
Michael D. Ernst

Curriculum Vitae

Date: May 2008 Full Name: Michael D. Ernst

Department: University of Washington, Computer Science & Engineering

1. Date of Birth:

March 14, 1967

2. Citizenship:

USA

3. Education:

School Degree Date

MIT S.B., EECS June 1989

MIT S.M., EECS September 1992

U. of Washington M.S., Computer Science & Engineering March 1997

U. of Washington Ph.D., Computer Science & Engineering August 2000

4. Title of Thesis for Most Advanced Degree:

Dynamically Discovering Likely Program Invariants

5. Principal Fields of Interest:

Software engineering; programmer productivity tools and methodology; reverse engineering; program un-

derstanding; programming environments; program analysis; programming language design; formal meth-

ods; dynamic analysis; machine learning.

6. Employment:

Employer Position Beginning Ending

Texas Instruments Summer intern May 1986 Sep. 1989

Microsoft Software Design Engineer Sep. 1992 Mar. 1993

Microsoft Researcher Mar. 1993 Aug. 1995

Rice University Lecturer Sept. 1995 May 1996

U. of Washington Research Assistant Sept. 1996 Aug. 2000

MIT Assistant Professor Sep. 2000 Feb. 2005

MIT Associate Professor Feb. 2005 Dec. 2008

U. of Washington Associate Professor Jan. 2009 present

1



7. Consulting Record:

Firm Beginning Ending

GraniteStream Oct. 2001 May 2003

Mercury Interactive July 2004 July 2005

Institute for Defense Analyses Jan. 2006 present

Kestrel Technology Nov. 2006 present

McKinsey & Co. Sep. 2007 Jan. 2008

Sugarman & Sugarman May 2008 present

Samsung Dec 2009 present

8. University Committees, Other Assigned Duties:

Activity Beginning Ending

MIT EECS undergraduate counselor Fall 2000 Spring 2007

MIT EECS Graduate Admission Committee Dec. 2000 April 2004

MIT Course 16 Faculty Search Committee Fall 2000 Spring 2001

MIT Co-faculty advisor, ACM programming contest team Spring 2001 Spring 2001

MIT Faculty advisor, Eta Kappa Nu (EECS honor society) Oct. 2002 Nov 2008

MIT EECS Sprowls/ACM Dissertation Award Committee Fall 2004 Spring 2007

MIT AA/EECS Faculty Search Committee Jan. 2005 June 2006

MIT EECS Graduate Admission Committee Dec. 2006 April 2007

UW curriculum revision committee Jan. 2009 present

UW chair, BS/MS committee May 2010 present

9. Professional Service:

Activity Beginning Ending

External reviewer, U.S. Congressional Office of Technology Assessment

“Computer Software and Intellectual Property” project 1991 1992

Steering Committee chair, PASTE (ACM Program Analysis for Software

Tools and Engineering workshop) 2005 2007

Steering Committee member, PASTE (ACM Program Analysis for Software

Tools and Engineering workshop) 2007 2008

Expert Group member, JCP-305 Annotations for Software Defect Detection 2006 present

Specification Lead, JCP-308 Annotations on Java Types 2006 present

In 2003, I co-founded the WODA (Workshop on Dynamic Analysis) workshop series, which has run

annually since.

Program Committees

Activity Year

Chair, IR 1995. ACM SIGPLAN Intermediate Representations Workshop 1995

2



RV 2001. Workshop on Runtime Verification 2001

NEPLS 4. Fourth New England Programming Languages and Systems Symposium 2001

SCAM 2001. IEEE International Workshop on Source Code Analysis and Manipulation 2001

Chair, NEPLS 5. Fifth New England Programming Languages and Systems Symposium 2002

NEPLS 6. Sixth New England Programming Languages and Systems Symposium 2002

RV 2002. Second Workshop on Runtime Verification 2002

FSE 2002. ACM Tenth International Symposium on the Foundations of Software Engineering 2002

PASTE 2002. ACM Workshop on Program Analysis for Software Tools and Engineering 2002

Co-chair, WODA 2003. Workshop on Dynamic Analysis 2003

eTX 2004. Eclipse Technology Exchange Workshop 2003

PL Day 2004. IBM Programming Language Day Workshop 2004

ICSE 2004. 26th International Conference on Software Engineering 2004

WODA 2004. Workshop on Dynamic Analysis 2004

PASTE 2004. ACM Workshop on Program Analysis for Software Tools and Engineering 2004

FTfJP 2004. Formal Techniques for Java-like Programs Workshop 2004

POPL 2005. ACM Symposium on Principles of Programming Languages 2005

ESDDT 2005 (“Bugs 2005”). Workshop on the Evaluation of Software Defect Detection Tools 2005

Co-chair, PASTE 2005. ACM Workshop on Program Analysis for Software Tools and Engineering 2005

VSTTE 2005. Verified Software: Theories, Tools, Experiments 2005

CC 2006. International Conference on Compiler Construction 2006

WODA 2006. Workshop on Dynamic Analysis 2006

PLDI 2006. ACM Conference on Programming Language Design and Implementation 2006

ISSTA 2006. International Symposium on Software Testing and Analysis 2006

ECOOP 2006. European Conference on Object-Oriented Programming 2006

eTX 2006. Eclipse Technology Exchange Workshop 2006

ICSE 2007 Education Track. 29th International Conference on Software Engineering 2007

TAP 2007. Tests and Proofs 2007

ESEC-FSE 2007. European Software Engineering Conference and ACM International Symposium

on the Foundations of Software Engineering 2007

ISSTA 2008. International Symposium on Software Testing and Analysis 2008

HotSWUp 2008. ACM Workshop on Hot Topics in Software Upgrades 2008

ICSE 2009 Mentor Program. 31st International Conference on Software Engineering 2009

WODA 2009. Workshop on Dynamic Analysis 2009

In addition to program committee service noted above, I have served as an external referee for other

conferences, as a referee for journals, and as a panelist for grant proposals. An incomplete list of that

service is: Computer-aided Verification (CAV), Empirical Software Engineering Journal, Foundations of

Software Engineering (FSE), International Conference on Software Engineering (ICSE) education track,

International Joint Conference on Artificial Intelligence (IJCAI), International Journal of Software and In-

formatics (IJSI), International Symposium on Software Testing and Analysis (ISSTA), National Science

Foundation (NSF), Netherlands Organization for Scientific Research (NWO), ACM SIGPLAN Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),

ACM Conference on Programming Language Design and Implementation (PLDI), ACM Symposium on

3



Principles of Programming Languages (POPL), ACM European SigOps Workshop, ACM Symposium on

Operating System Principles (SOSP), Swiss National Science Foundation, International Workshop on Test

and Analysis of Component Based Systems (TACoS), ACM Transactions on Programming Languages and

Systems (TOPLAS), ACM Transactions on Software Engineering and Methodology (TOSEM), IEEE Trans-

actions on Dependable and Secure Computing (TDSC), IEEE Transactions on Software Engineering (TSE).

10. Awards Received:

(Not including graduate fellowships or other graduate school and earlier awards.)

Award Date

ICSE 1999 paper selected for expedited journal publication May 1999

ICSE 2000 paper selected for expedited journal publication June 2000

U. of Washington William Chan Memorial Dissertation Award 2000

Honorable mention, ACM doctoral dissertation competition 2000

ICSM 2001 Best dissertation of past three years November 2001

NSF CAREER Award February 2002

VMCAI 2003 paper selected for expedited journal publication January 2003

IBM Eclipse Innovation Award 2003, 2004, 2005

ESEC/FSE 2003 ACM Distinguished Paper Award September 2003

Ross Career Development Professorship of Software Technology (MIT) July 2003

ICSE 2004 paper nominated for ACM Distinguished Paper Award May 2004

ASE 2005 paper nominated for Best Paper Award November 2005

IBM faculty award June 2006

ISSTA 2006 paper selected for expedited journal publication July 2006

ASE 2006 paper selected for expedited journal publication September 2006

Most Innovative JSR of the Year (Sun Microsystems JCP Program) May 2007

ICSE 2007 ACM Distinguished Paper Award May 2007

ESEC/FSE 2007 ACM Distinguished Paper Award September 2007

ASE 2007 paper selected for expedited journal publication November 2007

ISSTA 2008 paper selected for expedited journal publication July 2008

JavaOne 2009 Rock Star May 2009

ISSTA 2009 ACM Distinguished Paper Award July 2009

Inaugural IBM John Backus Award August 2009

11. Organization Membership:

Organization

Association for Computing Machinery (ACM)

Eta Kappa Nu (electrical engineering honor society)

Sigma Xi (scientific research honor society)

Tau Beta Pi (engineering honor society)

4



12. Patents and Patent Applications Pending:

1. Gideon A. Yuval and Michael Ernst, “Method and system for controlling unauthorized access to

information distributed to users,” U.S. Patent 5,586,186, December 17, 1996.

13. Professional Registration:

None.

14. Major New Projects, Processes, Designs, or Systems:

In order to permit others to reproduce my results and build upon my research, I make all my research artifacts

publicly available (most linked from http://pag.csail.mit.edu/˜mernst/software/, along with more

information about each; and others by request). Some of the more significant research systems that are used

by others include the following. Most of these were created in collaboration with my students and other

colleagues.

1. Daikon dynamically detects likely program invariants in C, C++, Java, Perl, and other languages.

Other researchers have since produced their own invariant detection systems. Almost 100 papers (that

I know of; see http://pag.csail.mit.edu/daikon/pubs-using/) use Daikon as an integral part

of their research methodology, and additional papers use Daikon as a test subject — for instance, to

evaluate regression testing tools, because Daikon has both a version control repository and a test suite.

Daikon is being used internally by a number of companies, and is being commercialized by Agitar,

Determina, and Scrutiny (that I know of). Regarding Agitar’s outgrowth from Daikon, see their ISSTA

2006 paper “From Daikon to Agitator: Lessons and Challenges in Building a Commercial Tool for

Developer Testing”. Agitar’s awards include Java One Duke’s Choice, Jolt award, the Wall Street

Journal Software Technology Innovation Award, and InfoWorld Technology of the Year.

2. We have built sound, precise, and scalable systems that introduce parametric polymorphism (generic

types) in Java programs. The built-in generics refactoring in Eclipse — the most widely-used Java

integrated development environment (IDE) — stems from one part of this work.

3. Continuous testing augments an IDE to rapidly indicate semantic errors, just as they already do for

syntactic errors. The key idea is to run tests in the background and indicate test failures. Careful user

interface design results in a system that helps — not annoys — programmers, as indicated by case

studies and controlled experiments. Continuous testing is a popular plug-in for Eclipse.

4. Version 4 of the popular and widely-used JUnit regression testing framework was built in part in my

group, by David Saff (in conjunction with Kent Beck and Erich Gamma).

5. The JUnit plug-in distributed with Eclipse (version 3.2 and later) was built in my group, by David

Saff and others. It replaced a previous version built by the Eclipse team that had lesser functionality.

6. Test factoring is a capture–replay technique for converting a long-running system test into a collection

of fast unit tests that exercise software components in the same way the system test did. Our imple-

mentation scales to programs of hundreds of thousands of lines, and others have since produced their

own implementations.

5



7. Eclat automatically generates test inputs. It uses a novel selection mechanism to present to the user

only the candidate tests that are most likely to indicate bugs or deficiencies in an existing test suite.

The Joe and Randoop systems implement feedback-directed random test generation, integrating test

generation and execution to improve each one. Palulu implements model-directed random test gen-

eration, inferring and using temporal interface models to enable generation of complex but legal tests

that are similar to, but not identical to, previously observed behavior. Given an initial test suite, the

latter three systems propose additional tests that are likely to reveal errors. Collectively, these four

systems have found hundreds of errors in the Sun and IBM Java Development Kits (JDKs), and in the

Microsoft equivalent (the Common Language Runtime), which are heavily-tested, widely-deployed

commercial infrastructure.

8. Javari is a language that extends Java by permitting the specification and enforcement of reference

immutability constraints. A compiler for the language is available, and over 160,000 lines of Javari

code exist.

9. We have proposed an extension to Java’s annotation system that generalizes it and makes it useful

for type qualifiers and other uses. Sun has agreed to incorporate the extended annotations (in Java

parlance, “JSR 308”) in the Java 7 language. We have built a reference implementation: a modification

of the javac compiler that accepts the annotations and stores them in class files, and compile-time and

load-time type checkers for type qualifiers, such as “non-null”.

10. The Fjalar toolkit enables instrumentation of compiled executables (currently for Linux/x86). It com-

bines the benefits of binary and source rewriting through a “mixed-level” approach. It is the basis for

a value profiling tool (Kvasir) and an abstract type inference (DynComp).

11. DynComp infers abstract types for Java, C, and C++ programs. Programmers often use primitive

types such as int (integer) to stand for a variety of concepts: array index, character, day of month, file

descriptor, seconds since 1970, etc. DynComp partitions the uses into finer-grained abstract types, one

per concept. It is a dynamic analysis that tracks value flows through a program to determine which

values interact with one another (and so can be assumed to be of related abstract types).

12. The Groupthink Specification Exercise is a fun group activity that teaches students the value of spec-

ifications, the difficulty of creating them, and various approaches for doing so. It has been used in

institutions from Boston to Seattle. I distribute, handouts, lecture slides, instructors’ notes, and op-

tional software that automates running the activity.

13. The PittSFIeld tool, built in the Program Analysis group by Stephen McCamant, performs efficient

sandboxing for the x86 architecture, which presents challenges (such as variable-length instructions)

over RISC systems for which sandboxing had been previously applied.

14. Medic was the first tool for compiling a problem into SAT, or logical satisfiability. (The idea was due

to Kautz and Selman, but this is the first implementation.) Such a transformation is valuable because

much research has addressed making SAT compilation very fast. Today, solving problems by reducing

them to SAT is a very common technique used in all fields of computer science.

6



15. The Gamesman’s Toolkit facilitates combinatorial game-theoretic analysis of complete-information

games. I extended it with support for analyzing the ancient Hawaiian game of Konane.

16. Subject programs from my experiments are often requested by other researchers who do not wish to

go to the trouble of collecting and organizing realistic programs that can be used to validate research

in testing and other areas of software engineering.

Other software systems stemming from my research that are used by others include cppp (a partial

evaluator for cpp, the C preprocessor), Gud (a prototype implementation of predicate dispatching), and

contributions to the IOA toolkit distributed by Nancy Lynch’s Theory of Distributed Systems group. Edu-

cational contributions include infrastructure for supporting programming classes. Widely used software not

stemming from research includes EDB (a database system), contributions to Emacs and other free software,

bibtex2web (software for creating web pages from BibTEX bibliography files), and others.

7



Teaching Experience of Michael D. Ernst

1. Teaching Experience

Term Subject Title Role Type Eval.

survey

FT 95 Comp212 Intermediate Programming (Rice University) Lectures, in charge Lab Yes

FT 95 Comp410 Software Engineering (Rice University) Lectures, in charge Design Yes

FT 96 Comp210 Principles of Computing and Programming (Rice Univ.) Recitations (2) Lecture Yes

ST 96 Comp212 Intermediate Programming (Rice University) Lectures, in charge Lab Yes

FT 00 6.170 Laboratory in Software Engineering Lectures, development Lab Yes

IAP 01 6.187 “6.370” Programming Competition Lectures, in charge Design No

ST 01 6.170 Laboratory in Software Engineering Lectures, in charge Lab Yes

ST 01 6.897 Modeling and Analyzing Complicated Systems Some lectures Lecture Yes

FT 01 6.893 Program Analysis for Software Engineering Lectures, in charge Seminar No

IAP 02 6.187 “6.370” Programming Competition In charge Design No

IAP 02 6.EPW Undergraduate Practice Opportunities Program Some lectures Lab Yes

ST 02 6.033 Computer System Engineering Recitations (2) Lecture Yes

FT 02 6.821 Programming Languages Lectures, in charge Lecture Yes

IAP 03 6.187 “6.370” Programming Competition In charge Design No

IAP 03 6.EPW Undergraduate Practice Opportunities Program Some lectures Lab Yes

ST 03 6.170 Laboratory in Software Engineering Lectures, in charge Lab Yes

FT 03 Junior faculty leave

IAP 04 6.187 “6.370” Programming Competition In charge Design No

IAP 04 6.EPW Undergraduate Practice Opportunities Program Some lectures Lab Yes

ST 04 6.033 Computer System Engineering Recitations (2) Lecture Yes

FT 04 6.821 Programming Languages Lectures, in charge Lecture Yes

IAP 05 6.187 “6.370” Programming Competition In charge Design No

IAP 05 6.EPW Undergraduate Practice Opportunities Program Some lectures Lab Yes

ST 05 6.170 Laboratory in Software Engineering Lectures, in charge Lab Yes

FT 05 6.883 Program Analysis Lectures, in charge Lecture Yes

IAP 06 6.187 “6.370” Programming Competition In charge Design No

IAP 06 6.EPW Undergraduate Practice Opportunities Program Some lectures Lab Yes

ST 06 6.170 Laboratory in Software Engineering Lectures, in charge Lab Yes

FT 06 Parental release

IAP 07 6.187 “6.370” Programming Competition In charge Design No

IAP 07 6.EPW Undergraduate Practice Opportunities Program Some lectures Lab Yes

ST 07 6.170 Laboratory in Software Engineering Lectures, in charge Lab Yes

FT 07 Parental release

2. Teaching Evaluation Data

(For courses taught during the last three academic years, that I was substantially involved in, and for which

teaching evaluation data was collected.)

8



Teaching Experience of Michael D. Ernst

Term Subject Total # Total # Survey Instructor Overall

number students survey form teaching course

registered responses used quality quality

ST05 6.170 74 not rated (reviewer did not show up)

FT05 6.883 20 16 EECS 6.0 5.6

ST06 6.170 96 56 EECS 5.8 5.7

FT06 Parental release

ST07 6.170

FT07 Parental release

3. Other Educational Contribution

At Rice University, in addition to teaching existing subjects, I introduced a new senior-level project-

oriented laboratory in software engineering. I also re-designed from scratch the second subject in computing,

which focuses on data structures and algorithms while also introducing C++ and principles for program

design and structuring.

At MIT, I created a new graduate class (6.893, later 6.883) covering static program analysis, dynamic

program analysis, and the synergy between them, with a particular emphasis on analyses that assist humans

in performing programming tasks.

For 6.170 (Laboratory in Software Engineering), I introduced a new approach in which students revise

and re-submit the assignments. This “re-turnin” gives students a chance to learn from and correct their

mistakes. Students get a small taste of working on (their own) legacy code, helping them to appreciate

the benefits of good design and documentation. Students are given a few re-turnin tries, but credit for the

re-turnin is all-or-nothing, so students are motivated to apply the intellectual tools of the course: testing,

reasoning, etc.

Also for 6.170, I helped create substantial infrastructure supporting turning in assignments, grading them

(both for automated feedback to students and to assist graders), and other aspects. I created new assignments

(now used nationwide as others have adopted them), updated the class by introducing many new program

development tools, and developed new lectures on several topics. I addressed a serious and long-standing

problem (that students were well aware of) by running plagiarism detection tools and prosecuting cheaters.

For the Undergraduate Practice Opportunities Program (UPOP), I created a popular segment on spec-

ifications. The Groupthink Specification Exercise uses a gameshow format in which students compete in

defining the behavior of a telephone answering machine, and using their specifications to answer questions.

I created, and distribute to other instructors, the content and supporting software; it has been used in multiple

other institutions. I have also published two papers describing the activity.

I have been in charge of 6.187, a programming competition run each IAP, since its inception. This

programming competition is unlike some, which emphasize speed, in that it uses much more complicated

(and realistic) problem domains and runs for a full month, thus exercising and testing more realistic software

development skills.

All my course materials are available on the web — sometimes excluding solutions and infrastructure,

which are available on request.

9



Publications of Michael D. Ernst

Hyperlinks to all abstracts and papers are available at http://pag.csail.mit.edu/˜mernst/pubs/.

(“*” indicates outgrowth of supervised student research.)

1. Books:

(None.)

2. Papers in Refereed Journals:

1. Ernst, Michael D. “Playing Konane Mathematically: A Combinatorial Game-Theoretic Analysis,”

UMAP Journal vol. 16, no. 2, pp. 95–121, 1995.

2. Ernst, Michael D., Jake Cockrell, William G. Griswold, and David Notkin. “Dynamically Discovering

Likely Program Invariants to Support Program Evolution,” IEEE Transactions on Software Engineer-

ing, vol. 27, pp. 1–25, February 2001.

3. Wilmer, Elizabeth L. and Michael D. Ernst. “Graphs induced by Gray codes,” Discrete Mathematics,

vol. 257, pp. 585–598, November 28, 2002.

4. Ernst, Michael D., Greg J. Badros, and David Notkin. “An Empirical Analysis of C Preprocessor

Use,” IEEE Transactions on Software Engineering, vol. 28, no. 12, pp. 1146–1170, December 2002.

5. Ne Win, Toh, Michael D. Ernst, Stephen J. Garland, Dilsun Kırlı, and Nancy Lynch. “Using simulated

execution in verifying distributed algorithms,” Software Tools for Technology Transfer, vol. 6, no. 1,

pp. 67–76, July 2004. *

6. Burdy, Lilian, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan

M. Leino, and Erik Poll. “An overview of JML tools and applications,” Software Tools for Technology

Transfer, vol. 7, no. 3, pp. 212–232, June 2005. *

7. Ernst, Michael D., Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.

Tschantz, and Chen Xiao. “The Daikon system for dynamic detection of likely invariants,” Science of

Computer Programming, vol. 69, pp. 35–45, 2007. *

3. Papers in Proceedings of Refereed Conferences:

(Other than early versions of those above.)

1. Ernst, Michael D. and Bruce E. Flinchbaugh. “Image/map correspondence using curve matching,”

AAAI Robot Navigation Symposium, 4 pp., March 1989.

2. Weise, Daniel, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. “Value dependence graphs:

Representation without taxation,” POPL 94: ACM Symposium on Principles of Programming Lan-

guages, pp. 297–310, January 1994.

10



Publications of Michael D. Ernst

3. Ernst, Michael D., Todd D. Millstein, and Daniel S. Weld. “Automatic SAT-compilation of planning

problems,” IJCAI-97: 15th International Joint Conference on Artificial Intelligence, Nagoya, Aichi,

Japan, pp. 1169–1176, August 23–29, 1997.

4. Ernst, Michael D., Craig Kaplan, and Craig Chambers. “Predicate dispatching: A unified theory

of dispatch,” ECOOP 98: 12th European Conference on Object-Oriented Programming, Brussels,

Belgium, pp. 186–211, July 20–24, 1998.

5. Ernst, Michael D., Adam Czeisler, William G. Griswold, and David Notkin. “Quickly detecting

relevant program invariants,” ICSE 2000: 22nd International Conference on Software Engineering,

Limerick, Ireland, pp. 449–458, June 7–9, 2000.

6. Nimmer, Jeremy W. and Michael D. Ernst. “Static verification of dynamically detected program

invariants: Integrating Daikon and ESC/Java,” RV’01: First Workshop on Runtime Verification, Paris,

France, 22 pp., July 23, 2001. *

7. Kataoka, Yoshio, Michael D. Ernst, William G. Griswold, and David Notkin. “Automated support for

program refactoring using invariants,” ICSM’01, International Conference on Software Maintenance,

Florence, Italy, pp. 736–743, November 6–10, 2001.

8. Nimmer, Jeremy W. and Michael D. Ernst. “Automatic generation of program specifications,” IS-

STA’02, International Symposium on Software Testing and Analysis, Rome, Italy, pp. 232–242, July

22–24, 2002. *

9. Nimmer, Jeremy W. and Michael D. Ernst. “Invariant inference for static checking: An empiri-

cal evaluation,” FSE’02, 10th International Symposium on the Foundations of Software Engineering,

Charleston, SC, pp. 11–20, November 18–22, 2002. *

10. Harder, Michael, Jeff Mellen, and Michael D. Ernst. “Improving test suites via operational abstrac-

tion,” ICSE’03, 25th International Conference on Software Engineering, Portland, Oregon, pp. 60–71,

May 6–8, 2003. *

11. Ernst, Michael D. “Static and dynamic analysis: Synergy and duality,” WODA 2003: ICSE Workshop

on Dynamic Analysis, Portland, Oregon, pp. 24–27, May 9, 2003.

12. McCamant, Stephen and Michael D. Ernst. “Predicting problems caused by component upgrades,”

ESEC/FSE 2003: 10th European Software Engineering Conference and the 11th ACM SIGSOFT

Symposium on the Foundations of Software Engineering, Helsinki, Finland, pp. 287–296, September

3–5, 2003. *

13. Saff, David and Michael D. Ernst. “Reducing wasted development time via continuous testing,”

ISSRE 2003, Fourteenth International Symposium on Software Reliability Engineering, Denver, CO,

pp. 281–292, November 17–20, 2003. *

14. Lin, Lee and Michael D. Ernst. “Improving reliability and adaptability via program steering,” IS-

SRE 2003, Fourteenth International Symposium on Software Reliability Engineering, Denver, CO,

pp. 313–314, November 17–20, 2003. *

11



Publications of Michael D. Ernst

15. Saff, David and Michael D. Ernst. “Continuous testing in Eclipse,” eTX, 2nd Eclipse Technology

Exchange Workshop, Barcelona, Spain, 15 pp., March 30, 2004. *

16. Brun, Yuriy and Michael D. Ernst. “Finding latent code errors via machine learning over program ex-

ecutions,” ICSE 2004, 25th International Conference on Software Engineering, Edinburgh, Scotland,

pp. 480–490, May 26–28, 2004. *

17. Saff, David and Michael D. Ernst. “Automatic mock object creation for test factoring,” PASTE’04,

ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, Wash-

ington, DC, USA, pp. 49–51, June 7–8, 2004. *

18. McCamant, Stephen and Michael D. Ernst. “Early identification of incompatibilities in multi-component

upgrades,” ECOOP 2004, Object-Oriented Programming, 18th European Conference, Olso, Norway,

pp. 440–464, June 14–18, 2004. *

19. Saff, David and Michael D. Ernst. “An experimental evaluation of continuous testing during develop-

ment,” ISSTA 2004, International Symposium on Software Testing and Analysis, Boston, MA, USA,

pp. 76–85, July 12–14, 2004. *

20. Lin, Lee and Michael D. Ernst. “Improving adaptability via program steering,” ISSTA 2004, Inter-

national Symposium on Software Testing and Analysis, Boston, MA, USA, pp. 206–216, July 12–14,

2004. *

21. Donovan, Alan, Adam Kieżun, Matthew S. Tschantz, and Michael D. Ernst. “Converting Java pro-

grams to use generic libraries,” OOPSLA 2004, Object-Oriented Programming Systems, Languages,

and Applications, Vancouver, BC, Canada, pp. 15–34, October 26–28, 2004. *

22. Birka, Adrian and Michael D. Ernst. “A practical type system and language for reference immutabil-

ity,” OOPSLA 2004, Object-Oriented Programming Systems, Languages, and Applications, Vancou-

ver, BC, Canada, pp. 35–49, October 26–28, 2004. *

23. Perkins, Jeff H. and Michael D. Ernst. “Efficient incremental algorithms for dynamic detection of

likely invariants,” FSE 2004, ACM SIGSOFT 12th Symposium on the Foundations of Software Engi-

neering, Newport Beach, CA, USA, pp. 23–32, November 2–4, 2004. *

24. Pacheco, Carlos and Michael D. Ernst. “Eclat: Automatic generation and classification of test inputs,”

ECOOP 2005, Object-Oriented Programming, 19th European Conference, Glasgow, Scotland, pp.

504–527, July 25–29, 2005. *

25. Williams, Amy, William Thies, and Michael D. Ernst. “Static deadlock detection for Java libraries,”

ECOOP 2005, Object-Oriented Programming, 19th European Conference, Glasgow, Scotland, pp.

602–629, July 25–29, 2005. *

26. Ernst, Michael D. “Verification for legacy programs,” VSTTE 2005, Verified Tools: Theories, Tools,

Experiments, Zürich, Switzerland, 6 pp., October 10–13, 2005.

12



Publications of Michael D. Ernst

27. Tschantz, Matthew S. and Michael D. Ernst. “Javari: Adding reference immutability to Java,” OOP-

SLA 2005, Object-Oriented Programming Systems, Languages, and Applications, San Diego, CA,

USA, pp. 211–230, October 18–20, 2005. *

28. Artzi, Shay and Michael D. Ernst. “Using predicate fields in a highly flexible industrial control

system,” OOPSLA 2005, Object-Oriented Programming Systems, Languages, and Applications, San

Diego, CA, USA, pp. 319–330, October 18–20, 2005. *

29. Saff, David, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst. “Automatic test factoring for Java,”

ASE 2005: 21st Annual International Conference on Automated Software Engineering, Long Beach,

CA, USA, pp. 114–123, November 9–11, 2005. *

30. Ernst, Michael D., Raimondas Lencevicius, and Jeff H. Perkins. “Detection of web service substi-

tutability and composability,” WS-MaTe 2006, International Workshop on Web Services — Modeling

and Testing, Palermo, Italy, pp. 123–135, June 9, 2006.

31. Demsky, Brian, Michael D. Ernst, Philip J. Guo, Stephen McCamant, Jeff H. Perkins, and Martin

Rinard. “Inference and enforcement of data structure consistency specifications,” ISSTA 2006, Inter-

national Symposium on Software Testing and Analysis, Portland, ME, USA, pp. 233–243, July 18-20,

2006. *

32. Guo, Philip J., Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst. “Dynamic inference of

abstract types,” ISSTA 2006, International Symposium on Software Testing and Analysis, Portland,

ME, USA, pp. 255–265, July 18-20, 2006. *

33. d’Amorim, Marcelo, Carlos Pacheco, Darko Marinov, Tao Xie, and Michael D. Ernst. “An empirical

comparison of automated generation and classification techniques for object-oriented unit testing,”

ASE 2006: 21st Annual International Conference on Automated Software Engineering, Tokyo, Japan,

pp. 59–68, September 20–22, 2006. *

34. Artzi, Shay, Michael D. Ernst, David Glasser, Adam Kieżun, Carlos Pacheco, and Jeff H. Perkins.

“Finding the needles in the haystack: Generating legal test inputs for object-oriented programs,” M-

TOOS 06, 1st Workshop on Model-Based Testing and Object-Oriented Systems, Portland, OR, USA,

8 pp., October 23, 2006. *

35. Ernst, Michael D. “The Groupthink specification exercise,” in Software Engineering Education in the

Modern Age: Challenges and Possibilities, vol. 4309 of LNCS, pp. 89–107, December, 2006.

36. Kieżun, Adam, Michael D. Ernst, Frank Tip, and Robert M. Fuhrer. “Refactoring for parameterizing

Java classes,” ICSE 2007, 29th International Conference on Software Engineering, Minneapolis, MN,

USA, pp. 437–446, May 23–25, 2007. *

37. Pacheco, Carlos, Shuvendu K. Lahiri, Michael D. Ernst, Thomas Ball. “Feedback-directed random

test generation,” ICSE 2007, 29th International Conference on Software Engineering, Minneapolis,

MN, USA, pp. 75–84, May 23–25, 2007. *

13



Publications of Michael D. Ernst

38. Stephen McCamant and Michael D. Ernst. “A simulation-based proof technique for dynamic infor-

mation flow,” PLAS 2007: ACM SIGPLAN Workshop on Programming Languages and Analysis for

Security, San Diego, California, USA, June 14, 2007. *

39. Sunghun Kim and Michael D. Ernst. “Which warnings should I fix first?” ESEC/FSE 2007: 11th

European Software Engineering Conference and the 15th ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering, Dubrovnik, Croatia, pp. 45–54, September 5–7, 2007.

40. Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieun, and Michael D. Ernst. “Object and

reference immutability using Java generics,” ESEC/FSE 2007: 11th European Software Engineering

Conference and the 15th ACM SIGSOFT Symposium on the Foundations of Software Engineering,

Dubrovnik, Croatia, pp. 75–84, September 5–7, 2007. *

41. Artzi, Shay, Adam Kieżun, David Glasser, and Michael D. Ernst. “Combined static and dynamic

mutability analysis,” ASE 2007: 22nd International Conference on Automated Software Engineering,

Atlanta, GA, USA, pp. 104–113, November 7–9, 2007. *

42. McCamant, Stephen and Michael D. Ernst. “Quantitative Information Flow as Network Flow Ca-

pacity,” Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and

Implementation, Tucson, AZ, USA, June 9–11, 2008. *

Quinonez, Jaime, Matthew S. Tschantz, and Michael D. Ernst. “Inference of reference immutability,”

ECOOP 2008 Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus, July 9-

11, 2008. *

43. Artzi, Shay, Sunghun Kim, and Michael D. Ernst. “ReCrash: Making software failures reproducible

by preserving object states,” ECOOP 2008 Object-Oriented Programming, 22nd European Confer-

ence Paphos, Cyprus, July 9-11, 2008. *

44. Papi, Matthew M., Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst.

“Practical pluggable types for Java,” ISSTA 2008, Proceedings of the 2008 International Symposium

on Software Testing and Analysis Seattle, WA, USA, July 22-24, 2008. *

45. Artzi, Shay, Adam Kieżun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and Michael D. Ernst.

“Finding bugs in dynamic web applications,” ISSTA 2008, Proceedings of the 2008 International

Symposium on Software Testing and Analysis, Seattle, WA, USA, July 22-24, 2008. *

4. Other Major Publications:

(Other than early versions of those above.)

1. Ernst, Michael D. “Adequate Models for Recursive Program Schemes,” Bachelor’s thesis, MIT De-

partment of Electrical Engineering and Computer Science, 42 pp., June 1989.

2. Ernst, Michael D. (editor). “Intellectual property in Computing: (How) should software be protected?

An industry perspective,” MIT Artificial Intelligence Laboratory Memo 1369, 26 pp., May 1992.

Video published as MIT Artificial Intelligence Laboratory Video 7, October 1990.

14



Publications of Michael D. Ernst

3. Ernst, Michael D. “Serializing Parallel Programs by Removing Redundant Computation,” Master’s

Thesis, MIT Department of Electrical Engineering and Computer Science, 95 pp., September 1992.

4. Ernst, Michael D. (editor). Proceedings of IR ’95: Intermediate Representations Workshop, January

22, 1995. ACM SIGPLAN Notices 30(3), 128 pp., March 1995.

5. Ernst, Michael D. (editor). “Dynamically Detecting Likely Program Invariants,” Ph.D. dissertation,

University of Washington, Department of Computer Science & Engineering, 142 pp., August 2000.

6. Notkin, David, Marc Donner, Michael D. Ernst, Michael Gorlick, and E. James Whitehead, Jr., “Panel:

Perspectives on software engineering” (position statement), ICSE 2002, 24th International Confer-

ence on Software Engineering, Montreal, Canada, pp. 699–702, May 16–18, 2002.

7. Cook, Jonathan E. and Michael D. Ernst (editors). Proceedings of WODA 2003: ICSE Workshop on

Dynamic Analysis, 52 pp., May 9, 2003.

8. Ernst, Michael D. and Thomas Jensen (editors). Proceedings of PASTE 2005, ACM SIGPLAN/SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering, 119 pp., September 5–6, 2005.

9. Ernst, Michael D. and Jeff H. Perkins. “Learning from Executions: Dynamic Analysis for Software

Engineering and Program Understanding,” Tutorial at ASE 2005: 20th Annual International Confer-

ence on Automated Software Engineering, Long Beach, CA, USA, November 7, 2005. *

10. Ernst, Michael D. “Annotations on Java types: JSR 308 working document,” 35 pp., November 12,

2007. *

5. Internal Memoranda and Progress Reports:

(Other than early versions of those above.)

1. Ernst, Michael D. and Gideon Yuval. “Heraclitean encryption,” Microsoft Research technical report

MSR-TR-94-13, March 3, 1994.

2. Ernst, Michael D. “Practical fine-grained static slicing of optimized code,” Microsoft Research tech-

nical report MSR-TR-94-14, July 26, 1994.

3. Ernst, Michael D. “Slicing pointers and procedures (abstract),” Microsoft Research technical report

MSR-TR-95-23, January 13, 1995.

4. Ernst, Michael D., William G. Griswold, Yoshio Kataoka, and David Notkin. “Dynamically discov-

ering pointer-based program invariants,” University of Washington Department of Computer Science

and Engineering technical report UW-CSE-99-11-02, November 16, 1999. Revised March 17, 2000.

5. Ne Win, Toh and Michael D. Ernst. “Verifying distributed algorithms via dynamic analysis and theo-

rem proving,” MIT Laboratory for Computer Science technical report 841, May 25, 2002. *

15



Publications of Michael D. Ernst

6. Dodoo, Nii, Lee Lin, and Michael D. Ernst. “Selecting, refining, and evaluating predicates for pro-

gram analysis,” MIT Laboratory for Computer Science technical report MIT-LCS-TR-914, July 21,

2003. *

7. Saff, David, Marat Boshernitsan, and Michael D. Ernst. “Theories in Practice: Easy-to-write speci-

fications that catch bugs,” by MIT Computer Science and Artificial Intelligence Laboratory technical

report MIT-CSAIL-TR-2008-002, January 14, 2008. *

6. Invited Lectures:

(Only talks since 2000 are listed. Talks at closed events (e.g., PI meetings) are not listed. Talks given by

co-authors are not listed.)

“Dynamically Detecting Likely Program Invariants”

Cornell University, February 15, 2000

University of Colorado at Boulder, February 24, 2000

University of California at San Diego, February 29, 2000

University of California at Berkeley, March 2, 2000

Stanford University, March 6, 2000

Georgia Institute of Technology, March 23, 2000

University of Massachusetts at Amherst, March 29, 2000

Carnegie Mellon University, April 3, 2000

University of Maryland, April 5, 2000

Massachusetts Institute of Technology, April 10, 2000

Boston University, September 25, 2000

University of Virginia, “Top Gun” Distinguished Lecture Series, November 13, 2000

Tufts University, November 20, 2000

Brown University, February 1, 2001

University of Southern California, February 21, 2001

Compaq Systems Research Center, February 22, 2001

University of California at Irvine, February 23, 2001

International Conference on Software Maintenance (ICSM), Florence, Italy, November 8, 2001

“Playing Konane Mathematically with Combinatorial Game Theory”

MIT, January 17, 2001

“Refactoring and static verification: Two applications of dynamic invariant detection”

University of Wisconsin at Madison, May 14, 2001

IBM T.J. Watson Research Center, August 8, 2001

Williams College, November 30, 2001

University of Washington, January 10, 2002

Rice University, January 15, 2002

McMaster University, January 25, 2002

“The future of software engineering” (panel)

International Conference on Software Engineering (ICSE), Montreal, Canada, May 18, 2001

16



Publications of Michael D. Ernst

“Static verification of dynamically detected program invariants”

Workshop on Runtime Verification (RV’01), Paris, France, July 23, 2001

Java Verification Workshop (JVW’01), Portland, Oregon, January 13, 2002

“Overview of dynamic invariant detection”

Brunel University, July 24, 2001

“Automated Support for Program Refactoring using Invariants”

International Conference on Software Maintenance (ICSM), Florence, Italy, November 9, 2001

“Using dynamic analysis to assist program verification”

Cambridge University, England, July 25, 2002

“Improving test suites via operational abstraction”

Carnegie Mellon University, February 3, 2003

Microsoft Research, May 2, 2003

International Conference on Software Engineering (ICSE), Portland, Oregon, May 6, 2003

IBM T.J. Watson Research Center (Distinguished Lecture), June 16, 2003

“Predicting problems caused by component upgrades”

University of Pittsburgh, February 4, 2003

Cambridge University and Microsoft Research, December 10, 2003

“Static and dynamic analysis: Synergy and duality”

ICSE Workshop on Dynamic Analysis (WODA), Portland, Oregon, May 9, 2003

Dagstuhl workshop Understanding Program Dynamics (keynote), December 1, 2003

Program Analysis and Software Tools for Engineering (PASTE) workshop (keynote), June 7, 2004

“Comparing dynamic program behaviors”

Dagstuhl workshop Understanding Program Dynamics, December 2, 2003

“Using dynamic analysis to assist theorem proving”

University of Limerick, December 12, 2003

“Improving adaptability via program steering”

Carnegie Mellon University, April 27, 2004

“Making the most of impoverished test suites: Automatic classification of test inputs and test factoring”

UW/MSR Summer Institute on Trends in Testing: Theory, Techniques and Tools (keynote), August 24, 2004

Philips Medical, October 4, 2004

ABB, November 19, 2004

“A practical type system and language for reference immutability”

Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), October

26, 2004

“Integrating reference immutability into the Java mainstream”

OOPSLA Workshop on the Java Platform: Tiger and Beyond, October 28, 2004

“Learning and repair techniques for self-healing systems”

DARPA Self-Regenerative Systems meeting, July 12, 2005

17



Publications of Michael D. Ernst

“Verification for legacy programs”

Conference on Verified Software: Theories, Tools, Experiments, October 10, 2005

“Eclat: Automatic generation and classification of test inputs”

University of Arizona, October 27, 2005

“Learning from executions: Dynamic analysis for program understanding and software engineering”

Tutorial at Conference on Automated Software Engineering 2005, November 7, 2005

“Javari: Adding reference immutability to Java”

University of California at San Diego, November 8, 2005

Harvard University, February 22, 2006

“Evaluating systematic and random testing”

Indian Institute of Technology, Delhi, September 28, 2006

Microsoft Research India, October 10, 2006

“Choosing the right tests: test selection via operational abstraction”

IBM India Research Lab, September 28, 2006

“Combined static and dynamic mutability analysis”

Tata Research Development & Design Centre, September 29, 2006

IBM T.J. Watson Research Center, November 28, 2006

University of California at Berkeley, December 11, 2006

“Dynamic inference of abstract types”

Microsoft Research, December 12, 2006

“Refactoring for parameterizing Java classes”

Stanford University, January 8, 2007

Harvard University, March 7, 2007

“User-defined type systems for error detection and prevention”

QCon, November 9, 2007

“Self-defending software: Collaborative learning for security”

University of Washington, April 1, 2008

“Preventing bugs with pluggable type-checking for Java”

J-Spring, April 16, 2008

Javoxx, Dec 2008

“Scalable pluggable types”

Dagstuhl workshop Scalable Program Analysis, April 14–18, 2008

“Upcoming Java programming-language changes”

JavaOne, May 6, 2008 (with Alex Buckley)

“Inference of reference immutability”

University of Saarland, July 4, 2008 ECOOP 2008, July 11, 2008

18



Publications of Michael D. Ernst

“ReCrash: Making software failures reproducible by preserving object states”

University of Saarland, July 8, 2008

ECOOP 2008, July 11, 2008

“Building and using pluggable type systems with the Checker Framework”

ECOOP 2008, July 10, 2008

“Practical pluggable types for Java”

Max Planck Institute for Software Systems, July 17, 2008

ISSTA 2008, July 23, 2008

19



Theses Supervised by Michael D. Ernst

Summary

Total Completed In Progress

S.B. 5 5 0

S.M. 5 5 0

M.Eng. 18 16 2

Doctoral

As Supervisor: 4 1 3

As Reader: 7 6 1

S. B. Theses:

(Not including those listed under M.Eng. theses, below. Includes Advanced Undergraduate Projects that

involve significant faculty supervision.)

Meghani, Samir, Determining legal method call sequences in object interfaces, AUP, May 2003.

Grall, Jonathan, Robocraft execution engine, AUP, May 2004.

Iba, Aaron, Robocraft execution engine, AUP, May 2004.

Gebauer, Michael, Interactive voting system for Groupthink specification exercise, AUP, February 2006.

Ali, Mahmood, IGJ type-checker, August 2008.

S. M. Theses:

McCamant, Stephen, Predicting problems caused by component upgrades, January 2004.

Saff, David, Automated continuous testing to speed software development, February 2004.

Donovan, Alan, Converting Java programs to use generic libraries, September 2004.

Williams, Amy, Static detection of deadlock for Java libraries, May 2005.

Pacheco, Carlos, Eclat: Automatic generation and classification of test inputs, June 2005.

M. Eng. Theses:

Dean, Laura G., Improved simulation of Input/Output Automata, September 2001 (also used for S.B. degree).

Harder, Michael, Improving test suites via generated specifications, May 2002 (also used for S.B. degree).

Nimmer, Jeremy W., Automatic generation and checking of program specifications, May 2002 (also used

for S.B. degree). Won the Charles and Jennifer Johnson Thesis Award.

Rolfe, Alex, Code versioning in a workflow management system, May 2002 (also used for S.B. degree).

Morse, Ben, A C/C++ front end for the Daikon dynamic invariant detection system, August 2002 (also used

for S.B. degree).

20



Theses Supervised by Michael D. Ernst

Dodoo, Nii, Selecting predicates for conditional invariant detection using cluster analysis, September 2002

(also used for S.B. degree).

Birka, Adrian, Compiler-enforced immutability for the Java language, May 2003 (also used for S.B. degree).

Ne Win, Toh, Theorem-proving distributed algorithms with dynamic analysis, May 2003 (also used for S.B.

degree). Won the Charles and Jennifer Johnson Thesis Award.

Brun, Yuriy, Software fault identification via dynamic analysis and machine learning, August 2003.

Lin, Lee, Improving adaptability via program steering, August 2004.

Guo, Philip, A scalable mixed-level approach to dynamic analysis of C and C++ programs, May 2006. Won

the Charles and Jennifer Johnson Thesis Award.

Tschantz, Matthew, Javari: Adding reference immutability to Java, August 2006 (also used for S.B. degree).

This research won the Anna Pogosyants undergraduate research prize. Won the Charles and Jennifer Johnson

Thesis Award.

Xiao, Chen, Performance enhancements for a dynamic invariant detector, February 2007 (also used for S.B.

degree).

Glasser, David, Test factoring with amock: Generating readable unit tests from system tests, August 2007

(also used for S.B. degree).

Papi, Matthew, Practical Pluggable Types for Java, May 2008 (also used for S.B. degree). Won the Charles

and Jennifer Johnson Thesis Award.

Quinonez, Jaime, Inference of Reference Immutability in Java, May 2008 (also used for S.B. degree).

Rudd, Robert, expected August 2009.

Ali, Mahmood, Type inference tool for IGJ, expected August 2009.

Doctoral Theses, Supervisor:

(Not including students working toward a Master’s degree whose terminal degree is the PhD.)

McCamant, Stephen, Quantitative information-flow tracking for real systems, May 2008.

Pacheco, Carlos, Directed random testing, February 2009.

Artzi, Shay, Model-based testing, in progress (expected June 2009).

Kieżun, Adam, Random and exhaustive testing, in progress (expected June 2009).

Doctoral Theses, Reader:

Raz, Orna, Semantic anomaly detection in dynamic data feeds with incomplete specifications, May 2004,

Carnegie Mellon University.

Ajmani, Sameer, Automatic software upgrades for distributed systems, August 2004.

Tauber, Joshua A., Verifiable compilation of I/O automata without global synchronization, August 2004.

21



Theses Supervised by Michael D. Ernst

Marinov, Darko Automatic Testing of Software with Structurally Complex Inputs, December 2005.

Demsky, Brian, Data structure repair using goal-directed reasoning, January 2006.

Sălcianu, Alexandru, Pointer analysis for Java: Novel techniques and applications, August 2006.

Garbervetsky, Diego, Parametric specification of dynamic memory utilization, November 2007, University

of Buenos Aires.

Dietl, Werner, in progress (expected spring 2009), ETH Zurich.

22



Postdoctoral Associates and Fellows Supervised by Michael D. Ernst

Current Postdocs

(none)

Previous Postdocs

Name Title Current employer Current Position

Yoav Zibin Oct. 2006 – Aug. 2007 Come2Play Corporation CTO

Sung Kim Sep. 2006 – July 2008 Hong Kong U. of Sci. & Tech. Assistant Professor

Danny Dig Nov. 2007 – present U. of Illinois Postdoctoral Associate

23


