program for reuse of common functions.
4. Create the web interface of the program.
5. Set up a server for Web interface (Abyss).
6. Create a login setup for students and professor’s to have access to their folders.
7. Modify web page to allow forms and scripts to pass through the server.
8. Modify program to execute the build portion of the testing with the test file as the input.
9. Port the program from Windows to Unix OS.
10. Configure the Unix server to runs scripts (Apache).
11. Run a set of standard tests and compare the outputs.
12. Add the hidden and efficiency tests to the professor’s portion and test the outputs.
13. Create a Demo version of autograder for presentation purposes
14. Last but not least, make sure the information sent across the server is secure.

3 Fine Tuning

Other desired features for the automatic testing program include:

1. Submission mechanism. Submission of student programs for evaluation by the grader has
posed some challenges not found for other kinds of assignments. Currently, students compress
their programs into a tar or zip file and submit it via email or the digital drop box in
blackboard. Then a TA typically downloads the submission for execution and un-compresses
the file, using email to communicate with the student if the submission is incomplete. Some
students, especially those in beginning programming courses, may experience difficulty in
creation of the compressed file, leading to incomplete submissions or corrupted directory
structures. An ideal submission mechanism would include the following features:

• Support for accurate and complete submission of required files, with automatic
feedback to the student in the case of problems.

• An accurate times tamping mechanism to determine timeliness of the submission.
• Automatic integration with the secure execution environment.

1. Student Feedback. As described above significant educational advantages are possible if the
system provides student feedback. Various mechanisms for student feedback are possible
and are closely related to the front-end used to develop the submission mechanism. Several
types of front ends are possible. Many traditional systems have involved email front-ends,
using reply email for student feedback. A web interface offers the possibility of more
synchronous feedback and support for more complex interactions between the student and
the automatic testing mechanism.

2. Plagiarism Detection. Detection of plagiarism is an important consideration and there are
automated comparison mechanisms that are extremely effective. Such mechanisms provide
pairwise comparison of program code and can report the percentage of similarity. While
plagiarism detection is not a primary focus of the project, integration with an existing
plagiarism detection mechanism would offer a tremendous convenience.

4 Inspiration

The common practice in computer science departments is to use home-grown systems, which have
not frequently been supported at level that makes them appropriate for general use. However, a
few systems have been made available for download. One of these systems is the Online Judge and
it was used as a starting point for the research. The Online Judge was developed for use in
programming contests for computer scientists and provides support for most of the test types we
describe above, including support for testing the efficiency of student code. Extensions are needed
to provide more useful feedback to students and to improve the security of the execution
environment, as well as to provide support for nondeterministic and multi-process programs
developed in more advanced courses. Fortunately, the use of scripting languages to develop Online
Judge and other systems makes them easy to extend. Also, many automatic testing systems have
been developed for use in industry and are generally very expensive. In addition, they are not
designed to support evaluation of programs from an academic perspective. Hence the designing
of our own autograder system.

5 Conclusion

Overall, the automatic testing mechanism will be very helpful once it is fully developed. The time
allotted for the completion of this project was insufficient so it is still being developed at this time.
Once the development is complete, the additions listed in the outline will be added and the project
will be prepped for presentation.

6 Acknowledgements

The first part of this research was done through the sponsorship of the Distributed Mentor
Project (DMP) program during the summer 2005 year at Wayne State University, Detroit, MI.
Please visit my website for more information on this project. http://paris.cs.wayne.edu/~ak5270

7 References

[1]Brockmeyer, Monica. Description of the Automatic Testing Program. Department of Computer
Science, Wayne State University, June 2005.

[2]Castro, Elizabeth. HTML for the World Wide Web. California: Peachpit Press,
 2003.

[3]Lowe, Vincent D.. Perl Programmer’s interactive workbook. New Jersey: Prentis
 Hall PTR, 1999.

[4] Pierce, Clinton. Perl in 24 hours. Indiana: Sams Publishing, 2005.

