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Abstract. When labeled examples are not readily available, active
learning and transfer learning are separate efforts to obtain labeled ex-
amples for inductive learning. Active learning asks domain experts to
label a small set of examples, but there is a cost incurred for each an-
swer. While transfer learning could borrow labeled examples from a dif-
ferent domain without incurring any labeling cost, there is no guarantee
that the transferred examples will actually help improve the learning
accuracy. To solve both problems, we propose a framework to actively
transfer the knowledge across domains, and the key intuition is to use
the knowledge transferred from other domain as often as possible to help
learn the current domain, and query experts only when necessary. To
do so, labeled examples from the other domain (out-of-domain) are ex-
amined on the basis of their likelihood to correctly label the examples
of the current domain (in-domain). When this likelihood is low, these
out-of-domain examples will not be used to label the in-domain exam-
ple, but domain experts are consulted to provide class label. We derive
a sampling error bound and a querying bound to demonstrate that the
proposed method can effectively mitigate risk of domain difference by
transferring domain knowledge only when they are useful, and query do-
main experts only when necessary. Experimental studies have employed
synthetic datasets and two types of real world datasets, including re-
mote sensing and text classification problems. The proposed method is
compared with previously proposed transfer learning and active learning
methods. Across all comparisons, the proposed approach can evidently
outperform the transfer learning model in classification accuracy given
different out-of-domain datasets. For example, upon the remote sens-
ing dataset, the proposed approach achieves an accuracy around 94.5%,
while the comparable transfer learning model drops to less than 89% in
most cases. The software and datasets are available from the authors.

1 Introduction

Supervised learning methods require sufficient labeled examples in order to con-
struct accurate models. However, in real world applications, one may easily
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(a) Transfer learning (b) Active learning (c) Actively transfer

Fig. 1. Different models to resolve label deficiency

encounter those situations in which labeled examples are deficient, such as data
streams, biological sequence annotation or web searching, etc. To alleviate this
problem, two separate approaches, transfer learning and active learning, have
been proposed and studied. Transfer learning mainly focuses on how to utilize the
data from a related domain called out-of-domain, to help learn the current domain
called in-domain, as depicted in Fig 1(a). It can be quite effective when the out-of-
domain dataset is very similar to the in-domain dataset. As a different solution,
active learning does not gain knowledge from other domains, but mainly focuses
on selecting a small set of essential in-domain instances for which it requests labels
from the domain experts, as depicted in Fig 1(b). However, both transfer learn-
ing and active learning have some practical constraints. For transfer learning, if
the knowledge from the out-of-domain is essentially different from the in-domain,
the learning accuracy might be reduced, and this is called the “domain difference
risk”. For active learning, the obvious issue is the cost associated with the answer
from domain experts.

Our Method. To mitigate domain difference risk and reduce labeling cost, we pro-
pose a framework that can actively transfer the knowledge from out-of-domain to
in-domain, as depicted in Fig 1(c). Intuitively, in daily life, we normally first try
to use our related knowledge in learning, but if the related knowledge is unable
to guide, we turn to teachers. For example, when learning a foreign language,
one normally associates it with the mother tongue. This transfer is easy between,
for example, Spanish and Portuguese. But it is not so obvious between Chinese
and English. In this situation, one normally pays a teacher instead of picking
up himself. The proposed framework is based on these intuitions. We first select
an instance that is supposed to be essential to construct an inductive model
from the new or in-domain dataset, and then a transfer classifier, trained with
labeled data from in-domain and out-of-domain dataset, is used to predict this
unlabeled in-domain example. According to defined transfer confidence measure,
this instance is either directly labeled by the transfer classifier or labeled by the
domain experts if needed. In order to guarantee the performance when “import-
ing” out-of-domain knowledge, the proposed transfer classifier is bounded to be
no worse than an instance-based ensemble method in error rate (Section 3 and
Theorem 1).

Contributions. The most important contributions of the proposed approach can
be summarized as follows:
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Table 1. Symbol definition

Symbol Definition
U Unlabeled in-domain dataset
L Labeled in-domain dataset
O Labeled out-of-domain dataset

M
L The in-domain classifier that is trained on L

M
O The out-of-domain classifier that is trained on O

T The transfer classifier (Fig 3 and Equ. 1)
F(x) A decision function (Equ. 3 and Equ. 4)
ℓ The actively transfer learner (Algorithm 1)

The following are some symbols only used in Fig 3

L+ L+ = {x|x ∈ L ∧ M
O(x) = “+′′}

L− L− = {x|x ∈ L ∧ M
O(x) = “−′′}

M
L+

The classifier that is trained on L+

M
L−

The classifier that is trained on L−

– We propose a framework that can transfer the knowledge across domains
actively. We derive the bounds in Theorem 2 and Theorem 3 to prove that
the proposed framework not only can mitigate the domain difference risk by
transferring out-of-domain knowledge only when they are useful, but also
reduce labeling cost by querying fewer examples labeled by experts as com-
pared with traditional active learners.

– We also propose a transfer classifier whose error is bounded.
– Most of the previous active learners can be directly adopted in the pro-

posed framework without changing their original preferences and strategies
to select essential examples.

2 Actively Transfer

The main flow of proposed approach AcTraK (Actively Transfer Knowledge) is
summarized in Fig 2 and Algorithm 1, and the most important symbols are in
Table 1. The key idea is to use the out-of-domain data to predict in-domain data
as often as possible. But when the prediction confidence is too low, in-domain
experts are consulted to provide the label. To do so, the algorithm first applies
a traditional active learner to select a critical instance x from the in-domain
dataset, then a transfer classifier is trained and used to classify this selected
example. According to the prediction confidence of the transfer classifier, the
algorithm decides how to label the instance, either using the predicted label given
by the transfer classifier or asking domain experts to label. Then, the process is
iteratively performed to select and label important examples. Shown as Fig 2,
the essential elements of the proposed algorithm are the “transfer classifier” and
the “decision function”, as described below.

Transfer Classifier. Given an unlabeled in-domain dataset U , a small set of la-
beled in-domain examples L, as well as a labeled out-of-domain dataset O, a
transfer classifier is constructed from both O and L to classify unlabeled ex-
amples in U . In previous work on transfer learning, out-of-domain dataset O is
assumed to share similar distributions with in-domain dataset U ∪ L ([3][16]).
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Input: Unlabeled in-domain dataset: U ;
Labeled in-domain dataset: L;
Labeled out-of-domain dataset: O;
Maximum number of examples
labeled by experts: N.

Output: The actively transfer learner: ℓ

Initial the number of examples that have1

been labeled by experts: n ← 0;
repeat2

x ← select an instance from U by a3

traditional active learner;
Train the transfer classifier T (Fig 3);4

Predict x by T(x) (Fig 3 and Equ. 1);5

Calculate the decision function F(x)6

(Details in Equ. 3 and Equ. 4);
if F(x) = 0 then7

y ← label by T(x);8

else9

y ← label by the experts;10

n ← n + 1;11

end12

L ← L ∪ {(x, y)};13

until n≥N14

Train the learner ℓ with L15

Return the learner ℓ.16

Algorithm 1. Framework Fig. 2. Algorithm flow

Thus, exploring the similarities and exploiting them is expected to improve ac-
curacy. However, it is unclear on how to formally determine whether the out-
of-domain dataset shares sufficient similarity with the in-domain dataset, and
how to guarantee transfer learning improves accuracy. Thus, in this paper, we
propose a transfer learning model whose expected error is bounded.

Intuitively, if one uses the knowledge in out-of-domain dataset O to make
prediction for an in-domain example x, and then double check the predicted
label with an in-domain classifier to see if the prediction is the same, it is more
likely that the predicted label is correct. Before discussing in detail, we define
some common notations. Let MO denote the out-of-domain classifier trained
on the out-of-domain dataset O. Also, let Lt denote a set of labeled data from
in-domain, but they are labeled as yt by the out-of-domain classifier MO (yt is
the label of the tth class). Formally, Lt = {x|x ∈ L ∧ MO(x) = yt}. Note that
the true labels of examples in Lt are not necessarily yt, but they just happen to
be labeled as class yt by the out-of-domain classifier. We illustrate the transfer
classifier for a binary-class problem in Fig 3. There are two classes, “+” and “-”,
and L+ = {x|x ∈ L ∧ MO(x) = “+”}, and L− = {x|x ∈ L ∧ MO(x) = “-”}.
The transfer classifier T(x) executes the following steps to label an instance x:
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Fig. 3. Transfer classifier in Algorithm 1

1. Classify x with the out-of-domain classifier MO to obtain P (L+|x,MO) and
P (L−|x,MO).

2. Classifyxwiththe in-domainclassifiersML+ andML− toobtainP (+|x,ML+

)

and P (+|x,ML−

).
3. The transfer probability for x being “+” is

PT (+|x)

= P (L+|x,MO) × P (+|x,ML+

) + P (L−|x,MO) × P (+|x,ML−

)

Omitting the explicit dependency on models the above formula can be simplified
as:

PT (+|x) = P (+|L+,x) × P (L+|x) + P (+|L−,x) × P (L−|x) (1)

Under 0-1 loss, when PT (+|x) > 0.5, x is classified as “+”. This transfer classifier
just described has the following important property.

Theorem 1. Let ε1 and ε2 denote the expected error of the in-domain classifiers
ML+ and ML− respectively, and let εt denote the expected error of the transfer
classifier T(x). Then,

min(ε1, ε2) ≤ εt ≤
1

2
(ε1 + ε2) (2)

Proof. ∀x ∈ U , we consider the situations in which the transfer classifier T(x)
assigns it the wrong label. Let the true label of x be “+”. Further assume that
“+” examples are more likely classified into L+ or P (L+|x) ≥ P (L−|x). Thus,
the probability that x is mistakenly labeled as “-” is:
εt(x) = P (−|x)
= P (L−|x) × P (−|L−,x) + (1 − P (L−|x)) × P (−|L+,x)
= P (−|L+,x) + P (L−|x) × (P (−|L−,x) − P (−|L+,x))

Since P (−|L−,x) = P (x|L−,−)P (L−,−)
P (L−|x)P (x) >

P (x|L+,−)P (L+,−)
P (L+|x)P (x) = P (−|L+,x),

then P (−|x) ≥ P (−|L+,x) = min(P (−|x,ML+

), P (−|x,ML−

)). In addition,
since P (L+|x) ≥ P (L−|x), we have 0 ≤ P (L−|x) ≤ 1

2 . Then, P (−|x) ≤

P (−|x,ML+

) + 1
2 (P (−|x,ML−

) − P (−|x,ML+

)) = 1
2 (P (−|x,ML+

) + P (−|x,

ML−

)). Thus, we have min(ε1, ε2) ≤ εt ≤ 1
2 (ε1 + ε2). �
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Hence, Theorem 1 indicates that if the out-of-domain knowledge is similar to
the current domain, or P (L−|x) is small, the model obtains the expected error
close to εt = min(ε1, ε2). When the out-of-domain knowledge is different, the
expected error is bounded by 1

2 (ε1 + ε2). In other words, in the worst case, the
performance of the transfer classifier is no worse than the average performances
of the two in-domain classifiers ML+

and ML−

.

Decision Function. After the transfer classifier T(x) predicts the selected exam-
ple x, a decision function F(x) is calculated and further decides how to label the
example. In the following situations, one should query the experts for the class
label in case of mislabeling.

– When the transfer classifier assigns x with a class label that is different from
that given by an in-domain classifier.

– When the transfer classifier’s classification is low in confidence.
– When the size of the labeled in-domain dataset L is very small.

Recall that ML is the in-domain classifier trained on labeled in-domain dataset
L. According to the above considerations, we design a “querying indicator” func-
tion θ(x) to reflect the necessity to query experts.

θ(x) =
(

1 + α(x)
)−1

α(x) =
(

1 − [[ML(x) �= T(x)]]
)

· PT (T(x) = y|x) · exp(−
1

|L|
)

(3)

where [[π]] = 1 if π is true. And PT (T(x) = y|x) is the transfer probability
given by the transfer classifier T(x). Thus, 0 ≤ α(x) ≤ 1 and it reflects the
confidence that the transfer classifier has correctly labeled the example x: it
increases with the transfer probability PT (T(x) = y|x), and α(x) = 0 if the two
classifiers ML(x) and T(x) have assigned different labels to x. Hence, the larger
of α(x), the less we need to query the experts to label the example. Formally, the
“querying indicator” function θ(x) requires θ(x) ∝ α(x)−1. Moreover, because
mislabeling of the first few selected examples can exert significant negative effect

on accuracy, we further set θ(x) =
(

1+α(x)
)−1

so as to guarantee the possibility

(necessity) to query experts is greater than 50%. In other words, labeling by the
experts is the priority and we trust the label given by the transfer classifier only
when its confidence reflected by α(x) is very high. Thus, the proposed algorithm
asks the experts to label the example with probability θ(x). Accordingly, with
the value of θ(x), we randomly generate a real number R within 0 to 1, and then
the decision function F(x) is defined as

F(x) =

{

0 if R > θ(x)

1 otherwise
(4)

According to Eq. 4, if the randomly selected real number R > θ(x), F(x) = 0,
and it means Algorithm 1 labels the example by the transfer classifier; otherwise,
the example is labeled by the domain experts. In other words, AcTraK labels
the example x by transfer classifier with probability 1 − θ(x).
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2.1 Formal Analysis of AcTraK

We have proposed the approach AcTraK to transfer knowledge across domains
actively. Now, we formally derive its sampling error bound to demonstrate its
ability to mitigate domain difference risk, which guarantees that out-of-domain
examples are transferred to label in-domain data only when they are useful.
Additionally, we prove its querying bound to validate the claim that AcTraK
can reduce labeling cost by querying fewer examples labeled by experts by any
based level active learner incorporated into the framework.

Theorem 2. In the algorithm AcTraK (Algorithm 1), let εt denote the ex-
pected error of the transfer classifier, and let N denote the maximum number of
examples labeled by experts, then the sampling error ε for AcTraK satisfies

ε ≤
ε2

t

1 + (1 − εt) × exp(−|N |−1)
(5)

Proof. The proof for Theorem 2 is straightforward. According to the transfer
classifier T(x) and the decision function F(x) described above, AcTraK makes
wrong decision only when both the transfer classifier T(x) and the in-domain
classifier ML agree on the wrong label. And in this case, AcTraK has probability
1 − θ(x) to trust the classification result given by T(x), where θ(x) is defined in
Eq. 3. Thus, the sampling error for AcTraK can be written as ε ≤ (εt)

2(1−θ(x)).
Moreover, in this situation, θ(x) = 1

1+(1−εt)e
− 1

|L|
≥ 1

1+(1−εt)e
− 1

N

. Thus, ε ≤

ε2
t (1 − θ(x)) ≤

ε2
t
×(1−εt)×exp(−|N |−1)

1+(1−εt)×exp(−|N |−1) ≤
ε2

t

1+(1−εt)×exp(−|N |−1) . �

Theorem 3. In the algorithm AcTraK (Algorithm 1), let εt and εi denote the
expected error of the transfer classifier and in-domain classifier respectively. And
let α = εt + εi. Then for an in-domain instance, the probability that AcTraK

queries the label from the experts (with cost) satisfies:

P [Query] ≤ α +
1 − α

1 + (1 − εt) × exp(− 1
|N |)

(6)

Proof. According to the labeling-decision function F(x), AcTraK will query the
experts to label the instance when T(x) and ML hold different predictions on
the classification result. Even when the two classifiers agree on the result, it
still has probability θ(x) to query the experts. Thus, P [Query] = εi(1 − εt) +
εt(1 − εi) + [εtεi + (1 − εt)(1 − εi)]θ(x) = θ(x) + (εt + εi − 2εtεi)(1 − θ(x)) ≤
α + (1 − α)θ(x) ≤ α + 1−α

1+(1−εt)×exp(− 1
|N|

)
. �

From Theorem 2, we can find that the sampling error of the proposed approach

AcTraK is bounded by O(
ε2

t

1−εt

), where εt is the expected error of the transfer
classifier, and εt is also bounded according to Theorem 1. Thus, the proposed
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(a) U (b) O1 (c) O2 (d) O3 (e) O4

Fig. 4. Synthetic dataset

method AcTraK can effectively bound the sampling error to reduce the domain
difference risk. In addition, we derive Theorem 3 to understand why AcTraK
can query fewer examples labeled by experts as compared with traditional active
learners. From Theorem 3, we can see that the querying probability of AcTraK
is bounded, and the querying bound decreases with the decreasing εt. In other
words, the more accurate of the transfer classifier, the less likely will AcTraK
query the experts to label the instance. Hence, one can perceive that AcTraK
can actively decide how to gain its knowledge.

3 Experiments

We first design synthetic datasets to demonstrate how AcTraK mitigates the
domain difference risk that can make transfer learning fail, and then study how
out-of-domain knowledge can help AcTraK to query fewer examples labeled by
experts, as compared with traditional active learner. Then several transfer learn-
ing problems composed from remote sensing and text classification datasets are
used for evaluation. We use SVM as the basic learners, and logistic regression to
simulate the classification probabilities. Furthermore, for active learner employed
in AcTraK, we adopt ERS (Error Reduction Sampling method [11]). AcTraK is
compared with both a transfer learning model TrAdaBoost ([4]) and the ac-
tive learning model ERS ([11]). These are some of the most obvious choices,
commonly adopted in the research community.

3.1 Synthetic Datasets

We design synthetic datasets to empirically address the following questions:

1. Domain difference risk: can AcTraK overcome domain difference if the out-
of-domain knowledge is significantly different from the current domain?

2. Number of examples labeled by experts: do experts label fewer examples in
AcTraK under the help of out-of-domain knowledge?

We generate five two-dimensional datasets shown in Fig 4 (electronic copy
of this paper contains color figures). Fig 4(a) draws the in-domain dataset U ,
which has two labeled examples highlighted by “�”. Importantly, four out-of-
domain datasets with different distributions are plotted in Fig 4(b)∼Fig 4(e).
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(a) Results with O1 (b) Results with O2 (c) Results with O3

(d) Results with O4 (e) AcTraK VS. ERS

Fig. 5. Results on synthetic dataset

Note: To resolve label deficiency, TrAdaBoost does not query experts but passively
trains with the in-domain and all the labeled out-of-domain data. Thus, the its learning
curve is straight line.

Fig 4(b) presents a dataset O1, similarly distributed as the in-domain dataset
U . But the dataset O2 is clearly different from U though they may still share
some similarity. Fig 4(d) plots an “XOR” dataset O3. In addition, we include
the dataset O4 depicted as Fig 4(e), which has a similar “shape” but totally
reversed class labels with the in-domain dataset U . Thus, four experiments are
conduced by using the same in-domain dataset U but different out-of-domain
datasets O1 ∼ O4. We vary the number of examples labeled by experts up to 50.
Moreover, to reveal how domain difference affects transfer learning, we also run
on AdaBoost, or boosting without transferring knowledge from other domains.
Each experiment is repeated 10 times and average results are reported. For both
TrAdaBoost and AdaBoost, the iteration is set to be 100. For the sake of clarity,
we plot the most distinctive results in Fig 5.

Can AcTraK Overcome Domain Difference? Fig 5(a) to Fig 5(d) plot the perfor-
mance comparison of AcTraK vs. TrAdaBoost as they are given the four out-of-
domain datasets. The result given by AdaBoost is to compare with TrAdaBoost
to study effect of domain difference. It is important to note that, to resolve la-
bel deficiency, TrAdaBoost does not query the experts but trains on in-domain
and all labeled out-of-domain data for many iterations (100 in our experiment).
Thus, its result is a straight line. From Fig 5, TrAdaBoost is effective when the
out-of-domain dataset is O1 or Fig 4(b), which shares similar distribution with
the in-domain dataset. In this case, TrAdaBoost obviously outperforms the orig-
inal AdaBoost. However, when the out-of-domain dataset distributes differently
from the in-domain dataset, the classification accuracy given by TrAdaBoost
significantly drops: 0.82 when the out-of-domain dataset is O2; 0.57 when the



Actively Transfer Domain Knowledge 351

(a) With O1 (b) With O2 (c) With O3

Fig. 6. Examples (in U) labeled by the transfer classifier

out-of-domain dataset is O3 and only 0.51 when with O4 (the last two results
are just slightly better than random guessing). Importantly, these numbers are
even worse than the original AdaBoost that achieves an accuracy of 0.85 with-
out using the knowledge from O2, O3 or O4. It is obvious that the culprit is the
domain differences from these datasets.

Importantly under these same challenging situations, from Fig 5(b) to
Fig 5(d), this domain difference does not significantly affect the proposed al-
gorithm AcTraK. The classification accuracies of AcTraK with different out-of-
domain datasets are over 0.9 when the number of examples labeled by experts is
12, demonstrating its ability to overcome domain difference risk. It is interesting
to notice that when the out-of-domain dataset is O4, AcTraK acts similar as
that with O1. This is because that the transfer classifier described in Fig 3 is not
sensitive to the actual “name” of the labels of the out-of-domain dataset. For
example, if L+ in Fig 3 actually includes most examples with class label −, the
term P (−|x, L+) will be likely large and make the final classification result more
likely to be −. Thus, with respect to their similar structure, O4 is homogeneous
with O1 to some extend. Hence, we do not consider O4 but O3 as the most
different distributed dataset with the in-domain dataset U in this experiment.
And owing to the limited space and the homogeneity of O1 and O4 to AcTraK,
the result of O4 is omitted in the following of the paper.

Importantly, Fig 5 shows that, even with the dataset O2 and O3, AcTraK can
ensure the accuracy. It is mainly due to the actively transfer strategy: it does not
all depend on the out-of-domain dataset passively. To further reveal this active
strategy in AcTraK, we plot the examples labeled by the transfer classifier in
Fig 6. The examples mislabeled by the transfer classifier are marked with circles.
Shown in Fig 6, when the out-of-domain dataset is O1, the most similar to the
in-domain dataset, the transfer classifier help label more examples than those
with O2 or O3. Especially when the out-of-domain dataset is O3, the transfer
classifier help label only 3 examples and this is due to domain difference.

The sampling error bound of AcTraK under domain difference is derived in
Theorem 2. We calculate these bounds and compare them with the actual sam-
pling errors in Table 2. It is important to mention that the actual sampling error
or sampling error bound discussed here is the labeling error for the selected ex-
amples, but not the accuracy results given in Fig 5, which is the accuracy on the
whole in-domain dataset. To calculate the actual sampling error of AcTraK, for
example, when the out-of-domain dataset is O2, there are a total of 9 examples
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Table 2. Sampling error bound and querying bound on synthetic dataset

Datasets Error of T(x) Sampling error Sampling error bound Querying rate Querying bound
O1 0.00 0.000 0.000 71.43% 75.25%
O2 0.18 0.017 0.017 84.75% 85.45%
O3 0.34 0.037 0.070 94.34% 93.72%

labeled by the transfer classifier with one mislabeled, as depicted in Fig 6(b).
Thus, the actual sampling error of AcTraK is 1

50+9 = 0.017, and we compare it
with the bound calculated according to Theorem 2. The results are summarized
in Table 2. The sampling error bound given in Theorem 2 is obviously tight for
the synthetic dataset. Moreover, it is evident that AcTraK can effectively reduce
sampling error. For instance, when the true error of the transfer classifier T(x)
is 0.34 with the dataset O3, AcTraK bounds its sampling error as 0.07 and gets
the actual error 0.04. Thus, it can be concluded that AcTraK can effectively
resolve domain difference by bounding the sampling error shown as Theorem 2.

Do Experts Label Fewer Examples in AcTraK? In the proposed approach Ac-
TraK, knowledge transferred from other domain is used to help label the exam-
ples. In other words, it saves the number of examples to ask the experts. Thus,
compared with traditional active learner, AcTraK is expected to reduce the
number of examples labeled by experts, thus to reduce labeling cost. We present
Fig 5(e) to demonstrate this claim by comparing AcTraK with the traditional
active learner ERS. It is important to note that the original ERS only works on
the in-domain dataset. Thus, there is only one result plotted for ERS in Fig 5(e)
but three for AcTraK with different out-of-domain datasets. From Fig 5(e), we
can see that in most cases, “AcTraK-O1” and “AcTraK-O2” can evidently out-
perform ERS by reaching the same accuracy but with fewer examples labeled
by experts. And this is because that some of the examples have been labeled by
the transfer classifier under the help of the out-of-domain datasets. Additionally,
the out-of-domain dataset O1 seems more helpful than O2 to AcTraK, due to
the similar distribution between O1 and the in-domain dataset.

When we use the XOR dataset O3 to be the out-of-domain dataset, the learn-
ing curve of AcTraK overlaps with that of ERS depicted as Fig 5(e). It implies
that the transfer learning process is unable to help label examples in this case,
and both AcTraK and ERS select the same examples and label them all by ex-
perts. Depicted as Fig 4(a) and Fig 4(d), the distribution of O3 is significantly
different from the in-domain dataset U , and thus AcTraK judiciously drops the
knowledge transferred from O3 but queries the experts instead in order to avoid
mislabeling. This is formally discussed in Theorem 3, in which we have shown
that the bound of the probability to query experts increases when the transfer
classifier can not confidently label the examples. We also calculate these query-
ing bounds and the actual querying rates in Table 2. The querying bound given
in Theorem 3 is tight. Moreover, we can clearly see that AcTraK queries the
experts with probability 94% when the out-of-domain dataset is O3. It explains
why AcTraK can not outperform ERS with O3 in Fig 5(e): the transfer classifier
has too little chance (1 − 94% = 6%) to label the examples. Additionally, the
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querying bound of O1 is less than that of O2. In other words, AcTraK may label
more examples by the transfer classifier when the out-of-domain dataset is O1.
It explains why O1 is more helpful than O2 to AcTraK in Fig 5(e).

3.2 Real World Dataset

Fig. 7. IEA

We use two sets of real world datasets, remote sensing
problem as well as text classification problem, to empiri-
cally evaluate the proposed method. But we first employ
an evaluation metric to compare two active learners. One
mainly cares about the performance with the increasing
number of examples labeled by experts, shown by the
learning curves of A1 and A2 in Fig 7. A superior ac-
tive learner is supposed to gain a higher accuracy under
the same number of queried examples, or reach the same
classification accuracy with fewer labeled examples. This
is shown by n1 vs. n2 in Fig 7. Thus, the superiority
of A1 compared with A2 can be reflected by the area
surrounded by the two learning curves, highlighted by
dotted lines in Fig 7. In order to qualify this difference,
we employ an evaluation metric IEA(*) (Integral Evalua-
tion on Accuracy), and apply it to evaluate the proposed method in the following
experiments.

Definition 1. Given a classifier M, two active learners A1 and A2, let A(n)
denote the classification accuracy of M trained on the dataset selected by the
active learner A when the number of examples labeled by experts is n. Then,

IEA(A1, A2, ν) =

ν
∫

0

(A1(n) − A2(n))dn =
ν

∑

n=0

(A1(n) − A2(n))∆n (7)

Remote Sensing Problem. The remote sensing problem is based on data collected
from real landmines1. In this problem, there are a total of 29 sets of data, col-
lected from different landmine fields. Each data is represented as a 9-dimensional
feature vector extracted from radar images, and the class label is true mine or
false mine. Since each of the 29 datasets are collected from different regions that
may have different types of ground surface conditions, these datasets are con-
sidered to be dominated by different distributions. According to [17], datasets
1 to 10 are collected at foliated regions while datasets 20 to 24 are collected
from regions that are bare earth or desert. Then, we combine the datasets 1 to
5 as the unlabeled in-domain dataset, while the datasets 20 to 24 as the labeled
out-of-domain dataset respectively. Furthermore, we also combine datasets 6 to
10 as another out-of-domain dataset that is assumed to have a very similar dis-
tribution with the in-domain dataset. We conduct the experiment 10 times and

1 http://www.ee.duke.edu/∼lcarin/LandmineData.zip
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Table 3. Accuracy comparisons on remote sensing (landmine) dataset

Out-of-domain Dataset SVM TrAdaBoost(100 iterations) AcTraK IEA(AcTraK, ERS, 100)
Dataset 20 57% 89.76% 94.49% +0.101
Dataset 21 57% 86.04% 94.48% +0.108
Dataset 22 57% 90.5% 94.49% +0.103
Dataset 23 57% 88.42% 94.49% +0.123
Dataset 24 57% 90.7% 94.49% +0.12

Dataset 6-10 57% 94.76% 94.49% +0.134

Note: The results of AcTraK under the 4th column is when only one example is
labeled by experts.

randomly select two examples (one with label “true” while the other with label
“false”) as the initial training set each time. The experiment results are averaged
and summarized in Table 3.

The first 5 rows of Table 3 show that AcTraK outperforms TrAdaBoost when
the in-domain dataset is not so similar to the out-of-domain dataset (Dataset 20
to Dataset 24). Moreover, AcTraK also outperforms the active learner ERS in
all cases. When the in-domain dataset is similar with the out-of-domain dataset
(Dataset 6-10), AcTraK achieves the highest gain on ERS, demonstrating domain
transfer can improve learning and reduce number of examples labeled by experts.

Text Classification Problem. Another set of experiment on text classification
problem uses the 20 Newsgroups. It contains approximately 20,000 newsgroup
documents, partitioned across 20 different newsgroups. We generate 6 cross-
domain learning tasks. 20 Newsgroups has a two-level hierarchy so that each
learning task involves a top category classification problem but the training and
test data are drawn from different sub categories. For example, the goal is to dis-
tinguish documents from two top newsgroup categories: rec and talk. So a train-
ing set involves documents from “rec.autos”, and “talk.politics.misc” whereas
the test set includes sub-categories “rec.sport.baseball” “talk.religions.misc”, etc.
The strategy is to split the sub-categories among the training and the test sets
so that the distributions of the two sets are similar but not exactly the same.
The tasks are generated in the same way as in [4] and more details can be found
there. Similar to other experiments, each of the in-domain datasets has only
2 randomly selected labeled examples, one positive and another negative. Re-
ported results in Table 4 are averaged over 10 runs. The results of the first two
datasets are also plotted in Fig 8.

It is important to note that the classification results of AcTraK shown in Fig 4
is when the number of examples labeled by experts is 250. It is relatively small
in size since each dataset in our experiment has 3500 to 3965 unlabeled docu-
ments ([4]). As summarized in Table 4, TrAdaBoost can increase the learning
accuracy in some cases, such as with the dataset “comp vs. talk”. However, one
can hardly guarantee that the exclusive use of transfer learning is enough to learn
the current task. For example, when the dataset is “comp vs. sci”, TrAdaBoost
does not increase the accuracy significantly. But the proposed algorithm AcTraK
can achieve an accuracy 78% compared with 57.3% given by TrAdaBoost. It im-
plies the efficiency of AcTraK to actively gain its knowledge both from transfer
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(a) rec vs. talk (b) rec vs. sci

Fig. 8. Comparisons with ERS on 20 Newsgroups dataset

Table 4. Accuracy comparisons on 20 Newsgroups dataset

Dataset SVM TrAdaBoost(100 iterations) AcTraK IEA(AcTraK, ERS, 250)
rec vs. talk 60.2% 72.3% 75.4% +0.91
rec vs. sci 59.1% 67.4% 70.6% +1.83

comp vs. talk 53.6% 74.4% 80.9% +0.21
comp vs. sci 52.7% 57.3% 78.0% +0.88
comp vs. rec 49.1% 77.2% 82.1% +0.35
sci vs. talk 57.6% 71.3% 75.1% +0.84

learning and domain experts, while TrAdaBoost adopts the passive strategy to
thoroughly depend on transfer learning. In addition, from Table 4 and Fig 8,
we find that AcTraK can effectively reduce the number of examples labeled by
experts as compared with ERS. For example, upon the dataset “rec vs. talk”, to
reach the accuracy 70%, AcTraK is with 160 examples labeled by experts while
ERS needs over 230 such examples.

4 Related Work

Transfer learning utilizes the knowledge from other domain(s) to help learn the
current domain so as to resolve label deficiency. One of the main issues in this
area is how to resolve the different data distributions. One general approach
proposed to solve the problem with different data distributions is based on in-
stance weighting (e.g., [2][4][5][10][7]). The motivation of these methods are to
“emphasize” those “similar” and discriminated instances. Another line of work
tries to change the representation of the observation x by projecting them into
another space in which the projected instances from different domains are similar
to each other (e.g., [1][12]). Most of the previous work assume that the knowl-
edge transferred from other domain(s) can finally help the learning. However,
this assumption can be easily violated in practice. The knowledge transferred
from other domains may reduce the learning accuracy due to implicit domain
differences. We call it the domain difference risk, and we effectively solve the
problem by actively transfer the knowledge across domains to help the learning
only when they are useful.

Active learning is another way to solve label deficiency. It mainly focuses on
carefully selecting a few additional examples for which it requests labels, so as
to increase the learning accuracy. Thus, different active learners use different
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selection criteria. For example, uncertainty sampling (e.g., [9][18]) selects the
example on which the current learner has lower certainty; Query-by-Committee
(e.g., [6][13]) selects examples that cause maximum disagreement amongst an
ensemble of hypotheses, etc. There are also some other topics proposed in recent
years to resolve different problems in active learning, such as the incorporation
of ensemble methods (e.g., [8]), the incorporation of model selection (e.g., [15]),
etc. It is important to mention that the examples selected by the previous active
learners are more or less uncertain to be labeled directly by the in-domain clas-
sifier. Then in this paper, we use the knowledge transferred from other domain
to help label these selected examples, so as to reduce labeling cost.

5 Conclusion

We propose a new framework to actively transfer the knowledge from other do-
main to help label the instances from the current domain. To do so, we first select
an essential example and then apply a transfer classifier to label it. But if the
classification given by the transfer classifier is of low confidence, we ask domain
experts instead to label the example. We develop Theorem 2 to demonstrate
that this strategy can effectively resolve domain difference risk by transferring
domain knowledge only when they are useful. Furthermore, we also derive Theo-
rem 3 to prove that the proposed framework can reduce labeling cost by querying
fewer examples labeled by experts, as compared with traditional active learn-
ers. In addition, we also propose a new transfer learning model adopted in the
framework, and this transfer learning model is bounded to be no worse than an
instance-based ensemble method in error rate, proven in Theorem 1. There are
at least two important advantages of the proposed approach. First, it effectively
solves the domain difference risk problem that can easily make transfer learning
fail. Second, most of previous active learning models can be directly adopted in
the framework to reduce the number of examples labeled by experts.

We design a few synthetic datasets to study how the proposed framework re-
solves domain difference and reduce the number of examples labeled by experts.
The proposed sampling error bound in Theorem 2 and querying bound in Theo-
rem 3 are also empirically demonstrated to be tight bounds in this experiment.
Furthermore, two categories of real world datasets, including remote sensing and
text classification datasets have been used to generate several transfer learning
problems. Experiment shows that the proposed method can significantly out-
perform the comparable transfer learning model by resolving domain difference.
For example, with one of the text classification datasets, the proposed method
achieves an accuracy 78.0%, while the comparable transfer learning model drops
to 57.3%, due to domain difference. Moreover, the proposed method can also
effectively reduce labeling cost by querying fewer examples labeled by experts
as compared with the traditional active learner. For instance, in an experiment
on the text classification problem, the comparable active learner requires over
230 examples labeled by experts to gain the accuracy 70%, while the proposed
method is with at most 160 such examples to reach the same accuracy.



Actively Transfer Domain Knowledge 357

References

1. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations
for domain adaptation. In: Proc. of NIPS 2006 (2007)

2. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing training
and test distributions. In: Proc. of ICML 2007 (2007)
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