
FLOER THEORY AND LOW DIMENSIONAL TOPOLOGY

DUSA MCDUFF

Abstract. The new 3- and 4-manifold invariants recently constructed
by Ozsváth and Szabó are based on a Floer theory associated with Hee-
gaard diagrams. The following notes try to give an accessible introduc-
tion to their work. In the first part we begin by outlining traditional
Morse theory, using the Heegaard diagram of a 3-manifold as an exam-
ple. We then describe Witten’s approach to Morse theory and how this
led to Floer theory. Finally, we discusses Lagrangian Floer homology.
In the second part, we define the Heegaard Floer complexes, explaining
how they arise as a special case of Lagrangian Floer theory. We then
briefly describe some applications, in particular the new 4-manifold in-
variant, which is conjecturally just the Seiberg–Witten invariant.

1. The Floer complex

This section begins by outlining traditional Morse theory, using the Hee-
gaard diagram of a 3-manifold as an example. It then describes Witten’s
approach to Morse theory, a finite dimensional precursor of Floer theory.
Finally, it discusses Lagrangian Floer homology. This is fundamental to
Ozsváth and Szabó’s work; their Heegaard Floer theory is a special case
of this general construction. Readers wanting more detail should consult
Ozsváth and Szabó’s excellent recent survey article [28]. Since this also
contains a comprehensive bibliography, we given rather few references here.

1.1. Classical Morse theory. Morse theory attempts to understand the
topology of a space X by using the information provided by real valued
functions f : X → R. In the simplest case, X is a smooth m-dimensional
manifold, compact and without boundary, and we assume that f is generic
and smooth. This means that its critical points p are isolated and there is a
local normal form: in suitable local coordinates x1, . . . , xm near the critical
point p = 0 the function f may be written as

f(x) = −x2
1 − · · · − x2

i + x2
i+1 + · · · + x2

m.
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The number of negative squares occurring here is independent of the choice
of local coordinates and is called the Morse index ind(p) of the critical
point.

Functions f : X → R that satisfy these conditions are called Morse

functions. One analyses the structure of X by considering the family of
sublevel sets

Xc := f−1(−∞, c].

These spaces are diffeomorphic as c varies in each interval of regular (i.e.
noncritical) values, and their topology changes in a predictable way as c
passes a critical level.

One way to prove this is to consider the negative gradient flow of
f . Choose a generic metric µ on X. Then the gradient vector field ∇f is
perpendicular to the level sets f−1(c) at regular values and vanishes only at
the critical points. Therefore one can push a regular level f−1(c) down to
f−1(c− ε) by following the flow of ∇f . Moreover one can understand what
happens to the sublevel sets as one passes a critical level by looking at the
set of downward gradient trajectories emanating from the critical point p.
The points on this set of trajectories form the unstable manifold

W u
f (p) := {p} ∪

{
u(s) : s ∈ R, u̇(s) = −∇f(u(s)), lim

s→−∞
u(s) = p

}
.

It is easy to see that W u
f (p) is diffeomorphic to Rd where d = ind(p). Simi-

larly, each critical point has a stable manifold W s
f (p) consisting of trajecto-

ries that converge towards p as s → ∞.

f

Figure 1:  Morse decompostion of the torus

For example, if c is close to min f (and we assume that f has a unique
minimum) then the sublevel set Xc is diffeomorphic to the closed ball Dm :=
{x ∈ Rm : ‖x‖ ≤ 1} of dimension m. When c passes a critical point p of
index 1 a one handle (homeomorphic to [0, 1]×Dm−1) is added. One should
think of this handle as a neighborhood of the unstable manifold W u

f (p) ∼= R.
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Similarly, when one passes a critical point of index 2 one adds a 2-handle:
see Milnor [20]. When m = 2, a 2-handle is just a 2-disc, as one can see
in the well known decomposition for the 2-torus T = S1 × S1 given by the
height function: cf. Fig. 1.

The next example shows how one can use a Morse function to give a
special kind of decomposition of an oriented 3-manifold Y that is known as
a Heegaard splitting. This description of Y lies at the heart of Ozsváth and
Szabó’s theory.

Figure 2:  Gems two handebody

α
1

α
2

Example 1.1. Heegaard diagram of a 3-manifold. Choose the Morse
function f : Y → R to be self-indexing, i.e. so that all the critical points of
index i lie on the level f−1(i). Then the cut f−1(3/2) at the half way point
is a Riemann surface Σg of genus g equal to the number of index 1 critical

points of f , and the sublevel set Y 3/2 is a handlebody of genus g, i.e. the
union of a 3-ball D3 with g 1-handles: see Fig. 2. By symmetry, the other
half f−1([3/2, 3]) of Y is another handlebody of genus g. Thus Y is built
from a single copy of the surface Σ = f−1(3/2) by attaching handlebodies

Uα := Y 3/2, Uβ to its two sides. When Y is oriented, the surface Σ inherits
a natural orientation as the boundary of Uα.

The attaching map of Uα is determined by the loops in Σ that bound
discs in Uα: if Σ has genus g, there is an essentially unique collection of
g disjoint embedded circles α1, . . . , αg in Σ that bound discs D1, . . . , Dg in
Uα. These discs are chosen so that when they are cut out the remainder
Uα r {α1, . . . , αg} of Uα is still connected. Therefore Y can be described by
two collections α := {α1, . . . , αg} and β := {β1, . . . , βg} of disjoint circles
on the Riemann surface Σg. See Fig. 3. This description (known as a
Heegaard diagram) is unique modulo some basic moves.1 As an example,
there is a well known decomposition of the 3-sphere {(z1, z2) : |z1|2 + |z2|2 =
1} into two solid tori (handlebodies of genus 1), U1 := {|z1| ≤ |z2|} and U2 :=
{|z1| ≥ |z2|}, and the corresponding circles in the 2-torus Σ1 = {|z1| = |z2|}

1These are; isotoping the loops in α, β, changing these loops by “handleslides” and
finally stabilizing Σg by increasing its genus in a standard way.
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β

α

Figure 3:  Genus 1 and 2 Heegaard diagrams for  S3

α1

α2

β2

β2

are

α1 =
{ 1√

2
(eiθ, 1) : θ ∈ [0, 2π]

}
, β1 =

{
(

1√
2
(1, eiθ) : θ ∈ [0, 2π]

}
,

with a single intersection point ( 1√
2
, 1√

2
). Section 2 in [24] contains a nice

description of the properties of Heegaard diagrams.
The Oszváth–Szabó invariants capture information about the intersection

points αj ∩ βk of these two families. Note that each αj is the intersection
W s(pj) ∩ Σ of the upward gradient trajectories from some index 1 critical
point pj of f with the level set Σ. Similarly, the βk are the intersections with
Σ of the downward gradient trajectories from the index 2 critical points qk.
Hence, each intersection point αj ∩ βk corresponds to a gradient trajectory
from qk to pj .

This traditional version of Morse theory is useful in some infinite dimen-
sional cases as well, especially in the study of closed geodesics. Here one
looks at the length (or energy) functional F on the space X of smooth loops
in X. Its critical points are closed geodesics. They may not be isolated but
they have finite index. For further discussion see Bott’s wonderful survey
article [1].

1.2. The Morse–Smale–Witten complex. Much of the geometric in-
formation contained in a self-indexing Morse function f can be expressed
in terms of the Morse–Smale complex (C∗(X; f), ∂). The k-chains in this
complex are finite sums of critical points of index k:

(1.1) Ck(X; f) =
{ ∑

x∈Critk(f)

ax

〈
x
〉

: ax ∈ Z

}
,

while the boundary operator is determined by the change in the sublevel
sets f−1(−∞, c] as one passes a critical level. Witten observed in [35] that
sublevel sets have little physical meaning. More relevant are the gradient
trajectories between critical points, which occur as “tunnelling effects” in
which one state (regime at a critical point) affects another. His influential
paper pointed out that one could use these trajectories to give the following
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alternative definition of the boundary operator ∂ : Ck(X; f) → Ck−1(X; f)
of the Morse–Smale complex:

(1.2) ∂〈x〉 =
∑

y∈Critk−1(f)

n(x, y)
〈
y
〉
,

where n(x, y) is the number of gradient trajectories of f from x to y. (Here
one either counts mod 2 or counts using appropriate signs that come from
suitably defined orientations of the trajectory spaces.) Note that the chain
groups depend only on f but the boundary operator depends on the choice
of a generic auxiliary metric µ.

We claim that C∗(X; f) is a chain complex, i.e. that ∂2 = 0. To see
this, note that

∂2
〈
y
〉

=
∑

y∈Critk−1(f)

n(x, y) ∂
〈
y
〉

=
∑

y∈Critk−1(f)

∑

z∈Critk−2(f)

n(x, y)n(y, z)
〈
z
〉
.

The coefficient
∑

y n(x, y)n(y, z) of
〈
z
〉

in this expression is the number of
once-broken gradient trajectories from x to z and vanishes because these
occur in cancelling pairs. In fact the space

M̂(x, z) := M(x, z)/R =
(
W u

f (x) ∩ W s
f (z)

)
/R

of (unparametrized)2 trajectories from x to z is a union of circles and open
intervals whose ends may be identified with the set of once-broken gradient
trajectories from x to z. For example, a parametrized trajectory from x to

z whose image in M̂(x, z) is close to a broken trajectory goes fairly quickly
from a neighborhood of x to a neighborhood of y but spends a lot of time
negotiating the turn near y before moving off and approaching z.

Therefore the homology H∗(X; f) := ker ∂/im∂ of this complex is de-
fined. It turns out to be isomorphic to the usual homology H∗(X) of X.
In particular, it is independent of the choice of metric µ and function f .
The complex as defined in this way is known as the Morse–Smale–Witten
complex, or sometimes simply the Morse complex.

Remark 1.2. Morse–Novikov theory. There is a variant of this con-
struction whose initial data is a closed 1-form ν on X instead of a Morse
function: see Novikov [22]. If ν represents an integral cohomology class, it
has the form ν = df for some circle valued function f : X → S1, and there

is a cover Z → X̃ → X of X on which f lifts to a real valued function f̃ .

Each critical point of f lifts to an infinite number of critical points of f̃ . The

Morse–Novikov complex of f is essentially just the Morse complex of f̃ . It
supports an action of the group ring Z[U, U−1] of the group {Un : n ∈ Z}

2The elements a ∈ R act on the trajectories u : R → X in M(x, z) by reparametrization:
a ∗ u(s) := u(s + a).
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of deck transformations of the cover X̃ → X and is finitely generated over
this ring. One of the Heegaard Floer complexes is precisely of this kind. For
another recent application, see Hutchings–Lee [15].

Remark 1.3. Operations on the Morse complex. Witten’s point of
view has proved very fruitful, not only for the applications we discuss later,
but also for the understanding of the topology of manifolds and their loop
spaces, a topic of central importance in so-called “string topology”. Here
the aim is to understand various homological operations (e.g. products) at
the chain level, and it is very important to have a versatile chain complex to
work with. The Morse–Smale–Witten complex fits into such theories very
well. For example, given three generic Morse functions fk, k = 1, 2, 3, one
can model the homology intersection product Hi ⊗ Hi → Hi+j−m on an
m-dimensional manifold by defining a chain level homomorphism

φ : Ci(X; f1) × Cj(X; f2) → Ci+j−m(X; f3).

The map φ is given by counting Y -shaped graphs from a pair (x1, x2) of
critical points in Crit(f1) × Crit(f2) to a third critical point x3 ∈ Crit(f3),
where the two arms of the Y are gradient trajectories for f1 and f2 emanating
from x1, x2 and the leg is a trajectory for f3 converging to x3. Thus

φ(x1, x2) =
∑

n(x1, x2, x3)
〈
x3

〉
,

where n(x1, x2, x3) is the number of such Y -graphs, counted with signs.
If the functions fk and metric µ are generic, then this number is finite
and agrees with the number of triple intersection points of the three cycles
W s

f1
(x1), W

s
f2

(x2) and W u
f3

(x3) which have dimensions i1, i2 and m − i3 re-
spectively, where i3 = i1 + i2 − m. In fact, there is a bijection between the
set of Y -images and the set of such triple intersection points.

This is just the beginning. The tree graph Y has two inputs at the top
and one output at the bottom and so defines a product. Its nonassociativity
at the chain level gives rise to a new operation that counts maps of trees in X
with three inputs and one output. Continuing this way, one may construct
the full Morse–Smale–Witten A∞-algebra as well as many other homology
operations such as the Steenrod squares: see for example Cohen [2].

The fact that the chain complexes of Lagrangian Floer theory support
similar maps is an essential ingredient of Ozsváth and Szabó’s work.

1.3. Floer theory. Inspired partly by Witten’s point of view but also by
work of Conley [3] and Gromov [14], Floer [9, 10, 11] realised that there are
interesting infinite dimensional situations in which a similar approach makes
sense. In these cases, the ambient manifold X is infinite dimensional and the
critical points of the function F : X → R have infinite index and coindex.
Therefore one usually cannot get much information from the sublevel sets
F−1(−∞, c] of F . Also, one may not be able to choose a metric on X such
that the gradient flow of F is everywhere defined. However, Floer realised
that in some important cases one can choose a metric so that the spaces
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M(x, y) of gradient trajectories between distinct critical points x, y of F
have properties analogous to those in the finite dimensional case. Hence
one can define the Floer chain complex using the recipe described in
equations (1.1) and (1.2) above.

We now describe the version of Floer theory used by Ozsváth–Szabó. In
their situation both the critical points of F and its gradient flow trajectories
have natural geometric interpretations.

Example 1.4. Lagrangian Floer homology. Let M be a 2n-dimensional
manifold with symplectic form ω (i.e. a closed, nondegenerate 2-form) and
choose two Lagrangian submanifolds L0, L1. These are smooth submanifolds
of dimension n on which the symplectic form vanishes identically. (Physicists
call them branes.) We assume that they intersect transversally and also that
their intersection is nonempty, since otherwise the complex we aim to define
is trivial.

Denote by P := P(L0, L1) the space of paths x from L0 to L1:

x : [0, 1] → M, x(0) ∈ L0, x(1) ∈ L1.

Pick a base point x0 ∈ L0 ∩ L1 considered as a constant path in P and

consider the universal cover P̃ based at x0. Thus elements in P̃ are pairs,
(x, [x̂]) where [x̂] is an equivalence class of maps x̂ : [0, 1] × [0, 1] → M
satisfying the boundary conditions

x̂(0, t) = x0, x̂(s, i) ∈ Li, x̂(1, t) = x(t).

The function F is the action functional A : P̃ → R given by

A(x, [x̂]) =

∫ 1

0

∫ 1

0
x̂∗(ω),

and its critical points are the lifts to P̃ of the points of the intersection
L0 ∩L1. (See Fig. 4. A does not depend on the homotopy class of the map
x̂ because ω is closed and vanishes on the Li.)

x

xˆ

L0

L
1 x

y

z

L0

L
2

L
1

Figure 4:  The Path space  P ~  and a holomorphic triangle



8 DUSA MCDUFF

Now, let us consider the A-gradient trajectories between the critical points.
Since P is infinite dimensional these depend significantly on the choice of

metric. We use a metric on P̃ that is pulled back from a metric on P that, in
turn, is determined by a particular kind of Riemannian metric on M , namely
a metric gJ given in the form gJ(v, w) = ω(v, Jw) where J : TM → TM is
an ω-compatible3 almost complex structure on M . It then turns out4 that

the gradient trajectories ṽ : R → P̃ of A are given by J-holomorphic strips

u : R × [0, 1] → M, u(s, t) := ṽ(s)(t),

in M with boundary on L0 and L1:

(1.3) ∂su + J(u)∂tu = 0, u(s, 0) ∈ L0, u(s, 1) ∈ L1.

One cannot always define a Floer complex in this setup because ∂2 may
not always vanish. The basic problem is that it may be impossible to define a

good compactification of the 1-dimensional trajectory spaces M̂(x, z) simply
by adding once-broken trajectories. (There is recent work by Fukaya–Oh–
Ohta–Ono that sets up a framework in which to measure the obstructions
to the existence of the Floer complex.) However, Ozsváth–Szabó consider a
very special case of this construction in which the Lagrangian submanifolds
arise from the geometry of the Heegaard diagram. In their case, ∂2 = 0 and
so the Floer homology groups HF∗(L0, L1) are defined. Moreover they are
independent of the choice of almost complex structure J on M and of any
perturbations used in their construction.

Just as in the case of the Morse complex where one can define vari-
ous products on the chain level by counting images of Y s and other trees,
one can define topologically interesting chain maps between the complexes
CF∗(Li, Lj) for different Lagrangian pairs by counting holomorphic triangles
(think of these as fattened up Y s) or other polygons, with each boundary
component mapping to a different Lagrangian submanifold Li. For short
we refer to the collection of such maps as the naturality properties of
Lagrangian Floer theory. These properties lie at the heart of the proof that
the Heegaard Floer groups depend only on the manifold Y rather than on
the chosen Heegaard splitting. They can also be used to establish various

3This means that ω(Jv, Jw) = ω(v, w), and ω(v, Jv) > 0 for all nonzero v, w ∈ TpM.

These equations generalise the well known relations between the Kähler metric gJ and
Kähler form ω on a Kähler manifold M . The only difference is that the almost com-
plex structure J need not be integrable, i.e. need not come from an underlying complex
structure on the manifold M .

4The associated L2-inner product on the tangent bundle of the path space is defined
as follows. Given a path x : [0, 1] → M , the tangent space Tx(P) consists of all (smooth)
sections ξ of the pullback bundle x∗(TM), i.e. ξ(t) ∈ Tx(t)M for all t ∈ [0, 1] and satisfies
the boundary conditions ξ(i) ∈ Tx(i)Li for i = 0, 1. Given two such sections ξ, η, we set

〈

ξ, η
〉

:=

∫ 1

0

gJ(ξ(t), η(t)) dt.

Then the gJ -gradient of A is the vector field ∇A defined by setting the inner product
〈

∇A, ξ
〉

equal to dA(ξ), (the differential dA evaluated on the tangent vector ξ.)
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interesting long exact sequences in the theory. Similar structures appear in
Seidel’s work [32] on the Fukaya category of a symplectic manifold, the
basis of one side of the homological mirror symmetry conjecture.

2. Heegaard Floer theory

In this section we first define the Heegaard Floer complexes. Then we
briefly describe some applications.

2.1. Definition of the invariants. We saw in Example 1.1 that an ori-
ented 3-manifold Y is completely determined by a triple (Σ, α, β) where Σ is
a Riemann surface of genus g and α, β are sets of disjoint embedded circles

α = {α1, . . . , αg}, β = {β1, . . . , βg}.
Ozsváth and Szabó’s idea is to use this data to construct a symplectic mani-
fold (M, ω) together with a pair of Lagrangian submanifolds Tα, Tβ and then
to consider the corresponding Floer complex. This is a very rough version of
their idea: in fact the manifold is not quite symplectic, the submanifolds are
not quite Lagrangian and they also put some extra structure on the Floer
complex. The most amazing thing about their construction is that it does
give interesting 3-manifold invariants.

For simplicity we shall assume throughout the following discussion that
Y is a rational homology sphere, i.e. that H∗(Y ; Q) ∼= H∗(S3; Q). This
means that the abelianization H1(Y ; Z) of the fundamental group π1(Y ) is
finite, that H2(Y ; Z) = 0, and that Y is orientable. However, the invariants
may be defined for all oriented Y .

The manifold M : This is the g-fold symmetric product Mg := SymgΣg

of Σg, i.e. the quotient

Mg :=
∏

g

Σ/Sg,

of the g-fold product
∏

g Σ := Σ × · · · × Σ by the obvious action of the
symmetric group Sg on g letters. Mg is smooth: if C is a local chart in Σ
then the points in SymgC are unordered sets of g points in C and hence
are the roots of a unique monic polynomial whose coefficients give a local
chart on SymgC. However, Mg has no natural smooth structure; it inherits
a complex structure JM from the choice of a complex structure j on Σ,
but different choices of j give rise to different5 smooth structures on Mg.
Similarly, although (Mg, JM ) is a Kähler manifold and so has symplectic
structures, there is no natural choice of symplectic structure on Mg.

5These smooth structures sj are diffeomorphic. They are different in the sense that the
identity map (M, sj) → (M, sj′) is not smooth. Readers familiar with complex geometry
might note that SymgΣg is a rather special complex manifold. It is birationally equivalent
to the Picard variety Picg(Σ) ∼= T

2g of Σ: to get a map SymgΣ → Picg(Σ) think of the
set of g points as a divisor and map it to the point in Picg(Σ) given by the corresponding
degree g line bundle.
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The manifold Mg has rather simple homotopy and cohomology. For exam-
ple, in genus two M2 := Sym2Σ2 is a 1-point blow up of the standard 4-torus
T4, i.e. topologically it is the connected sum of T4 with a negatively oriented
copy of the complex projective plane. In general, π1(Mg) ∼= H1(Mg; Z) is
abelian of rank 2g. In fact the inclusion Σ × pt × · · · × pt induces an iso-
morphism H1(Σg) ∼= π1(Mg). When g > 1 the cohomology ring of Mg has
one other generator in H2(Mg) that is Poincaré dual to the submanifold

{z} × Symg−1(Σ) ⊂ Mg,

where z is any fixed point in Σ. Further when g > 2 π2(Mg) = Z, with
generator

S2 ≡ Σ/ρ
ι→֒ Sym2(Σ) → Symg(Σ),

where we think of the 2-sphere S2 as the quotient of Σ by a suitable involu-
tion ρ (e.g. the hyperelliptic involution) and set

ι(z) := [z, ρ(z)] ∈ Sym2Σ, z ∈ Σ.

When g = 2 the situation is a little more complicated. Nevertheless, in all
cases the simple structure of π2(Mg) is one of the reasons why Ozsváth–
Szabó’s boundary operator ∂ has ∂2 = 0. (Technically, it means that they
are working in the monotone case.)

The tori Tα, Tβ: Because the circles αi are mutually disjoint, the product

α1 × · · · × αg ⊂
∏

g

Σ

maps bijectively onto a torus Tα in Mg. This torus is clearly totally real,
i.e. its tangent bundle TTα intersects JM (TTα) transversally. There is
no natural smooth symplectic structure on Mg that makes it Lagrangian,
but this does not really matter since its inverse image in the product is
Lagrangian for product symplectic forms.

If the αj and βk intersect transversally then the two tori Tα, Tβ also
intersect transversally. Each intersection point can be written as

x := (x1, . . . , xg), xk ∈ αk ∩ βπ(k), k = 1, . . . , g, π ∈ Sg.

The trajectory spaces M(x,y): Fix a complex structure j on Σ and
consider the corresponding complex structure J = JM on the symmmetric
product Mg. Given two intersection points x,y ∈ Tα ∩ Tβ the elements
in M(x,y) are the J-holomorphic strips u : R × [0, 1] → Mg from x to
y satisfying the conditions of (1.3). The domain R × [0, 1] is conformally
equivalent to the closed unit disc D in C with the two boundary points ±i
removed. Thus Ozsváth–Szabó think of the strips as continuous maps

u : D → Mg,
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that are holomorphic in the interior int D and take the left boundary ∂D ∩
{ℜz < 0} to Tα and the right boundary ∂D ∩ {ℜz > 0} to Tβ . Continu-
ous maps φ : D → Mg that satisfy these boundary conditions but are not
necessarily holomorphic are called Whitney discs from x to y.

One can define a complex whose vertices are the intersection points Tα∩Tβ

and whose boundary map is given as in equation (1.2) by counting the
number of elements in the 0-dimensional components of M(x,y)/R. As we
explain in more detail below (cf. equation 2.1)), the maps u : D → Mg in
this moduli space lift to holomorphic maps ũ : F → Σ, where F → D is
a suitable g-fold branched cover. Thus the discs u can be understood by
looking at their lifts to Σ, a fact which makes it possible to analyse the
boundary map from a geometric point of view.

However, this complex contains no interesting information: its homology
depends just on H∗(Y ). Therefore Ozsváth and Szabó add two pieces of
extra structure. Firstly, they observed that this complex decomposes into a
direct sum of subcomplexes that are indexed by the Spinc-structures6 s on

Y . Secondly, they work in a suitable covering P̃ of the path space P(Tα, Tβ)
with deck transformation group Z. By taking the action of the generator U
of this group into account as in Remark 1.2, they define various different,
but related, chain complexes

CF∞(Y, s), ĈF (Y, s), CF+(Y, s), CF−(Y, s), CFred(Y, s).

Whitney discs and Spinc-structures: Given x,y ∈ Tα ∩ Tβ we denote
by π2(x,y) the set of homotopy classes of Whitney discs from x to y. Recall
from Example 1.1 that each intersection point αj ∩ βk lies on a unique f -
gradient trajectory in Y that connects an index 2 critical point qk to an index
1-critical point pj . Thus the point x ∈ Tα can be thought of as a g-tuple of
such gradient flow lines connecting each pj to some qk. The corresponding
1-chain γx in Y is called a simultaneous trajectory.

When g > 1 there is a Whitney disc φ : D → Mg from x to y only if the
1-cycle γx − γy is null homologous. To see this, consider the commutative
diagram

(2.1)
F

φ̃→ ∏
Σ

↓ π ↓
D

φ→ SymgΣ,

where F → D is a suitable (possibly disconnected) branched g-fold cover (the

pullback of π by φ.) Denote the component functions of φ̃ by φ̃ℓ : F → Σ.
The inverse images of the points ±i ∈ ∂D divide the boundary of F into arcs

that that are taken by the φ̃ℓ alternately into subarcs of the α and β curves

6This gives a point of contact with the Seiberg–Witten invariants, which depend for
their very definition on the choice of a Spinc-structure.
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joining the intersections in x to those in y. Each such subarc in an αj-curve
extends to a triangle in Y consisting of f -gradient flow lines in the stable
manifold W s(pj). Similarly the subarcs in βk extend to triangles in the
unstable manifolds W u(qk), and it is not hard to see that the union of these

triangles with the surfaces φ̃ℓ(F ) form a 2-chain with boundary γx−γy: see
Fig. 5.

q
R

W u(q
x
)

W s(p
j
)

Imφ
i

pγ

y
_

γ
yβ

R

α
j

γ
x
–

γ
x

–

γ
y
–

x
–

˜

Figure  5:  W hitney disc gives chain in Y w ith boundar y γ
x
–  

− γ
y
–

We say that two intersection points x,y are equivalent if π2(x,y) is
nonempty. Using the Mayer–Vietoris sequence for the decomposition Y =
Y1∪Y2 one can check that the differences γx−γy generate H1(Y ; Z). Hence
these equivalence classes form an affine space modelled on the finite abelian
group H1(Y ; Z). The set of Spinc structures on Y is also an affine space
modelled on H1(Y ; Z) ∼= H2(Y ; Z).

We now explain how the choice of a point z ∈ Σ that does not lie on any
αj or βk curve determines a natural map

sz : Tα ∩ Tβ → Spin c(Y )

such that sz(x) = sz(y) iff γx − γy = 0.
A Spinc-structure on Y may be thought of as a decomposition of the

(trivial) tangent bundle TY into the sum L⊕R of a complex line bundle L
with a trivial real line bundle,7 and so corresponds to a nonvanishing vector
field ξ on Y (a section of R) that is well defined up to homology.8 Therefore

7A Spinc-structure on Y is a lift of the structural group SO(3) of the tangent bundle
TY to the group Spin c(3) := Spin (3) ×Z/2Z S1 = SU(2) ×Z/2Z S1.

8Two nonvanishing vector fields are called homologous if one can be homotoped through
nonvanishing vector fields to agree with the other except on a finite union of 3-balls.
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to define sz(x) we just need to associate a nonvanishing vector field σx to
x that is well defined modulo homology. But z lies on unique f -gradient
trajectory γz from max f to min f . This, together with the simultaneous
trajectory γx, pairs up the set of critical points of f . Since each pair has
index sum 3, the gradient vector field ∇f of f can be modified near these
trajectories to a nonvanishing vector field σx. Then σx = ∇f outside a
union of 3-balls and so is well defined up to homology. We therefore set

sz(x) = [σx] ∈ Spin c(Y ).

Definition of CF∞(Y, s): Given a Spinc-structure s, denote by S ⊂ Tα ∩
Tβ the corresponding set of intersection points. We define CF∞(Y, s) to
be the free abelian group with generators [x, i] ∈ S × Z and with relative
grading

gr
(
[x, i], [y, j]

)
:= µ(φ) − 2(j − i + nz(φ)).

Here φ is any Whitney disc from x to y, nz(φ) is its intersection number with
the generator {z}× Symg−1(Σ) of H2n−2(Mg) and µ(φ) is its Maslov index,
that is, the expected dimension of the set M(x,y; φ) of all components of
the trajectory space M(x,y) that contain elements homotopic to φ. One
can show that the number µ(φ) − 2nz(φ) is independent of the choice of φ.
We then define the boundary operator δ∞ by:

δ∞([x, i]) =
∑

y∈S

∑

φ∈π2(x,y):µ(φ)=1

n(x,y; φ) [y, i − nz(φ)],

where n(x,y; φ) denotes the (signed) number of elements in

M̂(x,y; φ) := M(x,y; φ)/R.

For the reasons outlined in Example 1.4, (δ∞)2 = 0. Hence CF∞(Y, s) is a
chain complex.

Definition of CF±(Y, s) and ĈF (Y, s): Since the submanifold {z} ×
Symg−1(Σ) is a complex hypersurface, any holomorphic trajectory meets it
positively. In other words, nz(φ) ≥ 0 whenever M(x,y; φ) is nonempty.
Therefore the subset CF−(Y, s) generated by the elements [x, i] with i < 0
forms a subcomplex of CF∞(Y, s). We define CF+(Y, s) to be the quotient
CF∞(Y, s)/CF−(Y, s), i.e. the complex generated by [x, i], i ≥ 0. All three
complexes are Z[U ]-modules where U acts by

U · [x, i] = [x, i − 1],

reducing grading by 2. Finally we define ĈF (Y, s) to be the complex gen-
erated by the kernel of the U -action on CF +(Y, s). Thus we may think of

ĈF (Y, s) as generated by the elements
〈
x
〉
,x ∈ S, with differential

∂̂
〈
x
〉

=
∑

y

∑

φ∈π2(x,y):µ(φ)=1,nz(φ)=0

n(x,y; φ)
〈
y
〉
,



14 DUSA MCDUFF

i.e. we count only those trajectories that do not meet {z} × Symg−1(Σ).
The corresponding homology groups are related by exact sequences
(2.2)

. . . −→ HF−(Y, s)
i−→ HF∞(Y, s)

π−→ HF+(Y, s)
δ−→ . . .

. . . −→ ĤF (Y, s)
j−→ HF+(Y, s)

U−→ HF+(Y, s) −→ . . . .

There is yet another interesting group, namely HFred(Y, s), the cokernel of
the above map π. This vanishes for the 3-sphere and for lens spaces. Later,
we will use the fact that there is a pairing HF + ⊗ HF− → Z, that induces
a pairing

(2.3)
〈
·, ·

〉
: HFred ⊗ HFred → Z.

The following result is proved in [24].

Theorem 2.1. Each of these relatively Z-graded Z[U ]-modules is a topolog-

ical invariant of the pair (Y, s).

The proof that these homology groups are independent of the choice of
almost complex structure j on Σ, of isotopy class of the loops αi, βj and
of basepoint z, uses fairly standard arguments from Gromov–Witten–Floer
theory. To see that they remain unchanged under handleslides of the curves
in α, β one uses the naturality properties of Lagrangian Floer homology,
defining a chain map by counting suitable holomorphic triangles; cf. the
discussion following equation (2.4) below. Finally the fact that they are
invariant under stabilization of the Heegaard splitting uses a “stretch the
neck” argument.

At first glance it is not at all clear why one needs such a variety of homol-
ogy groups. However, if we ignore the action of U and consider only HF∞

we get very little information. Thus, for example, it is shown in [24] that
when Y is a rational homology 3-sphere

HF∞(Y, s) ∼= Z[U, U−1],

for all choices of s.9 In fact the different complexes HF are just ways of
encoding the subtle information given by the basepoint z. For they may all
be defined in terms of the chain complex CF−(Y, s) of Z[U ]-modules:

• CF∞(Y, s) is the “localization” CF−(Y, s) ⊗ Z[U, U−1],

• CF+(Y, s) is the cokernel of the localization map, and

• ĈF (Y, s) is the quotient CF−(Y, s)/U · CF−(Y, s).

The relations between these complexes are reminiscent of those occurring
between the different homology groups of a space X with S1 action. This

9A similar phenomenon occurs in the Hamiltonian Floer theory of the loop space of a
symplectic manifold M . The resulting homology groups FH∗(M ; H, J) are always (addi-
tively) isomorphic to the homology of M , but one gets interesting information by filtering
by the values of the action functional.
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is no accident: the group ĤF is intended to resemble the ordinary homol-
ogy of an S1-space X with a single fixed point, while HF + is analogous

to its equivariant homology HS1

∗ (X). The second exact sequence in (2.2)
then has the form of the Gysin sequence of the fibration S1 → X → XS1 ,

where XS1 := ES1 ×S1 X is the space whose homology is HS1

∗ (X). In the
conjectured equivalence between Heegaard Floer homology and the Seiberg–
Witten–Floer theory of Y (which is an S1-equivariant theory), the element
U corresponds to the generator of H2(BS1), although the underlying geo-
metric reason for this is not yet fully understood: see Lee [17].

Example 2.2. Consider the case Y = S3. We saw in Example 1.1 that this
has a Heegaard splitting consisting of a torus T2, with a single α and a single
β curve intersecting once transversally at x. Denote by s the unique Spin c-
structure on S3. Then the complex CF−(S3, s) has generators [x, i], i < 0,
and trivial boundary map (this has to vanish since the relative gradings are

even). This determines all the other groups; for example, ĤF (S3) ∼= Z.
There are many other Heegaard splittings for S3. Ozsváth–Szabó give an
example in [28, §2.2] of a genus 2 splitting where the differential ∂ depends

on the choice of complex structure j on Σ2. This might seem paradoxical.
The point is that the differential is given by counting holomorphic discs in
Symg(Σ), but as in diagram (2.1) these correspond to counting images in Σ
of some branched cover F of the disc, and these images can have nontrivial
moduli. This shows that Heegaard Floer theory is not entirely combina-
torial: the next big advance might be the construction of combinatorial
invariants, possibly similar to Khovanov’s new knot invariants [16]. For
recent work relating Khovanov homology to Lagrangian Floer theory and
Heegaard Floer theory, see Dunfield–Gutov–Rasmussen [4], Manolescu [19]
and Seidel–Smith [33].

One can make various additional refinements to the theory. For example,
when Y is a rational homology sphere it is possible to lift the relative Z-
grading to an absolute Q-grading that is respected by the naturality maps
we discuss below: see [§3.2][28]. Ozsváth–Szabó also define knot invariants
in [26] and use them in [27] to give a new obstruction for a knot to have
unknotting number one. Heegaard Floer theory has many other interesting
consequences for knot theory: see for example recent papers by Ekterkary [5],
Livingston–Naik [18], Plamenevskaya [29], and Rasmussen [30].

2.2. Properties and Applications of the invariants. The power of Hee-
gaard Floer theory comes from the fact that it is well adapted to certain
natural geometric constructions in 3-manifold theory, such as adding a han-
dle or performing a Dehn surgery on a knot, because these have simple
descriptions in terms of Heegaard diagrams. Here is the basic geometric
construction.

Suppose given three sets α, β, γ of g disjoint curves on the Riemann surface
Σg that are the attaching circles for the handlebodies Uα, Uβ, Uγ . Then there
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are three associated manifolds

Yα,β = Uα ∪ Uβ, Yα,γ = Uα ∪ Uγ , Yβ,γ = Uβ ∪ Uγ .

We now construct a 4-manifold X = Xαβγ with these three manifolds as
boundary components. Let ∆ be a triangle (or 2-simplex) with vertices
vα, vβ, vγ and edges eα, eβ , eγ (where eα lies opposite vα), and form X from
the four pieces

Uγ Uα

Yαγ  = Uα ∪ Uγ

Σ

U

eβ× Uβ Uα

Uγ

∆ × Σ

Σ

Yαβ

Yβγ

Figure 6:  The 4-manifold  Xαβγ (w ith Σ  represented as an interval)

(
∆ × Σ

)
⊔

(
eα × Uα

)
⊔

(
eβ × Uβ

)
⊔

(
eγ × Uγ

)

by making the obvious identifications along ∂∆×Σ and then smoothing. For
example, the part eα ×Σ of ∂∆×Σ is identified with eα × ∂Uα: see Fig. 6.
The resulting manifold has three boundary components, one corresponding
to each vertex, with Yα,β lying over vγ = eα∩eβ for example. One can orient
X so that

∂X = −Yα,β − Yβ,γ + Yα,γ .

This elementary cobordism is called a pair of pants cobordism. Counting
holomorphic triangles in Mg with boundaries on the three tori Tα, Tβ, Tγ

gives rise under good circumstances to a map

(2.4) f∞ : CF∞(Yα,β , sα,β) ⊗ CF∞(Yβ,γ , sβ,γ) → CF∞(Yα,γ , sα,γ).

(Here the Spinc structures are assumed to extend to a common Spinc struc-
ture s on X.)

There are some interesting special cases of this construction. For example,
the proof of handleslide invariance follows by taking γ to be a set of Heegaard
circles obtained from α by handleslides. The construction can be also used to
obtain a long exact surgery sequence which is very useful in analysing
the effect of rational Dehn surgeries on Y . Here we shall concentrate on
explaining some of the corresponding naturality properties of the theory.

Maps induced by cobordisms: Suppose that Y2 is obtained from Y1 by
doing a 0-surgery along a framed knot K. This means that we choose
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an identification10 of a neighborhood N(K) with S1 × D2, attach one part
∂D2 ×D2 of the boundary of the 4-ball D2 ×D2 to Y1 via the obvious map

ψ : ∂D2 × D2 → S1 × D2 ≡ N(K) ⊂ Y1,

and then define Y2 to be a smoothed out version of the union

Y2 =
(
Y1 \ intN(K)

)
⊔ψ (D2 × S1),

where ψ identifies the boundary torus S1 × S1 in D2 × S1 to ∂N(K). Note
that the 4-manifold W =

(
[0, 1]× Y1

)
⊔ψ (D2 ×D2) is a cobordism from Y1

to Y2 obtained by adding a 2-handle to [0, 1] × Y1 along N(K) ⊂ {1} × Y1.
Given a knot K in Y1, one can always choose a Heegaard diagram (Σ, α, β)

for Y1 so that K lies in the surface Σ−β2−· · ·−βg (and is given the obvious
framing) and intersects β1 once transversally. Pushing K into Uβ, one sees
that this is equivalent to requiring that K is disjoint from the discs Dj with
boundary βj for j > 1 and meets D1 transversally in a single point. Hence
one can construct a suitable diagram by starting with a neighborhood N(K)
of the knot and then adding 1-handles to obtain Uβ. Since doing 0-surgery
along K adds a disc with boundary K, it is easy to check that

Y2 = Yα,γ , γ := {K, β2, . . . , βg}.
Further Yβ,γ is a connected sum #(S2 × S1) of copies of S2 × S1, and so is
standard. Pairing the map f∞ in equation (2.4) with a canonical element
in HF∞(Yβ,γ) one obtains a map

f∞ : HF∞(Y1; s1) → HF∞(Y2; s2)

for suitable si.
This construction can be extended to any cobordism.

Lemma 2.3. Suppose that X is an oriented connected cobordism from Y1

to Y2, where each Yi is an oriented connected 3-manifold. Then, for each

Spin c structure s on X there is a natural induced map

F∞
X,s : HF∞(Y1, s1) → HF∞(Y2, s2),

where si is the restriction of s to Yi.

There are corresponding maps for the other groups HF±, ĤF and so on,
that are well defined up to an overall choice of sign. All of them have the
obvious functorial properties, behaving well for example under compositions
of cobordisms. Another important property is that the image of the induced
map

F−
X,s : HF−(Y1, s1) → HF−(Y2, s2)

10This is called a framing of the knot. It corresponds to choosing a pair of linearly
independent vector fields along K that trivialize its normal bundle. Note that any knot
in S3 has a canonical framing: because H2(S

3) = 0, K bounds an embedded surface S in
S3 and one can choose the first vector field to be tangent to S.
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is contained in HFred if b+
2 (X) ≥ 1. (This is the first appearance so far

of this condition11 on b+
2 which is so ubiquitous in Seiberg–Witten theory.)

In other words, imF−
X,s is contained in the image of the boundary map

δ : HF+ → HF− in the long exact sequence (2.2).
These functorial properties are the basis for most applications and calcu-

lations: see for example, Némethi [21], Owens–Strle [23].

A 4-manifold invariant: We now define an invariant ΦX,s of a closed
connected 4-manifold X with Spin c-structure s. Conjecturally it agrees
with the Seiberg–Witten invariant. Its construction illustrates the use of
the different groups HF .

Suppose that X is a closed connected 4-manifold with b+
2 (X) > 1 and

Spin c-structure s. (For example, any symplectic 4-manifold has a canonical
Spin c-structure.) An admissible cut of X is a decomposition of X into
two pieces X1, X2, each with b+

2 (Xi) ≥ 1, along a 3-manifold Y := X1 ∩X2.
We assume also that the restriction map

H2(X) → H2(X1) ⊕ H2(X2)

is injective. Delete small 4-balls from the interior of each piece Xi and
consider them as giving cobordisms from S3 to Y . Denote θ := [x,−1] ∈
HF−(S3) (cf. Example 2.2). Then consider

ΦX,s :=
〈
δ−1 ◦ F−

X1,s1
θ, F−

X2,s2
θ
〉
∈ Z,

where we use the pairing (2.3) on HFred(Y, s). This element turns out to be
independent of choices and nonzero for symplectic manifolds. (In this case
it can be calculated using a decomposition of X coming from a Donaldson–
Lefschetz pencil.) Hence in any admissible cut of a symplectic manifold,
HFred(Y ) must be nonzero. Ozsváth–Szabó conclude in [25] that:

Proposition 2.4. A connected closed symplectic 4-manifold X has no ad-

missible cut X = X1 ∪ X2 such that Y := X1 ∩ X2 has HFred(Y, s) = 0 for

all s.

The first proof of this was in the case Y = S3 and is due to Taubes [34].
He combined the well known fact that gauge theoretic invariants vanish on
connected sums together with his proof that the Seiberg–Witten invariants
do not vanish on symplectic 4-manifolds.

Rational homology 3-spheres Y for which HF + has no torsion and where
HFred(Y, s) = 0 for all s are called L-spaces in [28, §3.4]. All lens spaces
are L-spaces, but not all Brieskorn homology spheres are: Σ(2, 3, 5) is an
L-space, but Σ(2, 3, 7) is not (see Rustamov [31]). The class of L-spaces is
not yet fully understood, but it has interesting geometric properties. For
example it follows from the above proposition that L-spaces do not support

11Given a connected, oriented 4-manifold X, b+
2 (X) is the number of positive squares

in the diagonalization of the cup product pairing on H2(X, ∂X). The relevant fact here
is that when b+

2 (X) ≥ 1 there is a closed surface C in X with self-intersection C · C ≥ 0.
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any taut foliations, i.e. foliations in which the leaves are minimal surfaces for
some Riemannian metric on Y ; for if Y supports such a foliation then results
of Eliashberg–Thurston [7], Eliashberg [6], Giroux [13] and Etnyre [8] about
contact structures allow one to construct a symplectic manifold X that has
an admissible cut with Y = X1 ∩ X2.

As a final corollary, we point out that similar arguments imply that Hee-
gaard Floer theory can detect the unknot in S3. This means the following.
Suppose that K is a knot in S3 and denote by S3

0(K) the result of doing
0-surgery along K with the canonical framing described above.

Corollary 2.5. If HF (S3
0(K)) = HF (S3

0(unknot)) then K is the unknot.

Sketch of proof. Let Y = S3
0(K). Suppose that Y 6= S3

0(unknot) = S2 × S1.
By a deep result of Gabai [12], Y admits a taut foliation. As above, this
implies that HFred(Y, s) 6= 0 for some s. But HFred(S

2 × S1, s) is always
0. ¤

Acknowledgements. I thank Zoltán Szabó and Jacob Rasmussen for help-
ful comments on the first draft of this note.
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