
H

Master-Thesis, Fall Semester 2011

TurboMove
Move Refactorings for Eclipse CDT

Author: Yves Thrier

Advisor: Peter Sommerlad

Abstract

While writing code for a project, a programmer has to think about where to put that code.
The initial decision of placing it to the chosen location is not always correct or the appropriate
position changes as the code-base evolves. A class may obtain too much behaviour over time
which could be isolated. Or a member-function uses more functionality from its parameter
than the instance itself. Therefore, moving the code related to such problems to a more
suitable position helps to lower coupling and increases the quality, understandability and
maintainability of source-code. In C++, determining the correct position for functionality is
harder compared to other programming languages, due to the separation into declarations
and definitions and by allowing free functions. This also makes it hard to create refactorings
offering code moving in an automated fashion. This master-thesis overcomes these problems
by introducing a separation between a logical and a physical move. In addition, it tackles
different types of code relocation in a C++ project. There are transformations allowing to
move member functions among classes, into another file or to convert them into free functions.
In addition, it is possible to change the namespace membership of types and free functions by
altering them to become members of the parent namespace. While all these move refactorings
retain compilability, they also provide different configuration options to customise the style of
adjusting visibilities and call-sites. The transformations are available as a plug-in for Eclipse
CDT.

Management Summary

In the following, we explain the motivation and the goals of the project along with the results
and possible future work.

Motivation

Move refactorings are an important group of code transformations. A software engineer
writing code must always think about where to put that code. However, the decision to place
the functionality to the chosen location is not always correct or changes as the code-base
evolves. For example, a class may have obtained too much behaviour over time which could
be isolated, or a member function is better suited to be a free function. In C++, it can be
very hard to decide on the appropriate location for adding functionality due to the separation
between declarations and definitions and other options such as implementing a free function
instead of a member function. Thus, creating refactorings performing such transformations
in an automated fashion is difficult. However, doing such moves manually is tedious and
error-prone, therefore, often avoided resulting in less than optimal structured code. Thus,
having refactorings for move transformations is desirable and helps to make source-code easier
to understand and maintain.

Goals

In this master-thesis, we tried to tackle these issues. The goal of the project was to evaluate
possible move refactorings for C++ and to create an approach to apply these transformations
in an automated fashion. A set of the most valuable moves had to be implemented including
resolving potential conflicts and dependencies such as call-sites and visibilities. The compil-
ability of the code must be retained as well. In addition, a facility to recognise code-locations
with move potential and give a move proposal for them should have been developed. The
transformations must be implemented as an Eclipse CDT plug-in.

Results

TurboMove is an Eclipse CDT plug-in capable of performing four different move refactorings.
The transformations are applying the concept of separating the moves into a logical and a
physical relocation. In addition, the applied transformations try to reduce the amount of
changes to the input to a minimum. This reduces the complexity of the refactorings and make
them easier to use.

The first refactoring allows a user to move a member-function to another class. The declara-
tion of the member-function is relocated to belong to the new type, thus, beeing a logical
membership change. The definition retains the physical position, but is changed to belong to
the new type. All call-sites of the member-function are changed to be invoked on the new
target type. In addition, dependencies to the originating class are satisfied by adding a new
parameter of the originating type. A user can select to keep the original function as a delegate

I

to avoid call-site changes and to adjust visibilities of the originating type using labels or by
adding a function friend declaration.

1 /* *===

2 Example of moving a member - function to another class

3 ===* */

4 // Before Transformation

5 struct Origin {

6 void foo () {

7 bar ();

8 }

9 void bar () {

10 // ...

11 }

12 };

13

14 struct Destination {

15 // ...

16 };

17

18 // After Transformation

19 struct Origin {

20 void bar () {

21 // ...

22 }

23 };

24

25 struct Destination {

26 void foo (Origin & newOrigin) {

27 newOrigin .bar ();

28 }

29 // ...

30 };

Listing (1) Moving a Member-Function to Another Class

As a complement to moving a member-function to another class, a transformation to relocate
a member-function definition into a new or existing file was created. By moving copies of the
include statements present in the originating file to the destination file, it is ensured that the
required elements for the member-function are visible at the destination

The third implemented refactoring converts a member-function into a free-function. An
additional parameter is added to solve dependencies to the originating type. The call-sites
are changed to use the free-function instead of the previous member-function as well. In
addition, a user can chose to add either a function friend declaration or visibility labels to
adjust visibilites for required elements in the originating type.

The final refactoring created changes the namespace membership of a free-function or a type

II

to the parent namespace in the current hierarchy. The call-sites are changed if Argument
Dependent Lookup (ADL) is not or no longer sufficient. Optionally, a user can chose to add a
using declaration for the moved type or free-function in the originating namespace to avoid
call-site adaption.

1 /* *===

2 Example of moving a free - function to the parent

3 namespace

4 ===* */

5 // Before Transformation

6 namespace A {

7 void before ();

8 void foobar ();

9 void after ();

10 }

11

12 // After Transformation

13 namespace A {

14 void before ();

15 }

16 void foobar ();

17 namespace A {

18 void after ();

19 }

Listing (2) Moving a Free-Function to the Parent Namespace

All refactorings provide a user interface to Eclipse from which a user can control the refactoring
to perform and the associated options.

III

Figure (1) TurboMove User Interface Example

Future Work

The TurboMove plug-in covers only a small part of all evaluated move refactorings. Based
on the analysis made in this thesis, additional move refactorings such as the complement for
move type or free-function up to parent namespace could be implemented. Also, none of the
variable based moves could be implemented in this project due to time issues and focusing on
other move refactorings, hence, they may serve as a good extension for this plug-in.

Since it was not possible to add a facility to recognise candidates for a move, future work
could include to add Codan [Ecl12c] support to the TurboMove plug-in. By giving immediate
feedback to a user with markers in Eclipse, the generated move proposals could be used to
perform the desired transformation without the need for a user interface.

IV

Contents

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Actual Situation . 1
1.3 Project Goals . 2

2 Analysis 3
2.1 Types of Move Refactorings . 3

2.1.1 Function Based Moves . 6
2.1.2 Type Based Moves . 8
2.1.3 Variable-Based Moves . 9

3 Move Refactorings 13
3.1 Move Member-Function to Another Class . 13

3.1.1 Motivation . 13
3.1.2 What to Move . 13
3.1.3 Applying a Move . 14

3.2 Move Member-Function to Another File . 32
3.2.1 Motivation . 33
3.2.2 What to Move . 33
3.2.3 Applying a Move . 34

3.3 Move Member-Function to Free-Function . 37
3.3.1 Motivation . 38
3.3.2 What to Move . 38
3.3.3 Applying a Move . 38

3.4 Move-Up to Parent Namespace . 50
3.4.1 Motivation . 50
3.4.2 What to Move . 51
3.4.3 Applying a Move . 51

4 Implementation 63
4.1 Eclipse Plug-In . 63

4.1.1 Extension Point . 63
4.1.2 Architecture . 66
4.1.3 Move Refactoring Initialization Process 67
4.1.4 Transformations and Diagnostics Architecture 72

4.2 Important Transformations . 74
4.2.1 Move Member-Function to another Class Transformations 74
4.2.2 Move Member-Function to Free-Function Transformations 77
4.2.3 Move-Up to Parent Namespace Transformations 78

4.3 Extended Rewrite Facility . 78
4.3.1 Exploiting Rewrite Roots . 79
4.3.2 Open Issues . 80

V

Contents

4.4 User Interface . 80
4.4.1 Refactoring Menu . 81
4.4.2 Refactoring Pages . 81

5 Conclusion 84
5.1 Project Results . 84
5.2 Existing Problems . 85

5.2.1 Dependent Visibilities . 85
5.2.2 Template Call-Site Lookup . 86
5.2.3 Undo File Creation . 86
5.2.4 Unary Expression Overload Method 87
5.2.5 Using Declaration Node Lookup . 87

5.3 Future Work . 88
5.3.1 Additional Refactorings . 88
5.3.2 Codan Support . 88
5.3.3 Review the Refactoring Framework . 88

5.4 Personal Review . 88
5.5 Acknowledgements . 89

A User Guide 90
A.1 Requirements . 90
A.2 Installation . 90
A.3 Refactoring Guide . 90

B Project Management 94
B.1 Project Environment . 94

B.1.1 Continuous Integration Server . 94
B.1.2 Local Development Environment . 94

B.2 Project Plan . 95
B.2.1 Actual vs. Target Hours/Week . 95
B.2.2 Interpretation . 95
B.2.3 Conclusion . 95

C Project Setup 97
C.1 Structure . 97
C.2 Creating POM Files . 97
C.3 Maven Repositories . 98
C.4 Add Target Definition . 98
C.5 Maven Dependencies . 99
C.6 Exporting Packages for External Use . 100
C.7 Important Maven Commands . 100

D Testing Environment 101
D.1 RefactoringTester . 101
D.2 Test Configuration . 101

VI

Contents

D.3 Test Class . 102
D.4 Improved Tests . 102
D.5 Common Errors . 102

E Replace Complete Parameter with Parameter Data 103
E.1 Motivation . 103
E.2 Mechanics . 104
E.3 Benefits . 104
E.4 Consequences . 104

F Refactoring Development in a Nutshell 105
F.1 Refactoring Hook-In . 105

F.1.1 CRefactoring or CRefactoring2 . 105
F.1.2 Plug-In Lifecycle . 105

F.2 The Index . 106
F.2.1 Index Lookup . 106
F.2.2 Comparing Bindings . 106
F.2.3 Resolving Nodes . 107

F.3 Abstract Syntax Tree . 107
F.4 Caching Syntax Trees . 107
F.5 Visitors . 107
F.6 Casting Nodes . 108

References 109

List of Abbreviations 111

List of Figures 112

VII

1 Introduction

1 Introduction

This introduction Chapter provides an overview of why move refactorings are important for
writing excellent, understandable and maintainable code. Next to this, we give an overview
of the current situation regarding move refactorings in Eclipse CDT . We conclude with the
project goals for this master-thesis in the final Section.

1.1 Motivation

Move refactorings tackle the fundamental problem in software engineering of assigning respon-
sibilities. In object-oriented programming languages, these responsibilities are mostly related
to the question of where to put a method or function, or in the design of class hierarchies.
Assigning these responsibilities is also rather an iterativ process and is not done once for each
piece of code. When we assign responsibilities we have to deal with some challenges:

Assigning Responsibilities is Hard

The first time you write a piece of code, it seems obvious to you to put that code to class A.
But later you recognise, that it suites better to class B. Do you change the code manually, or
do you proceed your work ignoring this potential design flaw?

Responsibilities can change

Changing requirements can induce changes to the source-code. This can also rise the need to
rethink the assigned responsibilities. Applying both parts of these changes is fundamental to
sustain software quality and accomplish the requirement goals.

Emerging Design

Software is written step-by-step, incrementally introducing new functionality and features.
It is possible that due to this responsibilities change or should be moved to another level of
abstraction. Thus, updating responsibilities is important in day-to-day software development.

This list of challenges is not complete, but the importance of move refactorings is clearly
evident. If we think of reassigning or changing responsibilities in our source-code, we quickly
see that doing this manually is difficult. There is more work included than simply cut&paste
the code to the new location. Dependent code have to be maintained making sure the changes
do not break compilability. For example, moving a member-function from class A to class B
requires changes at the call-sites of this member-function and we may even need an instance
of the class B, or access to such an instance. Doing all the necessary work by hand is slow,
awkward and error-prone. An automated way to apply such refactorings cannot only save
time, it can improve the quality of your code and ensure a reasonable output state as well.

1.2 Actual Situation

The Eclipse CDT IDE does not have any support for move refactorings up-to-date. As we
have seen in our motivation, move refactorings are clearly an important group of refactorings
and this lack of functionality in the Eclipse CDT is a serious drawback for the acceptance of

1

1 Introduction

Eclipse to be a suitable alternative to other IDEs for C++ development. In addition, move
refactorings are likely to be harder to apply in C++ compared to for example Java. The
complex nature of C++ introduces more challenges, but also more opportunities for viable
moves as well. With this master-thesis, we tackle the absence of move refactorings in Eclipse
CDT .

1.3 Project Goals

The goal of this master-thesis is to analyse possible move refactorings in the C++ programming
language along with the challenges and related problems these transformations introduce.
While existing work such as [Opd92] handles move refactorings, it does on a different level
of abstraction. The evaluated moves should be implemented as an Eclipse CDT refactoring
plug-in, capable of applying the move mechanics and solving the related dependencies and
conflicts. Due to the complex nature of C++ it is likely to find more move refactorings in
the analysis than can be actually implemented. The focus is on the realisation of the most
valuable transformations found. The implemented refactorings must preserve the original
semantics and retain compilability. In addition, a facility to automatically recognise potential
moveable code along with proposing a desirable move for this code should be developed.

2

2 Analysis

2 Analysis

In this section, we provide an analysis of different types of move refactorings. First, an
overview of the move refactorings separated in categories based on the code to move is given.
Afterwards the set of moves to implement in this master-thesis is described with a in-depth
analysis of the selected moves.

2.1 Types of Move Refactorings

Move refactorings come in different flavours and difficulties. An excellent starting point
for move refactorings can be found in the refactoring book of Martin Folwer [Fow04]. He
described eight types of move refactorings, such as move method, extract class, inline class,
etc. These list of refactorings allows us to identify a key point of move refactorings: Most
move refactorings or rather most refactorings have a counterpart. If we apply move method
to move a method from A to B, we can apply move method again to move the same method
back from B to A. In this case, the refactoring itself is it’s counterpart. In contrast, the
counterpart for extract class is inline class, and vice versa.
As a secondary source of information for move refactorings, Joshua Kerievsky’s Book Refac-
toring to Patterns [Ker04] is very helpful. But apparently, they are harder to introduce in an
automated fashion compared to the ”low-level” move refactorings described by Martin Fowler.
Refactoring to a pattern requires more work to do and a pattern is not always applied the
same way. Thus a software to do this automatically would have to either ”guess” what to do,
do it only in one way or likely require an incredible amount of user input to perform correctly.
It is not impossible to do, however, it seems not reasonable to do in the current situation of
the Eclipse CDT IDE , where no move refactoring support exists at all. Hence this project will
focus on the more valuable ”low-level” move refactorings of Martin Fowler applied to C++.

The foundation of a move refactoring contains of three key factors. There is a move source.
This is the ”What to move?” of the refactoring. The second factor is the move destination
asking ”Where to move?”. Number three tackles the ”What is missing?” meaning the
dependencies that must be solved. These additional challenges can be classified into different
categories:

Outside Dependencies

If a move refactoring takes place in an automated fashion, the usage-sites related to the moved
element must be adjusted accordingly. For example, a member-function moved from class A
to class B must be invoked on B after the move and can no longer be used from instances of
A. This type of dependency also relates to required definitions for using the element, such as
arguments of a function or the target type definition. We name this type of dependencies
outside dependencies.

3

2 Analysis

1 /* *===

2 Example of changing the call -site of a member -

3 function in a move to another type refactoring

4 ===* */

5 // Before Transformation

6 int main () {

7 // ...

8 Origin a;

9 Destination b;

10 // Invoking foo on 'a' with argument 'b'

11 a.foo(b) ;

12 }

13

14 // After Transformation

15 int main () {

16 // ...

17 Origin a;

18 Destination b;

19 // Change invocation owner to 'b' with argument 'a'

20 b .foo(a);

21 }

Listing (3) Example of an Outside-Dependency

Inside Dependencies

In contrast to the outside dependencies, it is possible that other dependencies exist. For
example, the moved member-function of class A to class B used a member-variable of class
A. These inside dependencies have to be resolved as well. An inside dependencies may also
include required definitions that must be available at the new location of the moved element,
ensuring compilability of the source-code.

Conflict Resolving

A move can introduce a conflict making a move impossible, or only allowed under certain
situations or configurations. For example, moving a member-function M from class A to class
B with an existing member-function M can yield a conflict in case the overload resolution
yields both functions if arguments are applied.

4

2 Analysis

1 /* *===

2 Example of conflicting function overloads if a

3 move is applied

4 ===* */

5 // Conflicting Functions

6 struct Origin {

7 void foo(int i, std :: vector <int > v) {

8 // ...

9 }

10 };

11

12 struct Destination {

13 // Function with same name and overload exists

14 void foo(int i, std::vector<int> v) {

15 // ...

16 }

17 };

18

19 // No Conflicting Functions

20 struct Origin {

21 void foo(int i, std :: vector <double > v) {

22 // ...

23 }

24 };

25

26 struct Destination {

27 void foo(int i, std :: vector <int > v) {

28 // ...

29 }

30 };

Listing (4) Example of a Move Conflict

C++ Language Rules

Moving source-code can introduce violations of the C++ language rules. For example, moving
an operator implemented as a class member-function to a free-function is not allowed for
specific operators (e.g., the assignment operator must be a nonstatic member-function).

It is noteworthy that not every category may yield a problem to solve for a specific move
refactoring. In addition an instance of a particular move refactoring may introduce additional
problems not related to these categories at all. However, they establish a vocabulary to think
about the problems for potential move refactorings. With these informations, we are now
prepared to define different types of move refactorings.

5

2 Analysis

2.1.1 Function Based Moves

These types of move refactorings tackle the problem of moving macros, operators, member-
and free-functions. Please note that we will not make a separation between the move of a
declaration or a definition for this list of move refactorings at this time (this problem will
be investigated as we analyse the selected move refactorings in depth), with one exception,
namely a separate or merge refactoring for declaration and definition. Following a list of
possible move refactorings related to functions.

Refactoring Reverse Operation

(1) Member-Function to Free-Function (2) Free-Function to Member-Function

(2) Free-Function to Member-Function (1) Member-Function to Free-Function

(3) Pull-Up Member-Function to Parent
Class

(4) Push-Down Member-Function to Child
Class

(4) Push-Down Member-Function to Child
Class

(3) Pull-Up Member-Function to Parent
Class

(5) Move Member-Function to another
Class

(5) Move Member-Function to another
Class

(6) Move Free-Function to another File (6) Move Free-Function to another File

(7) Merge Member-/Free-Function Defini-
tion and Declaration

(8) Separate Member-/Free-Function Def-
inition and Declaration

(8) Separate Member-/Free-Function Def-
inition and Declaration

(7) Merge Member-/Free-Function Defini-
tion and Declaration

(9) Move Free-Function to a New/Existing
Namespace

(9) Move Free-Function to a New/Existing
Namespace

(10) Move Macro Definition to New/Ex-
isting File

(10) Move Macro Definition to New/Ex-
isting File

It is important to state that (3) Pull-Up Member-Function to Parent Class and (4) Push-
Down Member-Function to Child Class are not that important in C++ compared to, for
example, Java, due to the fact that C++ offers convenient ways to avoid inheritance while
keeping flexibility with templates. Converting existing types and functions into a template
was also already developed in [Thr10]. The merge and separate definition and declaration
move refactoring is already implemented and integrated in the Eclipse CDT Indigo release
[Sch10] as ”toggle” refactoring, however, they are stated here for completeness.

6

2 Analysis

Related Problems

Outside-Dependencies

• Missing class-instances or instance-access is insufficient for function call-site
adjustment

• Visibility of classes not sufficient for function call-site adjustment

• Parameter, return type and/or types used in function body not known at the
new position

Some of the stated outside-dependencies are not obvious, therefore, we will try to support
them with further explanations. The problem of missing class-instances exists in moving a
member-function from a type A to a type B. If the types do not have any dependencies, the
call-sites of the member-function of type A do not necessarily have an instance of the type B.
Therefore, moving this function to this destination type requires creating a type instance at
the call-site. This is illustrated in Listing 5.

1 /* *===

2 Example of a missing instance for a new call -site

3 owner if a member - function is moved to another

4 type

5 ===* */

6 // A.h

7 struct A {

8 void foobar ();

9 };

10

11 // B.h

12 struct B {

13 };

14

15 // Main.cpp

16 # include "A.h"

17

18 int main () {

19 A a;

20 // Moving to 'B', but no instance at call -site

21 a.foobar() ;

22 }

Listing (5) Missing Class-Instance Outside-Dependency

Of course, a similar problem exists for the visibility of type B, however, this time the type
must be defined after the transformation of the call-site is finished. The same problem exists
for types used by the function, for example a parameter. It must be assured they are available
at the move destination.

7

2 Analysis

Inside-Dependencies

• Required member-variable access no longer available after move

• Required member-function access no longer available after move

• Required free-function no longer visible after move.

The inside-dependencies for function based moves are heavily based on required access to
fields and functions defined at the move origin. Moving a function to a new location must
ensure that the used elements are still available at the destination.

Conflicts

• Overload conflict introduced by the move

C++ Language Rules

• Specific operators are only allowed as member-functions (e.g. assignment)

2.1.2 Type Based Moves

Type based move refactorings handle moving a class/struct or an enum. We will not make a
separation between declaration and definition for these types of move refactorings either, for
the same reason and with the same exception as described in 2.1.1 on page 6.

Refactoring Reverse Operation

(1) Move Class to New/Existing File (1) Move Class to New/Existing File

(2) Move Class to New/Existing Names-
pace

(2) Move Class to New/Existing Names-
pace

(3) Merge Class Member Declarations and
Definitions

(4) Separate Class Member Declarations
and Definitions

(4) Separate Class Declaration and Defi-
nition

(3) Merge Class Declaration and Defini-
tion

(5) Extract Class (6) Inline Class

(6) Inline Class (5) Extract Class

The move refactoring (3) Merge Class Member Declarations and Definitions and (4) Separate
Class Member Declarations and Definitions are already implemented and integrated in the
Eclipse CDT Indigo release [Sch10] as ”toggle” refactoring, but are listed for completeness.

Related Problems

8

2 Analysis

Outside-Dependencies

• Types used in the class may no longer be visible at the new position

• Visibility of class no longer sufficient for call-side adjustment

These problems are similar to the outside-dependency problems described in Section 2.1.1 on
page 6, but from a type point of view.

Inside-Dependencies

• Required member-variable access no longer available after move ((5) only)

• Required member-function access no longer available after move ((5) only)

These problems are similar to the outside-dependency problems described in Section 2.1.1 on
page 6, but from a type point of view.

Conflicts

• Name conflict introduced by the move

C++ Language Rules

• One definition rule violations

2.1.3 Variable-Based Moves

Variable based move refactorings tackle the problem of moving global-/member-variables,
global-/member-constants, static variables and typedefs. For these move refactorings, it is
important to track the initialization of the variable, e.g. using the initializer list of a constructor.
Therefore there may exist influences for type instantiation call-sites and initialization ordering.

9

2 Analysis

Refactoring Reverse Operation

(1) Move Member-Variable to another
Class

(1) Move Member-Variable to another
Class

(2) Move Static Member-Variable to an-
other Class

(2) Move Static Member-Variable to an-
other Class

(3) Move (Static) Constant Member-
Variable to another Class

(3) Move (Static) Constant Member-
Variable to another Class

(4) Move Global Variable to Class (5) Move Member-Variable to Global

(5) Move Member-Variable to Global (4) Move Global-Variable to Class

(6) Move Static Global-Variable to Class (7) Move Static Member-Variable to
Global

(7) Move Static Member-Variable to
Global

(6) Move Static Global-Variable to Class

(8) Move Static (Const) Global-Variable
to Class

(9) Move Static (Const) Member-Variable
to Global

(9) Move Static (Const) Member-Variable
to Global

(8) Move Static (Const) Global-Variable
to Class

(10) Move Global-Variable to another
Namespace

(10) Move Variable to another Namespace

(11) Move Local-Variable to Member-
Variable

(12) Move Member-Variable to Local-
Variable

(12) Move Member-Variable to Local-
Variable

(11) Move Local-Variable to Member-
Variable

Apparently, there are a various combinations of moving a variable from an move-source to
a new location. Implementing a move refactoring for variables can become difficult rapid,
because variables are the ”state foundation” of an application and interfere in the behaviour
of a program. They also can have many dependencies that must be solved. The move
refactorings (11) Move Local-Variable to Member-Variable and (12) Move Member-Variable
to Local-Variable can be seen as a Test-Driven Development (TDD) related move, however,
they represent valid move refactorings to consider for implementation.

10

2 Analysis

1 /* *===

2 Example of moving (const) member - variables along

3 with the constructor initializer -list

4 ===* */

5 // Moving a Member - Variable before Transformation

6 struct Origin {

7 int i ;

8 };

9

10 struct Destination {

11 };

12

13 // Moving a Member - Variable after Transformation

14 struct Origin {

15 };

16

17 struct Destination {

18 int i ;

19 };

20

21 // Moving a Const Member - Variable before Transformation

22 struct Origin {

23 Origin (int value) : i(value) {}

24 const int i;

25 };

26

27 struct Destination {

28 };

29

30 // Moving a Const Member - Variable after Transformation

31 struct Origin {

32 Origin (int value)

33 };

34

35 struct Destination {

36 Destination (int value): i(value) {}

37 const int i;

38 };

Listing (6) Examples of Variable Based Moves

Listing 6 shows some examples of variable based moves. However, they do not include solutions
for the related problems since this task is dedicated to the design section, if an implementation
is feasible in the project.

11

2 Analysis

Related Problems

Outside-Dependencies

• Missing class-instances or instance-access not sufficient for variable call-side
adjustment

• Visibility of classes not sufficient for variable call-side adjustment

• The type of the moved variable is not known at the new position

Inside-Dependencies

• Constant initializer may have to be moved with the constant

• A moved constant initializer from the initializer list has no exact counterpart

Conflicts

• Name conflicts introduced by the move

C++ Language Rules

• Constant-Variables must be initialized

• Reference-Variables must be initialized

• Target constructor may have to be changed

• The initialisation sequence must be retained in the target for non-static member-
variables, if any

12

3 Move Refactorings

3 Move Refactorings

In Section 2.1 on page 3 we have seen that there exist various types of move refactorings.
Unfortunately, it is not possible to implement all of them in this master-thesis. Therefore,
this project will focus on the most valuable types of move. Each of these selected moves is
analysed in detail and implemented in Eclipse CDT . The results are described in the following
sections.

3.1 Move Member-Function to Another Class

This move refactoring type is inspired by the ”Move Method” refactoring:

”A method is, or will be, using or used by more features of another class
than the class on which it is defined.” [Fow04]

Instead of method the term member-function ([ISO11] Section 9.3) is used for this move
refactoring. This is the correct term in a C++ environment and does accurately describe
what we want to move.

3.1.1 Motivation

Classes naturally have assigned responsibilites. These responsibilities can be represented in
different ways, but frequently the state and the behaviour is controlled and modified over
the lifetime of the class-instance by using member-functions. Unfortunately, the assigned
responsibilities may not be correct. The first time the code was written, it was reasonable to
assign the member-function to this class, but as time proceeds and code is added or changed,
the member-function suits better to another class. This can be due to ”..using more features
of another class than the class on which it is defined.” [Fow04], as seen in the inspiration
sentence, or our class has too much responsibilities which we preferably separate into smaller
pieces to ease understanding and maintainability. Sometimes, there are also situations where
we just did not understand the problem well enough to make a reasonable decision for where
to put the member-function.

3.1.2 What to Move

Compared to Java, moving a member-function to another class requires more effort in C++.
The traditional separation between declaration and definition requires to carefully think about
what should be moved in which situations. A declaration and definition of a member-function
can appear in different variations. They may be separated in two files typically a header-file
for the declaration and a source-file containing the definition, but can be co-located together
in the header-file or finally be located together usually found in template definitions. In
addition, a definition may not bet present because an implementation was not feasible up to
now, but still the need for move functionalities exist. These situations occur on both, at the
move source and destination. So apparently, what to move, or what does make sense to move
is a primary question for this type of move refactoring. One option is to support all types of
declaration and definition arrangements. A move refactoring supporting this functionality

13

3 Move Refactorings

must allow a user to chose what to move, namely the declaration, the definition or both. In
addition, the target must be examined carefully to potentially adjust the moved declaration
and/or definition to match the target. For example, if the member-function declarations and
definitions in the target class of our move refactoring are together, it is reasonable to move
our code equally. Clearly, this adds unnecessary complexity on both, the development and
the usability side. A developer using the move refactoring has to chose between a likely huge
amount of move options. On the other side, implementing and testing these options is difficult
and error-prone. So it is wise to introduce a superior abstraction. We are calling this a logical
and a physical move of a member-function.

Introducing Logical and Physical Move Separation

The reason for a logical and a physical move separation becomes more clear if we consider
the real problem tackled by this refactoring: There are faulty or misplaced responsibility
assignments. Generally speaking, the discussion is about the ”where” a member-function
belongs to. A member-function in C++ is owned by a type, or we can say the member-function
”belongs to” a type. The specification of this association is based only on the declarations.
Therefore, to solve the problem, it is sufficient to move only the declaration to the new
location. Compared to the first option where all combinations of declaration and definition in
the source and target of the move must be considered, we separated it into two independent
move refactorings, a logical move member-function refactoring, relocating the declaration and
solving the assignment problem and a physical move member-function refactoring, to relocate
the definition code responsible for the behaviour of the member-function.

For this type of move refactoring, we implemented the logical move to relocate the member-
function declaration.

3.1.3 Applying a Move

Applying a move transformation to the declaration of a member-function does not mean we
can ignore the definition. Logically relocating the declaration to another class induces changes
to the declaration and potentially to the definition as well.

In the following, we will illustrate the mechanics of this move refactoring, including the
transformations made, chooseable options for a user and encountered problems.

Selecting a Destination

Moving a member-function to another class requires selecting a destination class for the
transformation. But which classes are good candidates for such a refactoring? Basically,
the move destination is either proposed automatically or selected manually by a user. The
transformation actions to apply are roughly the same, independent of whether a proposed
destination type was chosen or the target was selected manually. The question is which types
serve as feasible move destination recommendations. For this type of move refactoring, we
used the parameters of the function to move to create move destination type proposals.

14

3 Move Refactorings

1 /* *===

2 Making proposals for a move destination if a

3 member - function should be moved to another type

4 ===* */

5 struct DstA {};

6 struct DstB {};

7 struct DstC {};

8

9 struct Source {

10 // Propose move to 'DstA ', 'DstB ' or 'DstC '

11 void functionToMove (DstA a, DstB b, DstC c);

12 };

Listing (7) Move Destination Type Proposals

The advantage of proposing a parameter type as a move destination is that a parameter type
is likely to be an appropriate choice for the new member-function location. For example, if
the function only uses functions from a parameter without changing the internal state of the
own object, it is wise to move the member-function to this parameter type. In addition, it
is possible to enforce a move destination proposal for a given type by just adding an extra
parameter to the member-function. Moving the member-function to a manually chosen type
is an additional proposal option, but with an empty destination. Thus the available proposals
for this type of move is always one for the ”free move” plus a proposal for each distinct
parameter type.

Changing the Declaration and Definition

As we have seen in Section 3.1.2 on page 13 the primary type of code relocation is based on
the declaration. We still have the same declaration and definition arrangements, but it is
possible to define the appropriate actions without requiring user interaction. So what have to
be done? Here is a first simple illustration using a type Bill:

15

3 Move Refactorings

1 /* *===

2 Initial situation for moving the member - function

3 'calculatePrice ' to 'Product '

4 ===* */

5 // Bill.h

6 # include " Product .h"

7

8 struct Bill {

9 double getAmount () const {

10 double amount = 0.0;

11 for(int i=0; i< products .size (); ++i)

12 amount += calculatePrice (products [i]);

13 return amount ;

14 }

15 double calculatePrice (const Product & p) const {

16 return p. getPrice () * p. getQuantity ();

17 }

18 std :: vector <Product > products ;

19 // ...

20 };

Listing (8) Bill Example before Move (Together)

The type Bill contains a vector of Products with two member-variables for the price and
the quantity bought by a customer. The price of each Product is calculated by using the
member-function calculatePrice. However, since the product is the information expert [Lar07]
for this calculation, the member-function should be moved to this type.

16

3 Move Refactorings

1 /* *===

2 Result after the member - function 'calculatePrice '

3 was moved to 'Product '

4 ===* */

5 // Bill.h

6 # include " Product .h"

7

8 struct Bill {

9 double getAmount () const {

10 double amount = 0.0;

11 for(int i=0; i< products .size (); ++i)

12 amount += products [i]. calculatePrice ();

13 return amount ;

14 }

15 std :: vector <Product > products ;

16 // ...

17 };

18

19 // Product .h

20 struct Product {

21 double calculatePrice () const {

22 return getPrice () * getQuantity ();

23 }

24 // ...

25 };

Listing (9) Bill Example after Move (Together)

In the type Bill the declaration and the definition is removed and added to Product. Since
the type of the parameter of the moved function is equal to the destination type, there is
no longer a need to pass this parameter and is therefore removed. The call to getPrice and
getQuantity are changed to apply on the local instance for the same reason. Last but not
least, the call-site of calculatePrice in the member-function getAmount is changed to be an
invocation on the instance of the product previously used as the member-function argument.

The changes made for the above examples are sufficient to ensure compilability and program
semantics. But traditionally, declaration and definition are separated in a header- and a source-
file. For this arrangement, more changes are necessary. To explain these transformations,
the same example is used, but splitted in declarations and definitions in a header- and a
source-file.

17

3 Move Refactorings

1 /* *===

2 Initial situation for moving the member - function

3 'calculatePrice ' to 'Product ' with definition change

4 ===* */

5 // Bill.h

6 # include " Product .h"

7

8 struct Bill {

9 double getAmount () const ;

10 double calculatePrice (const Product & p) const ;

11 std :: vector <Product > products ;

12 // ...

13 };

14

15 // Bill.cpp

16 # include "Bill.h"

17 # include " Product .h"

18

19 double Bill :: getAmount () const {

20 double amount = 0.0;

21 for(int i=0; i< products .size (); ++i)

22 amount += calculatePrice (products [i]);

23 return amount ;

24 }

25

26 double Bill::calculatePrice (const Product & p) const {

27 return p. getPrice () * p. getQuantity ();

28 }

Listing (10) Bill Example before Move (Separated)

Here, the true power of the logical- and physical move separation becomes evident. The
member-function calculatePrice remains in the same file, but the membership is changed to
Product. In addition, an include statement for the product header-file is added to the source-
file containing the definition. Apparently, the same procedure is applicable for co-located
declarations and definitions.

18

3 Move Refactorings

1 /* *===

2 Result after the member - function 'calculatePrice '

3 was moved to 'Product ' with changed definition

4 ===* */

5 // Bill.h

6 # include " Product .h"

7

8 struct Bill {

9 double getAmount () const ;

10 std :: vector <Product > products ;

11 // ...

12 };

13

14 // Product .h

15 struct Product {

16 double calculatePrice () const;

17 // ...

18 };

19

20 // Bill.cpp

21 # include "Bill.h"

22 # include " Product .h"

23

24 double Bill :: getAmount () const {

25 double amount = 0.0;

26 for(int i=0; i< products .size (); ++i)

27 amount += calculatePrice (products [i]);

28 return amount ;

29 }

30

31 double Product::calculatePrice () const {

32 return getPrice () * getQuantity ();

33 }

Listing (11) Bill Example after Move (Separated)

After the move it is possible to get rid of the member-function calls getPrice and getQuantity,
using the member-variables directly. Though this transformation task is dedicated to other
refactorings such as Inline Method [Fow04].

In constellations where only a declaration exists, the process is even easier than in the situation
where declaration and definition are together. The declaration is removed in the source type
and added to the destination type, including the removal of a parameter if a parameter type is
equal to the destination type. And since no definition exists, no more changes are required.

Namespaces

Namespaces are an important part of the transformation. Looking at the origin and the
destination of a move, it is possible to discover different namespaces. Thus moving a member-

19

3 Move Refactorings

function from a source to a new destination potentially requires modifications to namespaces.
Apparently, this problem is only present for separated or at least co-located declarations and
definitions. Only in these situations definitions can have an incorrect position in the file by
having a surrounding namespace. For declaration only or declaration and definition together
this is not possible, because they will automatically be in the appropriate namespace due to
the fact that a namespace will surround the type and cannot be defined inside the type.

To solve the problem of a namespace mismatch between the move origin and destination, we
use the opportunity to use the qualified name of the destination for the function definition
instead of opening and closing the namespaces required.

1 /* *===

2 Initial situation for moving the member - function

3 'foo ' to 'Destination ' with namespace changes

4 ===* */

5 // Destination .h

6 namespace d_outer {

7 struct Destination {

8 };

9 }

10

11 // Source .h

12 namespace s_outer {

13 namespace s_inner {

14 struct Source {

15 void foo() ;

16 };

17 }

18 }

19

20 // Source .cpp

21 # include " Source .h"

22 namespace s_outer {

23 namespace s_inner {

24 // other functions before ...

25 void Source::foo () {

26 // ...

27 }

28 // other functions after ...

29 }

30 }

Listing (12) Surrounding Namespaces before Move

To move the member-function foo from Source to Destination, the same actions are applied
as for a normal move, but in the file containing the definition, additional actions are required.

20

3 Move Refactorings

1 /* *===

2 Result after the member - function 'foo ' was moved

3 to 'Destination ' with changed namespaces

4 ===* */

5 // Destination .h

6 namespace d_outer {

7 struct Destination {

8 void foo ();

9 };

10 }

11

12 // Source .h

13 namespace s_outer {

14 namespace s_inner {

15 struct Source {

16 };

17 }

18 }

19

20 // Source .cpp

21 # include " Source .h"

22 # include " Destination .h"

23

24 namespace s_outer {

25 namespace s_inner {

26 // other functions before ...

27 }

28 }

29

30 void d_outer::Destination::foo () {

31 // ...

32 }

33

34 namespace s_outer {

35 namespace s_inner {

36 // other functions after ...

37 }

38 }

Listing (13) Surrounding Namespaces after Move

The namespaces before the function to move are closed. This removes the function to move
from the old namespace. The name of the function to move is fully-qualified with the
destination type and the namespaces. After the function to move, the previously closed
namespaces are reopened.

Tackling Inside Dependencies

Apparently, the bill-example used in the previous Section does not cover all possible problems
that can occur. For this part, the inside dependencies introduced by the function to move are

21

3 Move Refactorings

examined.

In the bill-example, the only existing dependencies of the function to move are those related
to the passed parameter Product. But frequently a member-function delegates work to other
member-functions of the same type or is modifying member-variables. Hence after moving
the function out of the type to a new location these member-function are no longer present
because the function resides in another type than the member-functions invoked. We may be
lucky by having equal functions at the new location, but this is rarely the case and not to
mention the semantic behaviour is very likely to be different than before. Clearly, another
solution for this problem is inevitable.

1 /* *===

2 Initial situation for moving the member - function

3 'settle ' to 'DebitCard ' with parameter changes

4 ===* */

5 // DebitCard .h

6 struct DebitCard {

7 double getBalance () const {

8 return balance ;

9 }

10 void reduce (double amount) {

11 balance -= amount ;

12 }

13 double balance ;

14 // ...

15 };

16

17 // Payment .h

18 # include " DebitCard .h"

19

20 struct Payment {

21 void settle (DebitCard & card) {

22 if(card. getBalance ()<amount) {

23 // refuse payment ...

24 }

25 card. reduce (amount);

26 }

27 double amount ;

28 // ...

29 };

Listing (14) DebitCard Example before Move (Together)

In this example, a payment is made by using a debit card. The amount of the payment is
checked to not exceed the balance of the card and the balance is reduced. The problem with
this design is, that Payment requires different implementations for settle. Instead of using a
debit card, a credit card could be used or pay by cash. Hence, we change the direction of the
dependency to let the DebitCard settle the Payment as shown in Listing 15 on the next page.

22

3 Move Refactorings

1 /* *===

2 Result after the member - function 'settle ' was

3 moved to 'DebitCard ' with changed parameter

4 ===* */

5 // DebitCard .h

6 # include " Payment .h"

7

8 struct DebitCard {

9 void settle(class Payment & newPayment) {

10 if(getBalance ()<newPayment . amount) {

11 // refuse payment ...

12 }

13 reduce (newPayment . amount);

14 }

15 double getBalance () const {

16 return balance ;

17 }

18 void reduce (double amount) {

19 balance -= amount ;

20 }

21 double balance ;

22 // ...

23 };

24

25 // Payment .h

26 # include " DebitCard .h"

27

28 struct Payment {

29 double amount ;

30 };

Listing (15) DebitCard Example after Move (Together)

Compared to the previous examples of Listing 8 on page 16 through Listing 11 on page 19
the function to move has an inside dependency to the member-variable amount which has to
be satisfied. For this reason additional actions are performed. A new parameter of the source
type newPayment is added to the moved function and accessing the member-variable amount
is changed to take place on this new parameter. The newly added parameter is always passed
by-reference for all cases. An in-parameter forward declaration using class is used to get rid
of the include statement for the source header-file in the destination header-file. However,
this only works in the arrangement where the declaration and definition are separated in a
header-file and a source-file. In the above example, the forward declaration is not sufficient.
Though the include statement can theoretically solve this, it introduces circular header-file
dependencies, which we will not solve with this move refactoring. To tackle this problem, the
includator plug-in [Fel11] can be used. Provided that all inside dependencies are const, the
parameter is passed by const-reference. It is also noteworthy to mention that passing the
amount itself instead of the the payment instance would be sufficient. However, this requires
an in-depth analysis of the dependencies to the originating type to detect the appropriate data

23

3 Move Refactorings

to pass by parameter. This would also require an additional decision on how much should be
passed directly before the complete instance is passed. A user must be able to decide which
mechanism to use to pass these parameters as well, increasing the amount of configurations
in the refactoring process. Therefore, always the complete type is passed as a dependency
solving parameter. To overcome the dependency introduced by this, another refactoring can
be used, described in Section E on page 103.

Of course this type of transformation applies to other inside dependencies. For example,
member-function calls are changed equally by adding a new parameter of the source type and
changing the invokation owner accordingly. The same for function invokations on member-
variables where the call will be changed to a member-variable access on the parameter with
the original function invokation. The only exception for these transformation are recursive
calls. If a member-function call in the function to move is the function to move itself the call
remains unchanged.

Unveil Visibilites

So far visibilities of inside dependencies were ignored. Unfortunately, live is not that easy and
it is now time to explore this problem. In C++ there are two ways to specify visibilities, either
by using labels or adding friend declarations. Visibility labels are more common, however,
they allow no control over who is allowed to use the visible functionalities. Friends enable
establishing a restrictive policy to control access. Nevertheless, it is mainly up to a developer
to decide which option suits better, thus it should be possible to configure the type of visibility
adjustment to use for a transformation.

Changing the visibility is necessary for inside dependencies introduced by used member-
variables or member-funtions in the function to move. While using a private or protected
inside dependency at the source type is legal, it will no longer be at the destination type.

24

3 Move Refactorings

1 /* *===

2 Initial situation for moving the member - function

3 'settle ' to 'DebitCard ' with visibility changes

4 ===* */

5 // DebitCard .h

6 struct DebitCard {

7 double getBalance () const {

8 return balance ;

9 }

10 void reduce (double amount) {

11 balance -= amount ;

12 }

13 private :

14 double balance ;

15 // ...

16 };

17

18 // Payment .h

19 # include " DebitCard .h"

20

21 struct Payment {

22 void settle (DebitCard & card) {

23 if(card. getBalance ()<amount) {

24 // refuse payment ...

25 }

26 card. reduce (amount);

27 }

28 private :

29 double amount ;

30 // ...

31 };

Listing (16) DebitCard Example with Labels before Move (Together)

The debit card example of Listing 14 on page 22 slightly changed by adding visibility labels
illustrates this problem. The member-variables amount of Payment and balance of DebitCard
are normally preceded by a private visibility, hiding internal information to the external
objects. But relocating settle to DebitCard and changing the inside dependencies accordingly
violates the newly added visibility contraints.

25

3 Move Refactorings

1 /* *===

2 Erroneous member - function 'settle ' due to the

3 missing access to 'amount ' in 'Payment '

4 ===* */

5 void settle (class Payment & newPayment) {

6 if(getBalance ()< newPayment.amount) {

7 // refuse payment ...

8 }

9 reduce (amount);

10 }

Listing (17) DebitCard Example with Labels Visibility Violation

We no longer have access to amount since the moved function no longer belongs to the same
class containing this member-variable. If a user decides to use labels to change visibilities, the
transformation will add additional visibility labels.

1 /* *===

2 Result after the member - function 'settle ' was

3 moved to 'DebitCard ' with changed visibility of

4 'amount ' using labels

5 ===* */

6 // Payment .h

7 # include " DebitCard .h"

8

9 struct Payment {

10 private : // (1)

11 public : // (2)

12 double amount ;

13 private : // (3)

14 // ...

15 };

Listing (18) DebitCard Example with new Labels

The old private label visibility (1) is closed by adding a new public label (2), changing the
member-variable amount to public. After amount the original visibility is restored (3) by
adding an additional label with the previously closed visibility. Basically, all visibility changes
using labels work this way, but there are some special cases. If multiple visibility changes are
one after another, only one close, open and restore operation will be performed, to assure the
minimal amount of changes. For the same reason no restore operation is performed in cases
where the inside dependency to change into public is the last declaration in the source type.

26

3 Move Refactorings

1 /* *===

2 Example of changing visibilities for a sequence

3 of declarations in a type

4 ===* */

5 // Before Transformation

6 struct Source {

7 private :

8 void func ();

9 int first;

10 int second ;

11 int third;

12 };

13

14 // After Transformation

15 struct Source {

16 private :

17 void func ();

18 public : // open 'first ', 'second ' and 'third '...

19 int first;

20 int second ;

21 int third; // no restore after 'third '...

22 };

Listing (19) Multiple Visibility Changes and Omitted Label Restore

Another particular situation where a type declaration comes with multiple declarators is
covered as well. In C++ it is legal to define multiple variables of the same type by using
a comma-separated list of declarators. Although this is infrequently used for declaring
member-variables there is existing code using this syntax. Changing the visibilities for these
types of declarations must retain the order of the member-variables. Otherwise the order of
initialization is changed, potentially breaking compilability due to the order of initialization
given by constructors.

27

3 Move Refactorings

1 /* *===

2 Example of changing visibilities for a sequence

3 of declarations with multiple declarators in a type

4 ===* */

5 // Before Transformation

6 struct Source {

7 private :

8 int x, y, z; // change 'y' to public ...

9 };

10

11 // After Transformation

12 struct Source {

13 private :

14 int x;

15 public :

16 int y;

17 private :

18 int z;

19 };

Listing (20) Multiple Declarator Visibility Changes with Same Order

The second option of using a friend modifier to change the visibility requires less changes.
Following the method of minimal changes, we also rather use a friend function modifier instead
of a friend type, changing only the visibility of the parts related to the move refactoring.
Using the same initial situation as of Listing 16 on page 25, no labels are added, but instead
a friend function.

1 /* *===

2 Result after the member - function 'settle ' was

3 moved to 'DebitCard ' with changed visibility of

4 'amount ' using a friend function declaration

5 ===* */

6 // Payment .h

7 # include " DebitCard .h"

8

9 struct Payment {

10 private :

11 double amount ;

12 friend void DebitCard :: settle (class Payment &);

13 };

Listing (21) Friend Function Visibility Modification

The examples used for illustrating visibility changes access the member-variables after the
move directly. These changes are done to ensure compilability, but we recommend to add
accessor functions for the changed member-variables afterwards. However, this transformation
task is dedicated to the refactoring Encapsulate Field [Fow04].

28

3 Move Refactorings

Adapting Call-Sites

To apply the move refactoring consistently, existing invocations of the function to move have
to be changed as well. Before a call-site is adapted, several questions have to be answered.
Is the move to a parameter type? Was an additional parameter added? Have we removed a
parameter? These questions build the foundation of the call-site adjustments. For now, we
consider a call-site of the settle member-function show in Listing 16 on page 25.

1 /* *===

2 Initial situation for moving the member - function

3 'settle ' to 'DebitCard ' with call -site changes

4 ===* */

5 // main.cpp

6 # include " Payment .h"

7 # include " DebitCard .h"

8

9 void makePayment (DebitCard & card , Payment & payment) {

10 // log payment made by card ...

11 payment . settle (card);

12 // other actions ...

13 }

Listing (22) Call-Site of settle before Move

By moving settle from Payment to DebitCard the call-site must be changed. The function
must now be invoked on the instance of DebitCard and not on Payment. For this example,
our move is to a type appearing in the parameter list of the function to move, therefore, the
associated argument card at the call-site is removed and used as invocation owner. To satisfy
the inside dependencies, a new parameter of the source type is added, hence the old owner of
the call-site payment is used as a new argument for the function call.

1 /* *===

2 Result after the member - function 'settle ' was

3 moved to 'DebitCard ' with changed call -site

4 ===* */

5 // main.cpp

6 # include " Payment .h"

7 # include " DebitCard .h"

8

9 void makePayment (DebitCard & card , Payment & payment) {

10 // log payment made by card ...

11 card.settle(payment) ;

12 // other actions ...

13 }

Listing (23) Call-Site of settle after Move

Unfortunately, not all call-site changes are that easy to peform. What if no move to a parameter
type is performed? In this situation, we have no instance of the new member-function owner.
Hence we have to create such an instance.

29

3 Move Refactorings

1 /* *===

2 Result after a member - function was moved to a type

3 not in the parameter list with changed call -site

4 ===* */

5 // Before Transformation

6 void foobar (A & a) {

7 // other tasks ...

8 a. functionToMove ();

9 // ...

10 };

11

12 // After Transformation

13 void foobar (A & a) {

14 // other tasks ...

15 B() . functionToMove ();

16 // ...

17 };

Listing (24) Free Move Call-Site Change

The member-function is moved to a new type B. For this, a new instance of B is created and
immediatly used as the invocation owner. Thus the instance is temporary, but we achieved
the goal of having minimal changes per refactoring. The situations where an immediate
instantiation of the target type is not possible because the type is not default constructible
are ignored in this move refactoring. A user must change these call-sites to have a legal
initialization manually. After the change, the parameter a could be removed. Though this
transformation task is dedicated to the refactoring Remove Parameter [Fow04].

We have seen that existing inside dependencies, for example by member-function calls or
by accessing member-variables in the function to move, introduce a new parameter. This
parameter is always passed by reference and if possible by const-reference. Unfortunately,
this can lead to some problems.

30

3 Move Refactorings

1 /* *===

2 Initial situation for moving the member - function

3 'settle ' to 'DebitCard ' with function evaluation

4 call -owner

5 ===* */

6 // main.cpp

7 # include " Payment .h"

8 # include " DebitCard .h"

9

10 Payment getPayment () {

11 // Return a received payment ...

12 }

13

14 void makePayment (DebitCard & card) {

15 getPayment (). settle (card);

16 // other actions ...

17 }

Listing (25) Call-Site of settle with Function Call Invocation Owner

The invocation owner of the function to move at the call-site is the return type of another
function. Although it should not be possible to invoke a member-function on such a temporary
object, it actually is and is used in C++ source-code. Applying the move refactoring the
same way as before will no longer work.

1 /* *===

2 Erroneous call -site after the member - function

3 'settle ' was moved to 'DebitCard ' because the

4 payment is passed as a reference , but is temporary

5 ===* */

6 // main.cpp

7 # include " Payment .h"

8 # include " DebitCard .h"

9

10 Payment getPayment () {

11 // Return a received payment ...

12 }

13

14 void makePayment (DebitCard & card) {

15 card. settle (getPayment());

16 // other actions ...

17 }

Listing (26) Illegal Call-Site of settle with Function Call Argument

As we have seen in Listing 15 on page 23 the new parameter is passed by reference, though
the return type of getPayment is by value. This is not allowed, because passing a temporary
object by reference is not legal in C++. Here we have to extract a local variable. This
additional transformation is from the mechanical point of view similar to Introduce Explaining

31

3 Move Refactorings

Variable, however, the motivation is to ensure compilability, not to explain the purpose of an
expression.

1 /* *===

2 Result after the member - function 'settle ' was moved

3 to 'DebitCard ' with new local variable at call -site

4 ===* */

5 // main.cpp

6 # include " Payment .h"

7 # include " DebitCard .h"

8

9 Payment getPayment () {

10 // Return a received payment ...

11 }

12

13 void makePayment (DebitCard & card) {

14 Payment newPayment = getPayment();

15 card. settle (newPayment);

16 // other actions ...

17 }

Listing (27) Legal Call-Site of settle with Function Call Argument

Introducing a new local variable is only necessary for the above situation. If the return type
of getPayment is by reference, we do not have to create a local variable, because passing a
reference return type by reference is allowed. In addition, if the newly added parameter of
the function to move is by const-reference, this is not required as well. Passing a reference by
const-reference or passing a temporary object by const-reference is legal.

3.2 Move Member-Function to Another File

For this type of move refactoring, we do not have a related refactoring available. The reason for
this is the traditional separation between declaration and definition in C++ that we described
as a logical and a physicial membership in Section 3.1 on page 13. But the available literature
about refactorings do normally not discuss such a separation. However, it is important to get
a first brief impression of the problem tackled, thus we provide an own problem statement.

”A member-function definition in a source-file is more suitable in another
source-file”

This is not a paradigm, it should rather be seen as a helpful guidance. Apparently, it is up to a
developer to decide which member-function does not belong to a given source-file or for which
it may be wise to put them together. However, explicit separation from both, the logical and
the physical point of view, eases understanding of source-code and maintainability. Hence, if
a member-function definition owned by a type A is the only definition of a member-function
of this type in a source-file, and all other member-function definitions of this type are located
in another source-file, this member-function is a suitable candidate for a move.

32

3 Move Refactorings

3.2.1 Motivation

Applying the move member-function to another class refactoring described in Section 3.1
on page 13 introduces a new problem present for separated or co-located declarations and
definitions. The transformation relocates the declaration and the definition is changed to
match the new requirements introduced by the destination type, however, the physical location
of the definition remains unchanged. Although this physical membership of the member-
function may not be a problem, it can still be an unsatisfying situation. Assume we already
have a source-file that contains member-function definitions owned by the destination type
of the move member-function to another class refactoring. Having this member-function
definition isolated from the other definitions of the same type may not be wise. In general,
having member-function definitions belonging to the same type distributed over possibly many
other files is probably not a desirable situation. It unnecessarily complicates understandability
and maintainability of the source-code, because changing a given member-function of the type
may requires looking for the definition of the member-function, which is not in the source-file
together with all other definitions of this type.

Although the motivation for this type of move refactoring is heavily based on the usage of this
move as a follow-up transformation for the move member-function to another class refactoring,
it is possible to use it independently. Distributed definitions of member-functions owned by
the same type over different source-files can occur whether we use the move member-function
to another class refactoring or not. For example, other refactorings such as splitting a class
by using ”Extract Class” [Fow04] could end up with a similar situation, by moving only the
declarations and retaining the physical location of the definitions.

3.2.2 What to Move

As already mentioned in the Section before, this type of move refactoring applies to member-
function definitions. Although it may be reasonable to allow moving other things on a file
base, we will not consider them here, because the primary scenarios for this move type are
follow-up transformations for the move member-function to another class refactoring. We also
have already established enough knowledge to perform a relocation of member-functions in a
proper way.

Since we focus on moving member-function definitions, it is necessary to describe the en-
countered situations more precise. Theoretically, the same arrangements of declarations and
definitions exist (see Section 3.1 on page 13), namely together, co-located, separated or no
definition. Apparently, if no definition is present, moving a member-function definition to
another file is not possible, hence this situation can be ignored. So can the situation where
declaration and definition are together. Moving a member-function where the declaration
and a definition appear together is completely covered by the move member-function to
another class refactoring. Therefore, only definitions appearing in a separated or co-located
arrangement are candidates for this type of move.

33

3 Move Refactorings

3.2.3 Applying a Move

For the move member-function to another file move refactoring, we can ignore the declaration
of the member-function. Only the relocation of the definition of a member-function induce
changes to the source-code.

In the following, we will illustrate the mechanics of this move refactoring type, including the
transformations made, chooseable options for a user and encountered problems.

The Destination File

Like every move refactoring, a destination for the function to move is required. As the
name of the refactoring implies, the move destination for this type of move is a file. The
question is, which files are good candidates for the move destination? Similary to the move
member-function to another class refactoring, it would be possible to create proposals based
on the type the function to move belongs to. If the declaration of the function to move is in a
header-file, we could propose all source-files with an include statement for this header-file.
But unlike the move member-function to another class refactoring where proposals are made
for each distinct parameter type plus a "free" one, this is not a good idea. The amount of
source-files including a given header-file is very likely to exceed the amount of parameters
of a function. Hence the amount of proposals by using this technique is also likely to be
very large and selecting the appropriate target becomes more difficult for a user. In addition,
using this include based approach may propose target source-files contained in other projects.
Although this is not necessarily wrong, it is unlikely that these source-files are used as the
move destination, because the file is only incuded to make the type available in this translation
unit.

Basically, it is possible to distinguish between two base move destination proposals. Either
the target is an existing file, or a new file has to be created. Moving the member-function
definition to an existing file requires selecting the destination file, where moving to a new file
requires specifying a name for the file to create. The follow-up transformations to apply do
not differ independent of whether an existing file or a new file is used, except that using a
new file obviously requires the creation of this new file.

Changing the Definition

The changes involved for the member-function definition are simple. To getting started, we
assume the separated version of the Bill example seen in Listing 11 on page 19.

34

3 Move Refactorings

1 /* *===

2 Initial situation for moving the member - function

3 definition of 'calculatePrice ' to 'Product .cpp '

4 ===* */

5 // Bill.h

6 # include " Product .h"

7

8 struct Bill {

9 double getAmount ();

10 std :: vector <Product > products ;

11 // ...

12 };

13

14 // Product .h

15 struct Product {

16 double calculatePrice ();

17 // ...

18 };

19

20 // Bill.cpp

21 # include "Bill.h"

22 # include " Product .h"

23

24 double Bill :: getAmount () {

25 double amount = 0.0;

26 for(int i=0; i< products .size (); ++i)

27 amount += calculatePrice (products [i]);

28 return amount ;

29 }

30

31 double Product::calculatePrice () {

32 return getPrice () * getQuantity ();

33 }

Listing (28) Bill Example with Definitions of Different Types before Move

The file Bill.cpp contains two member-function definitions, getAmount of Bill and calcu-
latePrice of Product. The location of getAmount seems fine, because it is a member of Bill
and the containing file is Bill.cpp. However, calculatePrice is a member of Product, hence we
may wish to relocate this member-function definition to the file Product.cpp.

35

3 Move Refactorings

1 /* *===

2 Result after the member - function definition of

3 'calculatePrice ' was moved to 'Product .cpp '

4 ===* */

5 // Bill.cpp

6 # include "Bill.h"

7 # include " Product .h"

8

9 double Bill :: getAmount () {

10 double amount = 0.0;

11 for(int i=0; i< products .size (); ++i)

12 amount += calculatePrice (products [i]);

13 return amount ;

14 }

15 // ...

16

17 // Product .cpp

18 # include "Bill.h"

19 # include " Product .h"

20

21 double Product::calculatePrice () {

22 return getPrice () * getQuantity ();

23 }

24 // ...

Listing (29) Bill Example with Definitions of Different Types after Move

The definition is removed from the file Bill.cpp and added to the file Product.cpp. In addition,
the includes present at the move source are added to the destination file as well. This ensures
compilability, because this way everything required by the moved function is also available in
the destination file. Existing include statements of the destination file have to be considered
as well to avoid adding an already existing include statement to the destination file.

Adding Namespace Name-Qualifiers

Relocating a member-function definition to another file requires to have a look at surrounding
namespaces. Although it is possible to already have namespace names in the qualified name
of the definition, we have to make sure that all namespaces are included in the definition at
the move target. To satisfy this, we use the same mechanism as described in Section 3.1 on
page 13, by looking up all surrounding namespaces of the function definition and adding them
to the name of the function definition at the destination file.

36

3 Move Refactorings

1 /* *===

2 Example of changing the owning namespaces of

3 the moved member - function to be fully - qualified in

4 the definition name instead of surrounding namespace

5 ===* */

6 // Definition in the Origin x.cpp

7

8 namespace s_outer {

9 namespace s_inner {

10 void Source :: functionToMove () {

11 // ...

12 }

13 }

14 }

15

16 // Definition in the Destination y.cpp

17

18 // other declarations and definitions before ...

19 void s_outer::s_inner:: Source :: functionToMove () {

20 // ...

21 }

Listing (30) Adding Namespace Names to the Definition

To avoid problems problems with existing namespaces in the destination file, the definition of
the function to move is added as the last element in the destination file. Hence the definition
will not be contained in a surrounding namespace, however, if the same namespaces are
available in the destination file the definition will not be inserted in this namespace either.

3.3 Move Member-Function to Free-Function

This refactoring is not one of the traditional move refactorings, since it is rather related to
C++ or other programming languages allowing functions to be out of a class scope. However,
in C++ it is normal to have such free-functions to introduce operators, helper factory functions
such as std::make_pair and in the context of static polymorphism using templates. Especially
if the considered function does not change or require direct access to the state of the object
it is common to have it as a free-function. For getting started, we introduce our problem
statement for this refactoring.

”A member-function of a type does not require access to the internal repre-
sentation of the object.”

Apparently, there is another reason to have a free-function instead of a member-function,
propably more often used with operators. In cases where we wish to implement an operator
function for an existing type we cannot change, a free-function is the only available option.
However, this use case is not considered here, since this move refactoring tackles the trans-
formation of an existing member-function into a free-function. For a type we cannot change
(e.g. from libraries), we can neither add nor remove member-functions, hence, this refactoring
cannot be applied.

37

3 Move Refactorings

3.3.1 Motivation

Traditionally, member-functions of a type are used to control the behaviour and the lifecycle
of an object instance. To do this, they access the internal state of the object, potentially
altering this state. These member-functions require access to the internal representation of
the object to do their job. However, what if a member-function does not require access to the
internal representation of an object instance? They can access the internal state, but they do
not need to, thus could do more than they actually should. Such a member-function should
rather be implemented as a free-function. Transforming this type of member-function to a
free-function retains the semantic of the code, but we achieve a lower coupling by introducing
this separation. By converting a member-function to a free-function, we can also use the
power of C++ static polymorphism using templates, rather than overriding virtual functions
and adding unnecessary call-time overhead for the function lookup in the virtual table at
runtime. An implementation of a transformation from an explicitly typed function into a
template function was implemented for Eclipse in [Thr10].

3.3.2 What to Move

The transformation of a member-function into a free-function suffers from the same problems
as the move member-function to another class refactoring. The arrangments of declaration
and definition can yield numerous options on how the move should be performed. However,
since we already introduced a solution for this, namely the separation between a logical
and a physical relocation of declarations and definitions, we apply this here as well. The
member-function declaration is relocated to a new destination becoming a free-function and
the definition is changed reflecting the changes as well to ensure compilability. This correlates
with the logical move transformation seen in the move member-function to another class
refactoring.

3.3.3 Applying a Move

In the following sections, we will explain the required changes to transform a member-function
into a free-function, choosable options for a user and problems that can occur.

The Move Destination

Similar to the other moves explained in Section 3.1 on page 13 and 3.2 on page 32, this
refactoring requires a destination for the function that should be moved. Which destinations
are good candidates for this refactoring? Basically, we could move the function declaration
to a different file or keep it in the same file. But moving the function out of the current
file introduces some problems, for example, the target file can have namespaces that are
likely to be different than those in the originating file. Making sure the include order and
the required visibility of declarations and definitions is sufficient becomes harder as well. In
addition, the problem tackled by this refactoring is not a wrong responsibility assignment. It
is a more subtle distinction between required and actual access to the internal state of an
object. Thus, the responsibility assignment to the type is not wrong, but coupling can be
reduced by converting it into a free-function. So retaining the function declaration in the

38

3 Move Refactorings

same file is the appropriate choice. This also has the advantage that only one proposal for
the move destination exists, making it easier for a user to handle and by placing the function
below the originating type, it is guaranteed that the moved function has all the required types
and function visibilities.

Changing the Declaration and Definition

To illustrate the required changes to the declaration and the definition of the function to
move, we use operators related to a type Fract.

1 /* *===

2 Initial situation for converting the member - operator

3 'operator *' into a free - operator

4 ===* */

5 // Fract.h

6 struct Fract {

7 Fract operator *=(const Fract & rhs) {

8 numerator *= rhs. numerator ;

9 denominator *= rhs. denominator ;

10 // cancel fraction ...

11 return *this;

12 }

13 Fract operator* (const Fract & rhs) const {

14 Fract lhs (* this);

15 lhs *= rhs;

16 return lhs;

17 }

18 private :

19 int numerator ;

20 int denominator ;

21 };

Listing (31) Dependent Operators for Fraction before Move (Together)

The multiplication operator is implemented in terms of the multiplication-assignment operator.
Since the multiplication-assignment operator is public, access to the internal state of the
object is not required by the multiplication operator. Hence, this member-operator can be
transformed into a free-operator.

39

3 Move Refactorings

1 /* *===

2 Result after the member - operator 'operator *' was

3 converted into a free - operator

4 ===* */

5 // Fract.h

6 struct Fract {

7 Fraction operator *=(const Fract & rhs) {

8 numerator *= rhs. numerator ;

9 denominator *= rhs. denominator ;

10 // cancel fraction ...

11 return *this;

12 }

13 private :

14 int numerator ;

15 int denominator ;

16 };

17

18 Fract operator* (const Fract & lhs , const Fract & rhs) {

19 Fract fract(lhs);

20 fract *= rhs;

21 return fract;

22 }

Listing (32) Dependent Operators for Fraction after Move (Together)

The declaration and definition of the operator, is removed and added below Fract. An
additional parameter is added to reflect the previously implicit parameter Fract. This newly
added parameter must be inserted as the first parameter. Otherwise it may be possible that
either the operator semantic is changed, because the parameter order is changed, or the
operator ”owner” changes if the previous right-hand-side of the operator is not of the type
Fract.

These changes are sufficient so far for the situation where declaration and definition are together.
But consider the arrangment where declaration and definition are separated, potentially in
distinct header- and source-files.

40

3 Move Refactorings

1 /* *===

2 Initial situation for converting the member - operator

3 'operator *' into a free - operator with definition change

4 ===* */

5 // Fract.h

6 struct Fract {

7 Fract operator *=(const Fract & rhs);

8 Fract operator* (const Fract & rhs) const;

9 private :

10 int numerator ;

11 int denominator ;

12 };

13

14 // Fract.cpp

15 # include "Fract.h"

16

17 Fract Fract :: operator *=(const Fract & rhs) {

18 numerator *= rhs. numerator ;

19 denominator *= rhs. denominator ;

20 // cancel fraction ...

21 return *this;

22 }

23

24 Fract Fract::operator* (const Fract & rhs) const {

25 Fract lhs (* this);

26 lhs *= rhs;

27 return lhs;

28 }

Listing (33) Dependent Operators for Fraction before Move (Separated)

Apparently, to transform the member-operator in a free-operator, the name of the definition
has to be changed to no longer contain the type qualifier.

41

3 Move Refactorings

1 /* *===

2 Result after the member - operator 'operator *' into

3 a free - operator with changed definition

4 ===* */

5 // Fract.h

6 struct Fract {

7 Fract operator *=(const Fract & rhs);

8 private :

9 int numerator ;

10 int denominator ;

11 };

12

13 Fract operator* (const Frac & lhs , const Fract & rhs);

14

15 // Fract.cpp

16 # include "Fract.h"

17

18 Fract Fract :: operator *=(const Fract & rhs) {

19 numerator *= rhs. numerator ;

20 denominator *= rhs. denominator ;

21 // cancel fraction ...

22 return *this;

23 }

24

25 Fract operator* (const Frac & lhs , const Fract & rhs) {

26 Fract fract(lhs);

27 fract *= rhs;

28 return fract;

29 }

Listing (34) Dependent Operators for Fraction after Move (Separated)

The same transformation applies if the declaration and definition are co-located. In cases
where no definition exists, moving the declaration is still possible as seen in Listing 31 on
page 39 and 32 on page 40, but without a need to apply transformations related to the
definition.

It is important to say that the transformation of an operator from a member- into a free-
function always requires adding an additional parameter. Otherwise, the arity of the operator
is changed, which is not allowed for C++ operators [ISO11]. There exist operators not allowed
as free-function as well [ISO11], i.e. assignment, new, delete, subscript and the function-
call operator. Although the transformation is possible, it suffers from losing compilability.
Non-operator member-functions may have an additional parameter, depending on whether
dependencies to the source typ exist. If there are none, no new parameter will be added.

Namespaces

Transforming a member-function into a free-function requires to have a look at the namespaces,
however, nearly no changes are involved to apply the refactoring in a proper way. As we

42

3 Move Refactorings

already have discussed, the problem tackled by this refactoring is not a wrong responsibility
assignment. It is the problem of having access to the internal state of an object, but it is
not required. This means, that the considered function’s logical membership should remain
unchanged, thus have a parameter for the original type if required or always in case of
operators, and retain the namespaces of the move origin. To illustrate this, consider the
example of Listing 35.

1 /* *===

2 Example of converting a member - function into a

3 free - function and retaining the namespace member -

4 ship

5 ===* */

6 // A.h before transformation

7 namespace NS_I {

8 struct A {

9 void foobar ()

10 {

11 // do something ...

12 }

13 };

14 }

15

16 // A.h after transformation

17 namespace NS_I {

18 struct A {

19 };

20

21 void foobar ()

22 {

23 // do something ...

24 }

25 }

Listing (35) Retain Namespaces at Destination (Together)

The member-function foobar is transformed into a free-function (for brevity, we assume that
no inside- and outside-dependencies exist). The member-function is removed and added below
the type A in the same namespace. In this arrangment, where declaration and definition are
together, it is just necessary to make sure the free-function is added to the same namespace
containing A, because it is not possible to open another namespace in the type A.

In cases where the definition and the declaration are separated, an additional transformation
is required. For the declaration, the same procedure as described above is sufficient. But the
name of the function in the definition must reflect the correct namespace after the change as
well. Basically, there are two distinct situations possible, but with the same solution. Either
the definition has a surrounding namespace, or the namespaces are present in the function
definition name itself by using a qualified name (it is possible to have them combined, however,

43

3 Move Refactorings

the transformations are the same). In both cases, the type qualifier is removed from the
definition to convert the member-function into a free-function.

1 /* *===

2 Example of converting a member - function into a

3 free - function and retaining the namespace member -

4 ship with definition changes

5 ===* */

6 // A.h

7 namespace NS_I {

8 struct A {

9 void foo ();

10 void bar ();

11 };

12 }

13

14 // A.cpp before transformation

15 namespace NS_I {

16 void A::foo ()

17 {

18 }

19 }

20

21 void NS_I::A::bar ()

22 {

23 }

24

25 // A.cpp after transformation

26 namespace NS_I {

27 void foo ()

28 {

29 }

30 }

31

32 void NS_I::bar ()

33 {

34 }

Listing (36) Retain Namespaces at Destination (Separated)

The same changes apply for co-located declarations and definitions. If no definition exists,
the declaration changes described in Listing 35 on the previous page are sufficient.

Changing Call-Sites

The call-site adaption for the move member-function to free-function refactoring partially
suffers from the same problems as the move member-function to another class refactoring.
This gives us the opportunity to use the same approaches to solve these problems. But it
is important to distinguish between the conversion of a non-operator member-function to a

44

3 Move Refactorings

free-function and the transformation of an operator function, or more specific, a separation
between operator-syntax and function-syntax at the call-site.

1 /* *===

2 Examples of different syntaxes to use operators

3 ===* */

4 // Operator - Syntax at call -site

5 Type x = y * z;

6

7 // Function - Syntax at call -site

8 Type x = y. operator *(z);

Listing (37) Operator- and Function-Syntax at Call-Site

Using an operator with function-syntax can occur by renaming a previously non-operator to an
operator function, or to avoid ambiguity. Apparently, if the operator-syntax is used, the call-
site remains unchanged. There is no syntactical difference between a free-function operator
and a member-function operator if used in the ”traditional” way of operator invocation.
However, if the operator is invoked using the function-syntax the call-sites must be changed
and of course the same applies to every other non-operator function call-site as well, since
”normal” functions are always invoked using the function-syntax. To illustrate these changes,
the same example with the type Fract seen in Listing 31 on page 39 is used.

45

3 Move Refactorings

1 /* *===

2 Initial situation for converting the member - operator

3 'operator *' into a free - operator with function - syntax

4 call -site

5 ===* */

6 // Fract.h

7 struct Fract {

8 // Constructor with initialization ...

9 Fract operator *=(const Fract & rhs) {

10 numerator *= rhs. numerator ;

11 denominator *= rhs. denominator ;

12 // cancel fraction ...

13 return *this;

14 }

15 Fract operator* (const Fract & rhs) const {

16 Fract lhs (* this);

17 lhs *= rhs;

18 return lhs;

19 }

20 private :

21 int numerator ;

22 int denominator ;

23 };

24

25 // Main.cpp

26 # include "Fract.h"

27

28 int main () {

29 Fract f1(1, 2);

30 Fract f2(3, 4);

31 Fract result = f1.operator*(f2) ;

32 }

Listing (38) Adapting Call-Sites to Free-Functions before Move

The transformations required for this type of call-site are similar to those of the move member-
function to another class refactoring, but without having a new owner for the function to
move.

46

3 Move Refactorings

1 /* *===

2 Result after the member - operator 'operator *' was

3 converted into a free - operator with function - syntax

4 call -site

5 ===* */

6 // Main.cpp

7 # include "Fract.h"

8

9 int main () {

10 Fract f1(1, 2);

11 Fract f2(3, 4);

12 Fract result = operator*(f1, f2) ;

13 }

Listing (39) Adapting Call-Sites to Free-Functions after Move

The original owner of the function invocation f1 is removed and no new owner is added,
because the function is now a free-function. Instead, f1 is added as a new first argument to
the function call. For operators, this add operation is mandatory and must not be omitted,
even if no inside-dependencies exist, however, adding the original invocation owner may be
skipped for non-operator functions if no inside-dependencies exist.

Similar to the move member-function to another class refactoring, it is possible to be forced
to introduce a new local variable to ensure compilability. If the original invocation owner is
itself a function call and the return-type of this function call violates the parameter passing
mechanism, a new local variable must be created.

47

3 Move Refactorings

1 /* *===

2 Example of erroneous and correct call -site change

3 after the conversion of a member - operator into

4 a free - operator because of a temporary reference

5 parameter

6 ===* */

7 // Main.cpp

8 # include "Fract.h"

9

10 Fract getFraction ()

11 {

12 return Fract (1, 2);

13 }

14

15 // (1) Not allowed

16 int main () {

17 Fract f(3, 4);

18 Fract result = operator *(getFraction() , f2);

19 }

20

21 // (2) Correct

22 int main () {

23 Fract f(3, 4);

24 Fract newFract = getFraction();

25 Fract result = operator *(newFract , f2);

26 }

Listing (40) Call-Site of Free-Functions with new Variable

(1) is not allowed, because the new argument is the by-value return-type of a function passed
by-reference to the operator, but passing a temporary object by-reference is not legal in C++.
Thus, in (2) a new variable is added initialized with the return value of getFraction. This new
variable can be passed to the function without a compilation error.

Adding Forward Declarations

So far, we did not have to deal with adding forward declarations for the function to move.
In the move member-function to another class refactoring, this problem is solved by having
include statements making sure everything is visible at the point it is used (except the potential
circular dependencies). The move member-function to another file refactoring does not have
this problem either, because of the newly added include statements as well. Unfortunately,
this refactoring can encounter a situation, where it is unavoidable to add a forward declaration
for the moved function.

48

3 Move Refactorings

1 /* *===

2 Example of a member - function dependency -chain

3 causing problems to a conversion into a free - function

4 ===* */

5 // A.h

6 struct A {

7 void x() {

8 }

9 void y() {

10 x();

11 }

12 void z() {

13 y();

14 }

15 };

Listing (41) Dependency Chain of Functions before Move

The problem comes down to having a ”dependency chain”. In the example above, a chain
z → y → x exists. The order in which the functions are declared is not relevant for types,
however, if the function y should be converted into a free-function, we cannot avoid to add a
forward declaration for y before the call-site of y in z. Normally, the refactoring is adding the
function below the origin type. However, by doing so the function z does not know about
y. This yields a compilation error. Unfortunately, we neither can put the function above
the type, because y has a dependency to the type A due to the invocation of x. A forward
declaration of A would not solve this problem, because the function is implemented inline.
Therefore, the function to move is added below the type and a forward declaration is added
to the call-site of y.

1 /* *===

2 Example of a solved member - function dependency -chain

3 by adding forward declarations

4 ===* */

5 // A.h

6 struct A {

7 void x() {

8 }

9 void z() {

10 void y(const class A &);

11 y(* this);

12 }

13 };

14

15 void y(const class A & newA) {

16 newA.x();

17 }

Listing (42) Dependency Chain of Functions after Move

49

3 Move Refactorings

If multiple dependencies to y exist, only one forward declaration is added, but before the type.
This introduces less changes to the source-code compared to adding a forward declaration for
each call-site.

Adding forward declarations is not necessary if the process of changing visibilities introduced
a function friend declaration to the originating type. The friend declaration serve the same
purpose in this context like a forward declaration.

Visibilities and Inside Dependencies

To change the visibilities required by the function to move and the adjustment of the inside
dependencies to the newly added parameter, we use the same mechanisms as explained in
Section 3.1 on page 13. The only difference is that for the visibilities a friend declaration is
preferred over adding labels. Thus, this is the default behaviour.

3.4 Move-Up to Parent Namespace

Separating code into namespaces is a common approach to group parts of your application
belonging together into logical pieces. While this adds another level of abstraction to ease
understanding and managing code, it can also introduce familiar assignment and dependency
problems. The question which namespace a function or type should be assigned to can become
difficult. Especially, if dependencies to other namespaces are considered, maybe depending on
whether they are in the same namespace hierarchy, below, above, or not in the same hierarchy
at all. Conflicting names and overloads must be taken care of as well. While the code base
of an application changes and evolves over time, it requires a regular reassessment of these
"owner assignments", otherwise you risk having bad quality code, which is hard to maintain
and change.

”You have code in a namespace which is not the optimal choice to be the
owner of this code.”

We will not discuss how to evaluate the optimal namespace in this thesis. We also do not want
to give a wrong impression of namespaces. They are not meant to be a ”design tool”. Grouping
code that belongs together is reasonable, but extensive usage of namespaces including multiple
hierarchy levels is not a good concept for code separation in C++.

3.4.1 Motivation

As an application grows, it is important to think about namespaces. Although it requires less
brain-work having everything in the global namespace, it can become cumbersome very fast.
For example, if there are many free-functions in your application code, the auto-completion
of the IDE ’s editor loses it purpose, because you have to chose the correct function out of a
huge list of available candidates. In addition, the readability of your code suffers from the
missing grouping of elements, since namespace names give you extra information about the
invoked function or type used. As a project advances and the code is reassessed, you may
find a function or a type which is in an incorrect namespace. It may have been placed in a
namespace which was wrong in the first place, because you thought it is wise to put it there.

50

3 Move Refactorings

Or a given set of functions or types should be moved to a separate namespace to allow easily
replacing them via a using namespace statement at the usage scope. Doing such a move
manually is tedious and error prone and should be available in an automated fashion.

3.4.2 What to Move

Moving code between different namespaces requires thinking carefully about the way it should
be performed. A relocation from an originating to a target namespace, for which both are
in distinct namespace hierarchies is difficult, because the dependencies must be changed to
relate on a completely different hierarchy. In addition, many changes to the code are required
and managing the source-code becomes hard if you retain the moved function or type in the
originating file (physically). It is possible to allow a user to chose a target file next to the
target namespace, however, this yields even more changes. While this is not a bad thing from
a technical point of view, it is for a software engineer using the refactoring. The more changes
required, the harder it is to understand the result. Keeping changes as small as possible
allows a user to maintain a picture of the result of the transformation in mind and simplifies
answering the question whether this is the desired change to the source-code. Moving a piece
of code to a namespace in a distinct hierarchy is also less likely to be an existing use-case.
In fact, it is probably required to relocate source-code in the current namespace hierarchy,
for example because this part of the application received an improved abstraction. For this
reason, we introduce a ”Move-Up” and ”Move-Down” refactoring for namespaces.

Introducing Move-Up and Move-Down in Namespaces

Instead of manually selecting a namespace as a move destination, the current namespace
hierarchy is used to determine the target namespace. Depending on the selected direction, the
affected code is relocated to the parent namespace, or to a child namespace. The advantage of
this separation is that the required changes are small and easier to understand. In addition, it
is still possible to move a given piece of code to a different namespace hierarchy by successively
moving it up to the global namespace and chose a different hierarchy for the move down
operation.

In this thesis, only the move-up operation is implemented because there was not enough time
available to complete both refactoring directions. It is also noteworthy that only free-functions
and types are considered to be valid candidates for the move-up refactoring. It is possible
to add global constants or variables and other C++ elements in the future, but due to time
constraints, we focused on types and free-functions. This also integrates well into the previous
refactorings described in Section 3.1 on page 13, 3.2 on page 32 and 3.3 on page 37, where
member-functions and free-functions are handled.

3.4.3 Applying a Move

In the following sections, we will explain the required changes to move-up a free-function or a
type to the parent namespace, choosable options for a user and problems that can occur.

51

3 Move Refactorings

The Move Destination

Apparently, the destination of the ”move-up to parent namespace” is very easy to point at. A
namespace can only have one parent. Therefore, discussing appropriate move proposals is
unnecessary. However, the only important thing to point out here is the global namespace.
While the global namespace can be a valid move destination, it can never occur as a move
origin in the move-up process. This is due to the fact that no parent namespace exists for the
global namespace.

Changing Namespace Ownership

Changing the namespace ownership of a free-function or a type is a problem that sounds
familiar. In the move member-function to another class refactoring in Section 3.1 on page 13, a
mechanism was introduced to change the definition of a member-function to the namespace the
target type for the move belongs to. This technique closes all existing namespaces before the
considered function, changes the name of the member-function definition to be fully-qualified
and reopens the previously closed namespaces after this definition. The algorithm can be
adapted for the move-up transformation.

1 /* *===

2 Initial situation for moving 'mean ' up to the parent

3 namespace

4 ===* */

5 // MathUtility .h

6 namespace util {

7 // other functions before ...

8 double mean (const std :: vector <double > & v);

9 // other functions after ...

10 }

Listing (43) Moving-Up in a Namespace before Transformation

Listing 43 shows an initial situation for the move-up to parent namespace refactoring. The
free-function mean has to be moved out of the namespace util.

1 /* *===

2 Result after 'mean ' was moved -up to the parent

3 namespace

4 ===* */

5 // MathUtility .h

6 namespace util {

7 // other functions before ...

8 }

9 double mean (const std :: vector <double > & v);

10 namespace util {

11 // other functions after ...

12 }

Listing (44) Moving-Up in a Namespace after Transformation

52

3 Move Refactorings

The transformations applied are exactly the same as the changes related to namespaces in the
move member-function to another class refactoring. However, this is only because the move
target is the global namespace. In cases where the move origin is a nested namespace, only
the originating namespace is closed, moving the free-function one level up. In addition, no
changes to the name of the free-function are applied, independent of whether it is a definition
or a declaration. These changes apply for all declaration and definition arrangements. For
separated and co-located declarations and definitions the transformation is applied for both
independently. If there is no separate declaration only the definition is changed.

Inside Dependencies and Argument Dependent Lookup

Moving a free-function or a type to the parent namespace introduces changes to the inside
dependencies. The moved code may use functions or types defined in the originating namespace.
Thus, it is necessary to add qualifiers or using declarations to these dependencies to ensure
retained semantics.

The transformations of the inside dependencies are performed with respect to Argument
Dependent Lookup (ADL). With this technique, some of the inside dependencies do not require
changes. In the context of the move-up to parent namespace refactoring, every free-function
invoked in the type or free-function to move does not require a qualifier or using declaration,
if the function can be looked up using ADL. A lookup is successful if the invoked function
has at least one non-primitive parameter type and the definition of the type is in the same
namespace as the invoked function. Of course, this only applies to unqualified calls. Qualified
calls are looked up in the defined lookup namespace of the call. To illustrate this, assume the
example of Listing 45 on the next page.

53

3 Move Refactorings

1 /* *===

2 Example of argument dependent lookup used at the

3 call -site of functions

4 ===* */

5 // ADL.h - Successful ADL

6 namespace A {

7 namespace B {

8 struct X {};

9 void bar(X x) {}

10 }

11 void foo () {

12 B:: X x;

13 bar(x); // (1) ADL Successful

14 }

15 }

16

17 // ADL.h - Not Successful ADL

18 namespace A {

19 struct X {};

20 namespace B {

21 void bar(X x) {}

22 }

23 void foo () {

24 X x;

25 bar(x); // (2) ADL Not Successful

26 }

27 }

Listing (45) Argument Dependent Lookup

The invocation (1) is successful, because the local variable of type X adds the namespace
B to the search scope for the function bar. However, (2) is not successful and will not
compile, because the lookup of bar will not search in namespace B. For the invocation (2),
the refactoring is adding a qualifier for the owning namespace, illustrated in Listing 46 on the
following page. The same applies for types used in the function or type to move-up.

54

3 Move Refactorings

1 /* *===

2 Result of a corrected unsuccessful argument dependent

3 lookup

4 ===* */

5 namespace A {

6 struct X {};

7 namespace B {

8 void bar(X x) {}

9 }

10 void foo () {

11 X x;

12 B:: bar(x);

13 }

14 }

Listing (46) Transformed Inside Dependency with Qualifier

In some cases, it is not possible to add a qualifier to the function invocation. Namely, these
are operators implemented as free-functions and used with the traditional operator-syntax.
Member-Function operators do not belong to this category because they are automatically
introduced in the lookup scope by the operator argument types and their owning namespaces.
To solve this problem, it is possible to add a using declaration introducing the qualified name
of the operator to be used before the inside dependency.

1 /* *===

2 Initial situation for a lookup correction in the

3 move -up to parent namespace tansformation

4 ===* */

5 struct Fract {

6 // ...

7 };

8 namespace fraction_math {

9 Fract operator /(int num , const Fract & den) {

10 // ...

11 }

12 Fract reciprocal (const Fract & f) {

13 Fract inv = 1 / f;

14 return inv;

15 }

16 }

Listing (47) Using Declaration for Operators before Transformation

Listing 47 shows an initial situation for this transformation. The free-function reciprocal is
intended to be moved-up, but since the type Fract and the division operator are not defined
in the same namespace, ADL is not sufficient.

55

3 Move Refactorings

1 /* *===

2 Result after the move -up of 'reciprocal ' to the

3 parent namespace with using declaration to allow

4 using 'operator /'

5 ===* */

6 struct Fract {

7 // ...

8 };

9 namespace fraction_math {

10 Fract operator /(int num , const Fract & den) {

11 // ...

12 }

13 }

14 Fract reciprocal (const Fract & f) {

15 using fraction_math::operator/;

16 Fract inv = 1 / f;

17 return inv;

18 }

Listing (48) Using Declaration for Operators after Transformation

The using declaration added before the operator call-site introduces the name and the defining
namespace for this operator to the moved-up function to ensure compilability. If a given
operator is used multiple times in the same function, only one using declaration is added before
the first occurrence. Although it is possible to add the using declarations at the beginning of
the function, doing so breaks the ”mental connection” between the operator call-site and the
using declaration. It is harder to recognise the reason for the using declaration, if it is the first
statement in a function, but the introduced name is used in the ending part of the function.
For the move-up operation of a type, using declarations and qualifiers are added as well, but
for each member-function. Unfortunately, this can involve having repeated using declarations
distributed over different members of the type. A using declaration at class scope could solve
this problem, however, class scope using declarations are only allowed to introduce names
found in the inheritance hierarchy of this type ([ISO11] Section 7.3.3 Paragraph 3). Adding
the using declaration before the type at the namespace level should be avoided as well, since
it will introduce the name to every declaration and definition in the namespace after the type
to move-up.

Changing the inside dependencies of a free-function or type to move-up to parent namespace
must deal with the return and parameter types as well. If they are defined in the originating
namespace, the originating namespace is added as a qualifier to these types.

Call-Site Transformation

The relocation of a free-function or a type to the parent namespace can require changes to the
call-sites of the free-function or the usage-sites of the type. Next to the well-known function
invocations and type instantiation call-site types, declaration expressions, such as typedefs,
function return types and parameters of the moved type and using declarations must be

56

3 Move Refactorings

considered as well. The transformation also considers ADL, but in a different context. This
time, the transformation can break a previously successful lookup. Fortunately, it is possible
to sort out a subset of the call-sites, which will remain unchanged. In nested namespaces,
everything defined or declared in surrounding namespaces is available to inner namespaces.
Therefore, call-sites in the originating namespace of the function or type to move can remain
unchanged, because they are still accessible to them. Neither will there be a problem with
declaration order, since the declaration order remains unchanged by the refactoring.

1 /* *===

2 Initial situation for the move -up of 'reciprocal '

3 to the parent namespace with call -site changes

4 ===* */

5 // Fraction .h

6 struct Fract {

7 // ...

8 };

9 namespace fraction_math {

10 Fract operator /(int num , const Fract & den) {

11 // ...

12 }

13 Fract reciprocal (const Fract & f) {

14 Fract inv = 1 / f;

15 return inv;

16 }

17 }

18

19 // Main.cpp

20 # include " Fraction .h"

21

22 int main () {

23 Fract f(1, 5);

24 Fract result = fraction_math::reciprocal (f);

25 // ...

26 return 0;

27 }

Listing (49) Call-Site in Move-Up before Transformation

Listing 49 illustrates an initial situation for a call-site transformation. The free-function
reciprocal is moved to the parent namespace. Therefore, the invocation using the namespace
qualifier in Main.cpp becomes invalid.

57

3 Move Refactorings

1 /* *===

2 Result after the move -up of 'reciprocal ' to the

3 parent namespace with changed call -site

4 ===* */

5 // Fraction .h

6 struct Fract {

7 // ...

8 };

9 namespace fraction_math {

10 Fract operator /(int num , const Fract & den) {

11 // ...

12 }

13 }

14 Fract reciprocal (const Fract & f) {

15 using fraction_math :: operator /;

16 Fract inv = 1 / f;

17 return inv;

18 }

19

20 // Main.cpp

21 # include " Fraction .h"

22

23 int main () {

24 Fract f(1, 5);

25 Fract result = ::reciprocal (f);

26 // ...

27 return 0;

28 }

Listing (50) Call-Site in Move-Up after Transformation

The call-site is changed by removing the qualifier corresponding to the originating namespace
of the moved free-function. For this situation, this is sufficient to retain compilablity.

Changing the example of Listing 49 on the previous page to use ADL, the move-up operation
can break the previously successful lookup.

58

3 Move Refactorings

1 /* *===

2 Initial situation for the move -up of 'Fract '

3 to the parent namespace with call -site using

4 argument dependent lookup

5 ===* */

6 // Fraction .h

7 namespace fraction_math {

8 struct Fract {

9 // ...

10 };

11 Fract operator /(int num , const Fract & den) {

12 // ...

13 }

14 Fract reciprocal (const Fract & f) {

15 Fract inv = 1 / f;

16 return inv;

17 }

18 }

19

20 // Main.cpp

21 # include " Fraction .h"

22

23 int main () {

24 fraction_math :: Fract f(1, 5);

25 fraction_math :: Fract result = reciprocal (f);

26 // ...

27 return 0;

28 }

Listing (51) Call-Site with ADL before Transformation

The type Fract adds the namespace fraction_math to the lookup scope for reciprocal. However,
moving this type to the parent namespace will break ADL, because Fract and reciprocal are
no longer in the same namespace, thus the lookup fails. Therefore, qualifiers are added to
this ”indirect dependency”.

59

3 Move Refactorings

1 /* *===

2 Result after the move -up of 'Fract ' to the parent

3 namespace with changed call -site because argument

4 dependent lookup is broken

5 ===* */

6 // Fraction .h

7 struct Fract {

8 // ...

9 };

10 namespace fraction_math {

11 Fract operator /(int num , const Fract & den) {

12 // ...

13 }

14 Fract reciprocal (const Fract & f) {

15 Fract inv = 1 / f;

16 return inv;

17 }

18 }

19

20 // Main.cpp

21 # include " Fraction .h"

22

23 int main () {

24 Fract f(1, 5);

25 Fract result = fraction_math:: reciprocal (f);

26 // ...

27 return 0;

28 }

Listing (52) Call-Site with Broken ADL after Transformation

If ADL breaks because of the transformation and the dependency is an operator used with
operator-syntax, a using declaration is added instead of qualifiers.

In the move member-function to another class refactoring in Section 3.1 on page 13, an option
is described to avoid adjusting the call-sites by retaining the original member-function, and
delegating to the new member-function. For this refactoring, a similar technique can be used.
The delegation mechanism adds a using declaration at the namespace level reintroducing the
name of the moved free-function or type to the originating namespace.

60

3 Move Refactorings

1 /* *===

2 Initial situation for the move -up of 'mean ' to the

3 parent namespace avoiding call -site adjustments

4 ===* */

5 // Utility .h

6 namespace util {

7 // before ...

8 double mean(const std :: vector <double > & v);

9 // after ...

10 }

11

12 // Main.cpp

13 # include <vector >

14 # include " Utility .h"

15

16 int main () {

17 std :: vector <double > v;

18 // add values to 'v '...

19 double m = util :: mean(v);

20 // ...

21 return 0;

22 }

Listing (53) Avoiding Call-Site Changes before Transformation

In Listing 53, the call-site of mean in Main.cpp should remain unchanged, thus a user can
chose to add a using declaration to the originating namespace.

61

3 Move Refactorings

1 /* *===

2 Result after the move -up of 'mean ' to the parent

3 namespace with avoided call -site adjustments by

4 adding a using declaration

5 ===* */

6 // Utility .h

7 namespace util {

8 // before ...

9 }

10 double mean(const std :: vector <double > & v);

11 namespace util {

12 using ::mean;

13 // after ...

14 }

15

16 // Main.cpp

17 # include <vector >

18 # include " Utility .h"

19

20 int main () {

21 std :: vector <double > v;

22 // add values to 'v '...

23 double m = util :: mean(v);

24 // ...

25 return 0;

26 }

Listing (54) Avoiding Call-Site Changes after Transformation

This option can be used for every move-up operation, whether a type, operator or a free-
function is used. It is noteworthy to mention that using declarations can be used in chain.
The move-up to parent namespace refactoring can be applied multiple times to a free-function
or type until the global namespace is reached. If a using declaration is added in every of this
operation, the first using declaration will point to the second, travelling up the hierarchy until
the last using declaration, which points to the moved function or type. However, if the option
to add a using declaration is not chosen by a user, or if there are existing using declarations,
they are changed according to the move operation by changing the qualified name of the using
declaration.

62

4 Implementation

4 Implementation

In this chapter, an overview of the most important implementation concepts is given, including
important design decisions. First, implementation details for all refactorings are described,
explaining the creation of the move proposals and data calculation, followed by a description
of implementation facts related to a specific refactoring.

4.1 Eclipse Plug-In

This section provides an overview of the extension point used by the TurboMove plug-in,
the plug-in architecture and the initialisation process implemented to create different move
proposals for the refactorings.

4.1.1 Extension Point

To allow a user to interact with the plug-in using Eclipse CDT an extension point is used.
The used extension point for all refactorings is org.eclipse.ui.actionSets. By hooking in, the
application is able to register the implemented refactorings into the existing refactoring menu
of Eclipse CDT . We add four actions to this menu, each covering one of the refactorings
below:

Move to Class...
Move member-function to another class described in Section 3.1 on page 13.

Move to File...
Move member-function to another file described in Section 3.2 on page 32.

Move to Free-Function...
Move member-function to free-function described in Section 3.3 on page 37.

Move-Up to Parent Namespace...
Move-Up to parent namespace described in Section 3.4 on page 50.

To distinguish between the different refactorings, each is using a different action delegate
sharing a common superclass AbstractTurboMoveRefactoringActionDelegate. Next to them,
other classes necessary for refactoring instantiation and user interface loading are required,
shown in Figure 3 on page 65. The class design of the action and delegate classes implemented
to start the refactoring from the extension point is illustrated in Figure 2 on the next page.

63

4 Implementation

IWorkbenchWindowActionDelegate

AbstractTurboMoveRefactoringActionDelegate

getRefactoringType()

run(IAction)

Subclasses providing the refactoring types for

each move

RefactoringAction

TurboMoveRefactoringAction

run(IShellProvider, IWorkingCopy, ITextSelection)

RefactoringRunner2

TurboMoveRefactoringRunner

run(RefactoringASTCache)
CRefactoring2

MoveRefactoring

RefactoringWizard

MoveRefactoringWizard

Figure (2) Class Diagram of the Refactoring Extension Point Classes

The interaction between these classes is fairly simple, shown in Figure 3 on the following
page. The example uses the move member-function to another class refactoring action,
however, the other transformations are using the same process to load the user interface
and the refactoring itself when started from the Eclipse refactoring menu. For brevity, the
abbreviation ”mmftac” is used to shorten the class name of the initial action. The creation
process of the plug-in with the TurboMove related classes is described in-depth in Section 4.1.3
on page 67.

64

4
Im

p
lem

en
ta

tio
n

User

:MMFTACTurboMoveRefactoringActionDelegate

:Eclipse

:TurboMoveRefactoringAction

:TurboMoveRefactoringRunner

:MoveRefactoring

:MoveRefactoringWizard

:RefactoringWizardOpenOperation

Move to Class...()

create()

init(IWorkbenchWindow)

run(IAction)

type= getRefactoringType()

action= create(type)

setEditor(IEditorPart)

run()

runner= create(type)

run()

refactoring= create()

wizard= create(refactoring)

create(wizard)

run()

Figure (3) Sequence Diagram of the Refactoring Extension Point Classes

6
5

4 Implementation

4.1.2 Architecture

The TurboMove plug-in contains several packages to group the functionality belonging to-
gether. The most important packages and their relationship are shown in Figure 4. For
brevity, the package containing the user interface elements and utility packages are not shown.

move.contextmove.creation

move.rewrite

move.transformation.actions

move.transformation.analysis

move.transformation.diagnostics

move.transformation

Figure (4) TurboMove Packages

The packages creation and context handle proposal generation and data calculation for
the move refactorings. They are explained in depth in Section 4.1.3 on the next page. The
rewrite package is an abstraction for the existing rewrite facility. They simplify the usage of
the rewrites by caching existing rewrites and selecting the appropriate one for a change in
an automated fashion. This package is explained in detail in Section 4.3 on page 78. Tasks
related to collecting diagnostic messages and transformations based on the selected move
proposal are located in the package transformation and subpackages. An in detail description
of these functionality is given in Section 4.1.4 on page 72.

Since there are four major refactorings in this plug-in, we created a common class hierarchy
to easily add or modify additional functionality. While CRefactoring2 serves as a base class
for all AST based refactorings, the implementing class of the TurboMove plug-in is used as a
delegate to the real move implementation to be performed. The reason behind this design is
the purpose of potentially having multiple move proposals available to a user. Thus, instead
of implementing repeated extensions of the refactoring hook-in class, it is wise to split this
functionality. The class diagram in Figure 5 on the following page illustrates this design.

66

4 Implementation

CRefactoring2

MoveRefactoring

checkFinalConditions(IProgressMonitor, CheckConditionContext)

checkInitialConditions(IProgressMonitor)

collectModifications(IProgressMonitor, ModificationCollector)

getProposals()

«interface»

IMoveRefactoringFactory

createProposals(IASTNode)

MoveRefactoringProposal

createMoveRefactoring()

MoveContextFactory

createContext(IASTNode, IMoveDestination)

«interface»

IMoveActionFactory

createActions(IMoveContext)

«interface»

IMoveRefactoring

calculateChanges(ASTRewriteStore)

postprocess(RefactoringStatus)

Figure (5) Class Diagram of Delegation Mechanism to Move Proposals

Implementations of the IMoveRefactoringFactory interface are used to provide proposals
for a given refactoring type. For each of the existing transformations, a realisation of
IMoveRefactoring and IMoveActionFactory exists along with a data context class created
by the MoveContextFactory to provide shared informations for the transformation actions.
This functionality is covered in detail in Section 4.1.3 and 4.1.4 on page 72. The interfaces
shown in Figure 5 also picture the required extension points required to introduce additional
refactorings to the plug-in (please note that these are not Eclipse extension points. They can
be used only in the plug-in itself to add new refactorings).

4.1.3 Move Refactoring Initialization Process

After the selection of the move refactoring to perform and the process to create the move
refactoring instance, the proposal creation and data calculation takes place. This Section will
explain these two phases in detail.

Creation Process

The workflow of a refactoring is divided into three distinct phases, checking initial conditions,
final conditions and collecting modifications. For the creation process, we will focus on the
initial tests and the related tasks performed.

In Figure 2 on page 64 we have seen that each move refactoring has an assigned refactoring
type. This type is an enumeration value available in MoveRefactoringType, passed through
the startup process using the constructors of the action, runner and delegate classes explained
in Section 4.1.1 on page 63 to the instance of MoveRefactoring. In the initial condition
check phase, the move refactoring class calculates available proposals by selecting an imple-
mentation of the IMoveRefactoringFactory using the previously obtained refactoring type.
For convenience, the lookup for this factory is performed using a factory provider class
MoveRefactoringFactoryFactory. Each of the created proposals is initialized with a factory
class to create the IMoveContext instance associated to the refactoring type along with an
action factory creating the transformations to be performed. This design enables the plug-in
to display proposals to a user, but delay the required data calculation until the proposal was

67

4 Implementation

chosen. The process related to the initial condition check is shown in Figure 6 on the following
page. For brevity, the abbreviation ”mmftac” (move member-function to another class) is
used to shorten the class names in the sequence diagram.

68

4
Im

p
lem

en
ta

tio
n

:MoveRefactoring

:MoveRefactoringFactoryFactory

:MMFTACRefactoringFactory

:MoveContextFactory

:MMFTACMoveActionFactory

:MoveRefactoringProposal

loop

[hasProposals]

checkInitialConditions(IProgressMonitor)

createMoveProposals(selection)

create()

factory= createFactoryFor(refactoringType, src)

create(src)

proposals= createPoposals()

calculateDestinations()

context= create(defaultProperties)

actions= create()

create(src, dst, actions, context)

Figure (6) Sequence Diagram of the Initial Conditions Test

6
9

4 Implementation

After the initial condition test phase, a user is allowed to select the desired move proposal
and to set additional information. For example, in the move member-function to another
class refactoring, there is an option to set the visibility adjustment style. These options can
be set using the two enum classes RefactoringPropertyType and RefactoringProperty. The
property type is used to indicate the feature to be set and the property itself serves as a
choosable option. Applying the visibility example, it is possible to enable adding a friend
declaration by setting the property RefactoringPropertyType.VISIBILITY to RefactoringProp-
erty.USE_FRIEND_VISIBILITY. All properties are defaulted during the proposal creation
process using a map of default properties in the implementing classes of the IMoveRefactor-
ingFactory interface. This process is shown in Figure 7. For brevity, the refactoring property
is displayed in shortened form.

User

:MoveRefactoringWizard :MoveRefactoring :MoveRefactoringProposal :MoveContextFactory

selectProposal()

setRefactoringProposal(proposal)

setUseFriendDeclaration()

setProperty(VISIBILITY, USE_FRIEND)

setProperty(VISIBILITY, USE_FRIEND)

setProperty(VISIBILITY, USE_FRIEND)

Figure (7) Sequence Diagram of the User Selected Options

In the final condition test phase, the selected proposal is used to create the real refactoring
instance. This includes the data calculation described in the next Section and the move
diagnostics, explained in Section 4.1.4 on page 72.

Calculation Process

The calculation process includes gathering data about the selected move proposal. This
information is used by the transformations to perform the necessary changes to the AST and
by the diagnostic classes to create feedback messages for a user about the refactoring. For
this part of the process, we will focus on the final condition tests.

In the final condition check method, the instance of the refactoring class implementing the
IMoveRefactoring interface is created. Each move refactoring has an associated implementation
of this interface. The selected move refactoring proposal creates the move context and passes
the instance of this context as well as the action factory to the move refactoring . This is
illustrated in Figure 8 on the next page.

70

4
Im

p
lem

en
ta

tio
n

:MoveRefactoring :MoveRefactoringProposal

:MMFTACRefactoring

:MoveContextFactory

:MMFTACContext

:SearchHelper

checkFinalConditions(IProgressMonitor, CheckConditionContext)

createMoveRefactoring()

context= createContext(src, dst)

create()

setDefaultProperties()

calculate(src, dst)

create()

create()

setContext(context)

setActionFactory(actions)

postprocess(RefactoringStatus)

Figure (8) Sequence Diagram of the Final Conditions Test

7
1

4 Implementation

The creation of the context includes the calculation of the required data for the move.
For example, the context class of the move member-function to another class refactoring
will lookup if a new parameter must be added to the moved member-function and if so, it
calculates the optimal parameter passing mechanism (i.e. reference or const-reference). The
context is also responsible for searching call-sites to change as well as other dependencies to
solve. With this informations, the transformation and diagnostic classes are able to apply the
changes.

4.1.4 Transformations and Diagnostics Architecture

In this Section, the design related to the transformations and diagnostics is explained in detail.
We will do this in two parts. The first part will cover the class design of the transformation and
diagnostics. The second part includes the occurrence of the diagnostics and transformations
in the plug-in lifecycle.

Transformations and Diagnostics Architecture

All transformations share a common base interface IMoveAction with the methods setCon-
text(..) and apply(..). Each refactoring type has an associated factory implementing the
IMoveActionFactory interface to create the correct instances to perform for the required
changes. Basically, there are two types of actions, namely default actions and user selected
actions. The default actions are applied independent of the configurations a user is choosing in
the user interface. In contrast, the user selected actions depend on the refactoring properties
set. For example, in the move member-function to another class refactoring, the option to
use a friend declaration instead of visibility labels to change visiblities will force the action
factory to yield a transformation to add this friend declaration instead of a label transformation.

«interface»

IMoveActionFactory

createActions(IMoveContext)

«interface»

IMoveAction

apply(ASTRewriteStore)

setContext(IMoveContext)

AbstractMoveActionFactory

createActions(IMoveContext)

createDefaultActions(IMoveContext)

createUserSelectedActions(IMoveContext)

Figure (9) Class Diagram of the Move Transformation and Factory Class

The diagnostic classes use a similar approach. They implement the interface IMoveDiagnos-
tic with the methods setContext(..) and analyse(..). Likewise, they are separated into default
diagnostics and user selected diagnostics. However, only one diagnostic factory exists for all
move refactorings, because the default diagnostics can be created in the IMoveRefactoring
instance and the user selected diagnostics are selected based on the user selected actions.

72

4 Implementation

For example, in the move member-function to another class refactoring, the option to use a
friend declaration instead of visibility labels to change visibilities does not require diagnostic
messages for changed visibilities.

«interface»

IMoveDiagnostic

analyse(RefactoringStatus)

setContext(IMoveContext)

DiagnosticFactory

create...Diagnostic(IMoveContext)

createDiagnosticFor(IMoveAction, IMoveContext)

Figure (10) Class Diagram of the Move Diagnostic and Factory Class

The method create...Diagnostic(..) in this diagram serves as a placeholder for all other
factory methods to create diagnostics.

Transformations and Diagnostics in the Plug-In Lifecycle

In the TurboMove plug-in lifecycle, the transformations and diagnostics are located in two
different methods. The diagnostic messages are collected using the postprocess(..) method
shown in Figure 8 on page 71. The method loads all default and user selected diagnostics and
collects the status messages using the passed refactoring status. The plug-in is designed to
allow transformations even with error messages in the final conditions. Although, we will not
recommend to do this in most situations, the decision to continue is free to the user of the
plug-in.

:MMFTACRefactoring :DiagnosticFactory

:MMFTACOverloadConflictDiagnostic

:MMFTACCallSiteTransformationDiagnostic

postprocess(RefactoringStatus)

createDefaultDiagnostics()

create()

createDiagnosticFor(IMoveAction, IMoveContext)

create()

analyse(RefactoringStatus)

analyse(RefactoringStatus)

Figure (11) Sequence Diagram of the Move Diagnostic and Factory Class

Please note that Figure 11 only shows an example of the creation of diagnostic classes. The
implementation does not directly instantiate the illustrated diagnostic implementations, but is
using a loop to collect all default and user selected diagnostics. However, for understandability
the example shows the instantiation explicitly.

73

4 Implementation

The transformations of the AST are collected in the collect modification phase of the refactoring.
The corresponding method in the TurboMove plug-in is calculateChanges(..) implemented in
realisations of the IMoveRefactoring interface. The necessary transformation implementations
are created using the IMoveActionFactory implementation of the chosen refactoring. The
instance of this class is set during the move proposal generation process and provides methodes
to create a list of actions to modify the AST .

4.2 Important Transformations

In this Section, the most important transformations for each of the implemented refactorings
are explained. All the described changes are based on the described transformations in 3 on
page 13, but from an implementation point of view. Please note that for some refactorings
there is no description available, since the performed changes are easily understandable without
explanation.

4.2.1 Move Member-Function to another Class Transformations

The move member-function to another class refactoring has two difficult transformations
which will be explained in the following Section. The first describes changing the visibilities
of existing dependencies to the originating type by adding visibility labels. The second
transformation explained is the modification of the namespace the definition belongs to.

Visibility Transformation

In Section 3.1 on page 13, we explained the used mechanism to change visibilities of members
of the originating type of the move used in the relocated member-function. From an imple-
mentation point of view, this is not a very easy task. If multiple member visibilities must be
changed, it may be necessary to only open one public label for all these declarations, instead
of adding a label for each declaration.

74

4 Implementation

1 /* *===

2 Example of visibility change for multiple declarations

3 ===* */

4 // Before Transformation

5 struct A {

6 // ...

7 private :

8 void foo (); // change to public

9 void bar (); // change to public

10 void foobar ();

11 };

12

13 // After Transformation

14 struct A {

15 // ...

16 private :

17 public : // one label for two declarations

18 void foo ();

19 void bar ();

20 private :

21 void foobar ();

22 };

Listing (55) Changing a Set of Declarations to Public

In addition, there may are declarations with multiple declarators. In some cases, these
declarators must be split into multiple declarations, but the order must be retained to avoid
breaking initializations by constructors. Finally, there may exist members which should not
be changed. The visibilities of these declarations must remain unchanged.

The first task in this transformation is the lookup of the related dependencies and a prepro-
cessing step. These calculations are performed by the context implementation of the move
member-function to another class refactoring. The preprocessing step examines all existing
declarators in the originating type and calculates the required and the actual visibility of these
declarators. The required visibility is either equal to the actual visibility, if the declarator is
not a dependency, or the required visibility is public, if the declarator is a dependency.

VISIBILITIES := {public, private, protected}
DECLARATORS := {d1, ..., dn}
DECLARATORS_PREPROCESSED := {(d1, v11, v12), ..., (dn, vn1, vn2)}
vi1 ∈ VISIBILITIES (actual visibility)
vi2 ∈ VISIBILITIES (required visibility)
i ∈ {1, ..., n}
n = Number of declarators

Now, the actual transformation class takes over the control of the process. The declarators are
grouped according to the actual visibility a label introduces to the group. However, the order
of the declarators is not changed. For example, if the first three entries are public, number

75

4 Implementation

four is private and number five is public, this will yield three groups (public, private, public).
Please note that successive labels with the same visibility yield a group for each label.

DECLARATOR_GROUPS := {b1, ..., bn}
bi := (vx1, {dx, ..., dy}), ∀di ∈ {dx, ..., dy} : vx1 = vi1
i ∈ {1, ..., n}
n = Number of declarator groups

These groups are used to calculate a continuous visibility state for all declarators. The
declarator group sets the initial actual visibility for all states of a group. For each declarator
in the group, the actual and the required visibility is compared. If the actual and required
visibility is not equal, the actual visibility is changed to the required visibility, meaning that
at this position, a label will be inserted and all follow up declarators will have this visibility as
well. It is essential to use the visibility groups in this steps. The declarators with the actual
and required visiblility are not sufficient. Consider the following situation: There are two
visibility groups and both are private, because for each group a separate label was used. If
the last declarator of the first group is changed to public, the actual visibility is adjusted to
public as well. However, if the first declarator of the second group must be changed to public
as well, the actual visibility is still considered to be public, therefore, no label is added even it
is required.

VISIBILITY_STATES := {s1, ..., sn}
si := (di, v(i−1)2, vi2)

i ∈ {1, ..., n}
n = Number of visibility states

Note that v(i−1)2 can be equal to vi1 if all previous visibilities were sufficient or if the actual
visibility was restored to the group visibility.

The last step before the actual transformation can take place is an additional grouping of
the declarator visibility states by their respective owner. By doing this, the transformation is
aware of declarations with multiple declarators and can split them accordingly.

DECLARATION_GROUPS := {e1, ..., en}
ei := (owner(dx), {sx, ..., sy}), ∀si ∈ {sx, ..., sy} : owner(dx) = owner(di)
i ∈ {1, ..., n}
n = Number of declaration groups

The transformation itself is fairly easy to perform. Each declaration is checked whether it
has multiple declarators. If this is not the case, the underlying declarator visibility state is
checked whether the actual visibility is equal to the required. If the visibilities do not match,
a label is added. If multiple declarators exist, the declaration is split at the declarators with
insufficient visibilities and labels are added as well.

Namespace Transformation

Changing the namespace membership of a member-function is not an easy task as well. As
explained in Section 3.1 on page 13, the surrounding namespaces of the original definition are

76

4 Implementation

closed before the definition and reopened after the definition. In addition, the definition name
is changed to be fully-qualified. The complexity of this transformation arises from the tree
structure used to represent the source-code. In the AST it is easy to relocate a single node
or a sub-tree, however, closing and reopening surrounding namespace in an AST requires
splitting this namespace-nodes, potentially over multiple levels. Hence, we have to implement
a transformation which can apply these changes easily.

First of all, a simple check can be added to the transformation to potentially avoid changing
namespaces at all. For this, the actual namespaces are compared with the new namespace
qualifiers. If the namespace of the destination type is equal to the namespace of the originating
type, no changes are required. If the destination type is in a different namespace than the
originating type of the move, the transformation calculates a path to the definition to change.
This path is a list of integers pointing to the next child in the tree until the definition is
encountered. With this path, a recursive implemented function will split the tree at the index
positions into two parts, namely the ”before” the definition and the ”after” the definition
part. This is done by removing all nodes from the current namespace up to the current index,
and reinsert them into the ”before” part. Than the process continues on the current index
node, which is either another namespace or the final node. A check whether the final node is
reached serves as the base case for the recursive call to finish. The only thing left to do after
the recursive call terminates is to insert the recreated ”before” part before the original names-
pace and afterwards insert the function definition to move before the original namespace as well.

AfterBefore

TranslationUnit

NS1 NS2 NS3

Sub-NS1 Sub-NS2

Definition

Path to the Definition: { 1, 1, 0 }

TranslationUnit

NS1 DefinitionNS2 NS3

Others...

Sub-NS3

NS2

Sub NS1 Sub NS2

Others...

Sub NS3

NS2 is splitted to pull-up the

definition

Figure (12) Namespace Transformation Before and After

4.2.2 Move Member-Function to Free-Function Transformations

The only difficult transformation for this refactoring is the visibility adjustment of the
dependencies to members of the originating class. However, these changes are similar to
those explained in the visibility transformation of the move member-function to another class

77

4 Implementation

refactoring. Therefore, we refer to Section 4.2.1 on page 74.

4.2.3 Move-Up to Parent Namespace Transformations

The move-up to parent namespace refactoring has one important transformation which is
explained in this Section. It describes the changes required to move the type or free-function to
a new namespace. Although we already encountered this problem in the move member-function
to another class transformation, we employ a slightly different approach here.

Namespace Transformation

The problem to change the namespace membership of an AST node is nothing new. We
already have done this in the move member-function to another class refactoring described in
Section 4.2.1 on page 74. However, in this transformation the node to change is moved-up only
one level. Therefore, we can slightly adjust the original algorithm to successfully complete
the task.

Since we know the node to move-up and the surrounding namespace, we can easily calculate
the position of this node in this namespace by looking through the existing declarations until
the node to move is encountered. Afterwards, a copy of the surrounding namespace without
owned declarations is created and each declaration after the calculated index is removed from
the original namespace and inserted into the copied namespace. Finally, the node to move is
removed from the original position and inserted below the previously surrounding namespace.
The newly created namespace is added below the old namespace as well, but this action
must be performed before the node to move is inserted. Otherwise, the order is incorrect
because the new namespace will be inserted before the node to move. The important thing
for this transformation is to use the rewrite facility to add the removed declarations to the
new namespace. Creating a copy of the nodes is possible as well, however, the copies cannot
be changed by other transformations since they are new instances. Thus, adjusting existing
using declarations below the node to move would not be possible. It is noteworthy to mention
that the new namespace must be added to the AST first using the rewrite facility. Otherwise,
the new namespace is not recognised as part of the AST and the transformation fails.

If the node to move is a type definition, all members of this type must be moved up as
well. Basically, this works the same way as for free-functions or forward declarations of
types. However, there are situations where member definitions are in sequence, similar to the
declarations in the visibility label transformation explained in Section 4.2.1 on page 74. In
this case, the members are moved-up as a group to avoid unnecessarily closing and reopening
the namespace multiple times.

4.3 Extended Rewrite Facility

The refactoring infrastructure of Eclipse CDT allows rewriting the source-code using AS-
TRewrites. Every time an insert or replace operation is performed on the AST , a new
ASTRewrite instance is created. The root used for this rewrite is the changed node. All
changes to nodes in the subtree of a previously changed node must be registered on the

78

4 Implementation

correct rewrite. Otherwise the modification may not perform correctly. However, manually
tracking the correct rewrite is hard and if an incorrect rewrite is used, finding the cause of the
erroneous transformation can be difficult. In addition, the task of writing the transformations
itself should be the challenge, not dealing with multiple rewrite instances. Therefore, we
created an extension for the existing rewrite facility to simplify using the rewrite facility
during development work.

4.3.1 Exploiting Rewrite Roots

The real problem behind using rewrites is the selection of the correct rewrite for a given
transformation. Every time an operation is performed on the AST a new rewrite is created
with a new root node. The root node used for the rewrite is easy to determine, because the
changed node (i.e. the newly added node) always becomes the root. The only exception is
the remove, however, removing a node from the AST does not create a new rewrite anyway,
thus it can be ignored. With this information, we created a class to store rewrites and collect
transformations. Once the transformations are applied, the correct rewrite is selected based
on the root lookup node provided by the transformations. The class design is illustrated in
Figure 13.

ASTRewriteStore

addInsertChange(IASTNode, IASTNode, IASTNode)

addRemoveChange(IASTNode)

addReplaceChange(IASTNode, IASTNode)

performChanges()

«interface»

IASTChange

apply(ASTRewrite)

getChangeRoot()

getRewriteRoot()

ASTInsertChange

apply(ASTRewrite)

getChangeRoot()

getRewriteRoot()

ASTReplaceChange

apply(ASTRewrite)

getChangeRoot()

getRewriteRoot()

ASTRemoveChange

apply(ASTRewrite)

getChangeRoot()

getRewriteRoot()

Figure (13) Class Diagram of the Extend Rewrite Facility

The changes are registered in the ASTRewriteStore by using the add...Change(..) methods.
Afterwards, all changes can be performed using the performChanges() method. This method
will use the getRewriteRoot() method to retrieve the lookup key for selecting the correct
rewrite on which the change is applied. The new rewrites created by the changes are registered
in the store by using the return value of the getChangeRoot() method as a lookup key. This
process is shown in Figure 14 on the next page. Please note that this sequence diagram uses
an imaginary ”Transformation” class to illustrate different transformations registering actions.

79

4 Implementation

:ASTRewriteStore:Transformations

:ASTInsertChange

ASTReplaceChange

addInsertChange(parent, newNode, insertionPoint)

create(parent, newNode, insertionPoint)

addReplaceChange(node, replacement)

create(node, replacement)

performChanges()

rewrite= findRewrite()

newRewrite= apply(rewrite)

register(newRewrite)

rewrite= findRewrite()

newRewrite= apply(rewrite)

register(newRewrite)

Figure (14) Sequence Diagram of the Extended Rewrite Facility

4.3.2 Open Issues

Although the extended rewrite facility simplifies the usage of the rewrite facility, not everything
can be solved this way. For example, replacing a node in a subtree of a previously replaced
node is not possible. However, this problem does not depend on the usage of the extended or
the normal rewrite facility. Although, it could be possible to solve this problem by maintaining
a node history based on the changes, but we did not implement this functionality. This
problem is likely to exist due to a design problem not related to the rewrite facility, introduced
by a erroneous order of changes added to the rewrite store. Therefore, we do not recommend
an implementation of such a functionality either. Another problem of this implementation is
the lack of functionality to register file changes (i.e. CreateFileChange), however, this can
easily be added by creating an appropriate method in the rewrite store delegating to the
modification collector.

4.4 User Interface

In the TurboMove plug-in there were several decisions available to implement a user interface.
In the following, the possible interaction and the underlying decision for this implementation
is explained.

80

4 Implementation

4.4.1 Refactoring Menu

First of all, we had to ensure that a user is not overwhelmed with the available options of the
refactorings. The initial decision which refactoring to perform must be easy. Based on this,
we created a refactoring menu entry for each of the implemented refactoring. This way, a user
has an overview of the possible transformation types available and can chose the appropriate
move.

Figure (15) Entries in the Refactoring Menu

4.4.2 Refactoring Pages

The next step in the process is to allow a user to select the move proposal to perform. Since
every refactoring in the TurboMove plug-in provides proposals, this task is equivalent for all
transformations. Thus, the same user interface is used. However, some of the refactorings
such as move member-function to another class require additional informations. For example,
the ”free” move of the move member-function to another class refactoring requires specifying
the desired move destination. Hence, we created an extended version of the proposal selection
interface which allows to select a move destination based on the proposal selection. These two
user interface types are shown in Figure 16 on the following page and 17 on the next page.

81

4 Implementation

Figure (16) User Interface with Proposals only

Figure (17) User Interface with Proposals and Destination selection

The following refactorings use the user interface which only allows the selection of a proposal

82

4 Implementation

and options:

• Move member-function to free-Function

• Move-Up to parent namespace

The user interface including the destination selection dialog is used by the following refactorings:

• Move member-function to another class

• Move member-function to another file

Of course, the shown checkbox options can differ between the refactorings.

83

5 Conclusion

5 Conclusion

In this Section, we will present the project result along with the existing problems. In addition,
an outlook for possible future work based on this master thesis is given. We conclude with a
personal review of the project including personal impressions gained during the last weeks.

5.1 Project Results

Looking at the project goals in Section 1.3 on page 2 nearly goals of the project have been
achieved. We have given an overview of possible move refactorings grouped into variable-,
type- and function-based categories including an overview of potential problems that can occur.
The TurboMove plug-in implements four of the evaluated moves which we have considered to
be the most valuable. These refactorings are capable of giving a user proposals for a move
destination together with different options to configure the transformation to perform the
desired tasks.

The first implemented refactoring is capable of relocating a member-function declaration to
a chosen destination type. By adjusting all existing dependencies on the in- and outside of
the moved function, the compilability is retained. In addition, different strategies to adjust
visibilities by using labels or a function friend declaration, or to keep the original function
declaration and definition as a delegate are implemented.

As an addition to the move member-function to another class refactoring a refactoring to
relocate a function definition into a selected destination file was created. Thereby, a user
can select either existing files or create a new file as the desired move destination. To ensure
compilability, existing includes in the originating file are copied to the target file as well.

Converting a member-function into a free-function is the task solved by the third refactor-
ing. Similar to the move member-function to another class refactoring, all in- and outside
dependencies are changed to retain compilability. Furthermore, selecting different visibility
adjustment strategies is possible as well.

To change the namespace membership of a type or free-function a refactoring was implemented,
which moves the chosen type or free-function one level up in the namespace hierarchy. The
transformation will change all dependencies and call-sites by considering Argument Dependent
Lookup (ADL) and namespace hierarchies making sure as less as possible changes are made
to the source-code. To avoid call-site changes, a user can select an option to add a using
declaration in the originating namespace pointing to the moved type or function.

Next to the implemented refactorings, we established higher level concepts for move refactor-
ings. By separating the transformation into a logical and a physical move, it is possible to
heavily reduce existing move options, but retaining flexibility. This makes the refactorings
easier to use. The concept of retaining the position of the moved code if possible along with
the minimal amount of changes paradigm allows a user to easier understand the result of

84

5 Conclusion

the refactoring. From our point of view, this is a fundamental part of a refactoring. Various
changes to the source-code induced by changing positions and adding or removing elements
decreases the understandability of the refactoring. Hence, users tend to not use the full
potential of a refactoring, or they do not use it at all.

Implementing a facility to automatically recognise potentially moveable code could not be
implemented due to time issues. However, the created refactorings are capable of generating
proposals for a move. These proposals could easily be adapted to [Ecl12c] to provide move
proposals on potentially ”bad” code.

5.2 Existing Problems

This Section explains open issues and potential bugs which could not be solved during the
project.

5.2.1 Dependent Visibilities

In the move member-function to another class and move member-function to free-function
refactoring described in Section 3.1 on page 13 and 3.3 on page 37, a mechanism to change
visibilities is described. By adding visibility labels or a function friend declaration to the
originating type it is possible to retain compilability if the moved function requires access
to non-public elements. However, this may not be sufficient. This problem is illustrated in
Listing 56 on the next page. Please note that the example does require another setup to run
correctly, due to mutual dependencies. However, for brevity, this is left out.

85

5 Conclusion

1 /* *===

2 Example of a dependent visibility introduced by

3 a friend declaration allowing to invoke 'bar '

4 ===* */

5 // A.h

6 struct A {

7 void foo () {

8 myB.bar();

9 }

10 private :

11 B myB;

12 };

13

14 // B.h

15 struct B {

16 // ...

17 private :

18 void bar () {

19 // ...

20 }

21 friend void A::foo();

22 };

Listing (56) Dependent Visibilities Problem

If we move the member-function foo to another class or to a free-function, an additional
parameter of type A is added to the moved function to invoke the function bar on myB. For
this, the visibility of myB is changed. However, this is not sufficient. Invoking bar in foo is
only possible because this function is a friend function of the type B. Therefore, the adjusted
invocation in a free-function or in another type will fail. We have not solved this problem in
this thesis, but it could be done by adjusting the function friend declaration of the type B. If
a complete friend declaration instead of a function friend is used, it may be necessary to add
an additional friend declaration to satisfy the dependencies.

5.2.2 Template Call-Site Lookup

Moving a function template or type is desirable for all move refactorings as well. However,
adjusting the call- or usage-sites of these templates is difficult. Eclipse CDT is not always able
to resolve a template call-site to the appropriate template definition [Thr11]. Thus, applying
the necessary transformations is not always possible. While this problem may be solved in
future Eclipse CDT releases, it remains unsolved in this master thesis.

5.2.3 Undo File Creation

The move member-function to another file refactoring allows a user to create a new file as
the desired move destination. However, there is an existing problem related to this task in
the user interface of this move. If a user creates a new file using the plug-in user interface

86

5 Conclusion

and continues to the refactoring preview, but closes the page without applying changes, the
new file is created, but not deleted. The reason for this is the used mechanism to create
a new file in Eclipse CDT . The plug-in employs the CreateFileChange class to provide a
new file, however, to allow an undo operation in the refactoring workflow, this change must
be registered in the ModificationCollector instance of the refactoring. Unfortunately, the
calculation process described in Section 4.1.3 on page 67 requires the translation unit and the
underlying file to exist already, but the modification collector is not available in this phase of
the refactoring. This problem could be solved by delaying the context calculation process.
However, the diagnostics performed in the final condition test phase require the context data.
Thus, this was not possible to solve.

5.2.4 Unary Expression Overload Method

In the AST of the Eclipse CDT , there are two main classes to deal with in the context
of operators. ICPPASTBinaryExpression is used to represent binary operators and the
interface ICPPASTUnaryExpression is used for unary operators. To find the declaration
of a given operator the binding of this operator must be resolved and the position of the
node is looked up using the index. Retrieving the binding of an binary operator is easy. For
this purpose, the binary expression interface provides a method getOverload(). However, the
unary expression interface does not have such a method, but the actual implementation of
the interface CPPASTUnaryExpression has an existing public getOverload() method. In our
opinion, the method was forgotten in the interface. For now, the plug-in uses a cast to the
CPPASTUnaryExpression class instead of the interface to solve this problem, but in the future
it may be possible to replace this with a cast to the interface. We already asked for a problem
soluation for this issue in the Eclipse CDT mailing list.

5.2.5 Using Declaration Node Lookup

The move-up to parent namespace refactoring has the option to add a using declaration to the
originating namespace. If a user chose this option, the call-sites remain unchanged, because
the name still exists at the call-site. However, if this option is not selected, there may are
existing using declarations that must be changed. Therefore, a lookup is performed whether
there are existing using declarations to change. The search can be performed with the index
by searching names for the binding of the type or function to move. If there are existing using
declarations for the binding, an ICPPUsingDeclaration binding is returned. Unfortunately,
resolving the node in the AST representing this using declaration is difficult. Normally, the
index can be used again to find the declaration of a given binding. But this lookup will yield
the function or type declaration to which the using declaration is pointing to instead of the
using declaration itself. This behaviour is fairly useless for our purpose and we have not found
a way to solve this problem using the typically used index functionality. Thus, we created a
workaround to solve this problem. Each binding offers a method getOwner() returning the
owner of the binding. For example, an ICPPUsingDeclaration binding can yield a function,
a type, a translation unit or a namespace. With this owner binding, all declarations and
definitions of the owner are searched and an ASTVisitor is applied to visit all names in the

87

5 Conclusion

AST . If the binding of a visited name is equal to the previously found ICPPUsingDeclaration
binding, the node representing the using declaration was found. Unfortunately, this is not a
good way to find the position of a node in the AST , but it seems to be the only way to deal
with this problem at the moment.

5.3 Future Work

This Section outlines possible future works based on this master thesis, which could increase
the value of the plug-in for a user.

5.3.1 Additional Refactorings

Although the plug-in contains four different refactorings, there are plenty of other transfor-
mations that could be implemented. In our opinion, a refactoring to move-down a type or
free-function to a child namespace would be the best transformation to start at. Due to
time constraints, we were not able to implement this refactoring, however, it could serve as
an excellent complement to the move-up to parent namespace refactoring. In addition, the
TurboMove plug-in only contains refactorings handling functions and types, but none of the
variable based moves are implemented. We think implementing a set of these move types
could make the plug-in even more valuable for an Eclipse CDT user.

5.3.2 Codan Support

The TurboMove plug-in provides move proposals for a given refactoring. However, the decision
whether it is reasonable to apply a move refactoring to the code is the responsibility of a
user of the plug-in. With Codan [Ecl12c] a proposal could be bound to a marker in the
Eclipse editor if a given metric upper-bound is exceeded. For example, a Codan checker could
evaluate a ratio between used parameter functionality and used ”this” dependencies of a
member-function. If this ratio is ”bad”, the checker could propose the move member-function
to another class refactoring.

5.3.3 Review the Refactoring Framework

The refactoring framework and especially the refactoring test facility can be hard to use.
In this area, there are various options to develop improvements which would increase the
usability and quality of all refactorings. This should also include a clear and understandable
documentation of the provided functionality of Eclipse, such as AST explanations, best
practices using the index and an infrastructure for tree-pattern recognition similar to the
mechanism developed in [Kes10]. Such an infrastructure could be used to easily configure
lookup and search strategies together with the results from an index query.

5.4 Personal Review

In summary, I am happy with the result of the project. I think the implemented refactorings
are a great improvement for Eclipse CDT users and can help them in the day-to-day coding
work. In my opinion, our goal to reduce the overall changes from the refactoring input to the

88

5 Conclusion

output is a great achievement as well. Not to mention the conceptual approach of separating
a relocation into a logical and physical move. These paradigms probably will help developers
creating refactorings in the future independent of whether they add more moves, or wish to
tackle other refactorings.

While writing this master-thesis I was able to deepen my knowledge with Eclipse CDT .
Especially the implementation of multiple refactorings and creating a design that can be
used by all of the implemented transformations was a challenge for me. It was also a good
experience from the theoretical work point of view. The problems to solve required carefully
thinking about solutions that are easy, reasonable and appropriate to solve the task, but I
was not bound to definite ”rules”. Instead it was still a very creative way of working for me.

In the beginning of the project, I spent more time for thinking and writing about possible
moves and related problems compared to previous projects. I think this helped me a lot
in getting a deeper insight and to foresee parts of the problems that can occur. The most
important lesson learned for me is a better awareness of problem separation. If a problem is
complex, you either do not understand it well enough, you need a more appropriate abstraction
or another problem separation. Especially the separation of the logical and physical move
made a previously very hard problem much easier.

I hope the TurboMove refactorings will find their way into the official Eclipse CDT release
and I am confident that this will happen in the future.

5.5 Acknowledgements

I want to use the opportunity to thank various people that supported me during this master-
thesis:

Peter Sommerlad, for the mentoring, not only for this thesis, but for all the projects during
my master degree. He always provided me with valuable feedback and background in my
work.

Thomas Corbat, for helping me out with Eclipse related problems that occurred during the
project and of course for his great support in the review and correction of the final report.

My fellow students, for all the discussions we had, the sometimes necessary distraction
and the laughs we had together.

89

A User Guide

A User Guide

In the following Sections, the requirements to use the TurboMove plug-in are described along
with an installation and user guide.

A.1 Requirements

The TurboMove plug-in was developed for the Eclipse CDT Indigo release 8.0.0. While it may
be possible to use the plug-in with older releases, it is not guaranteed to work with version
before this release. You can download the supported release from the official project page
[Ecl12a] or by using the update-site [Ecl12b] out of Eclipse.

Project Page: http://www.eclipse.org/cdt/downloads.php

Update Site: http://download.eclipse.org/tools/cdt/releases/indigo/

A.2 Installation

The plug-in can be installed using the provided update-site package. Until now, there is no
update-site available in the web, however, this may change in the future. To install the plug-in
from the update-site zip archive, use the Eclipse software install mechanism available in the
”Help → Install New Software...” menu.

Figure (18) Eclipse Menu to Install New Software

This installation procedure is valid for a web update-site as well.

A.3 Refactoring Guide

Once the TurboMove plug-in is installed using the refactorings is fairly easy. The transfor-
mations are accessible in the refactoring menu of Eclipse shown in Figure 19 on the next
page.

90

A User Guide

Figure (19) Eclipse Refactoring Menu with TurboMove Refactorings

To successfully start a refactoring a valid selection in the editor must exist.

• For the move member-function to another class refactoring, a member-function declara-
tion must be selected

• For the move member-function to another file refactoring, a member-function definition
must be selected

• For the move member-function to free-function refactoring, a member-function declara-
tion must be selected

• For the move-up to parent namespace refactoring, a free-function declaration, type
declaration or type definition must be selected

With a valid selection for a refactoring the transformation process can be started from the
refactoring menu. There are two different refactoring user interfaces. The first allows you to
select a move proposal and depending on the selected proposal to specify a move destination,
shown in Figure 20 on the following page.

91

A User Guide

Figure (20) Refactoring User Interface with Proposals and Destination Dialog

The second wizard page only shows the available move proposals. An example of this
interface is shown in Figure 21 on the next page.

92

A User Guide

Figure (21) Refactoring User Interface with Proposals

Some of the refactorings allow to specify additional options for the transformation. They
can be enabled or disabled using the checkboxes below the list of available move proposals.

• The move member-function to another class refactoring, allows to keep the original
method as delegate to the moved method and to use a function friend declaration for
visibility requirements instead of labels

• The move member-function to free-function free-function refactoring, allows to use a
function friend declaration for visibility requirements

• The move-up to parent namespace refactoring, allows to add a using declaration in the
originating namespace

After the options are set and the ”Next” button is pressed, the refactoring wizard will display
the preview page comparing the original and the transformed code. Pressing the ”Finish”
button will perform the actual transformation.

93

B Project Management

B Project Management

In the following Sections, we provide an overview of the project management of this master-
thesis. This includes details about the project environment and the time spent for the project.
In addition, an interpretation of the initial compared to the actual planning is made.

B.1 Project Environment

This Section describes the used system for continuous integration and the local development
environment along with the used tools and software.

B.1.1 Continuous Integration Server

The continuous integration system used in this project was provided as a virtual server
sinv-56040.edu.hsr.ch hosted at the University of Applied Sciences Rapperswil (HSR). The
operating system of the virtual server is Ubuntu 10.04 LTS 64-Bit. To build the TurboMove
plug-in and related artifacts the software listed in Table 1 is installed.

Software Version

Apache 2.2.14

TeX Live 3.14

Hudson 1.376

Java Runtime Edition 1.6.0_20-b02

Maven 3.0

Trac 0.11.7

Table (1) Installed Software on Build System

B.1.2 Local Development Environment

The plug-in was created on a Lenovo T420s notebook with Ubuntu 11.04 64-Bit installed.
For development, the software listed in Table 2 was used.

Software Version

Eclipse Indigo 3.7.0

TeX Live 3.14

OpenJDK 1.6.0_22

Maven 3.0

gedit 2.30.4

Table (2) Installed Software on Development System

94

B Project Management

B.2 Project Plan

This Section covers the time used for this master-thesis. The project is rewarded with 27
European Credit Transfer System (ECTS) points. For each point, 30 hours of work are
estimated. This gives a total of 27 * 30 = 810 hours for the project. In the beginning of the
project, we planned with 22 weeks excluding two weeks for christmas and new years break.
This results in 20 weeks working time for the project and an estimated workload of 810 / 20
= 40.5 hours/week.

B.2.1 Actual vs. Target Hours/Week

In Figure 22 the actual vs. the target hours/week are compared. It is noteworthy to mention
that there are 21 weeks included in this chart, since the two weeks originally planned for
christmas and new years break were partially used for working at the project.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

5

10

15

20

25

30

35

40

45

50

Actual vs. Target Hours/Week

Expected:

Actual:

Figure (22) Actual vs. Target Hours/Week

B.2.2 Interpretation

The expected and actual weekly workload was roughly the same throughout the project,
including some high and low peaks. The gap in week 14 and 15 is due to the initial plan of
not working during christmas and new years break, however, some time was spent for the
project during this phase. Overall, the time used for the project was 870 hours. This is about
7.5 % more time than actually planned.

B.2.3 Conclusion

Although the time spent for the project was higher than estimated, it was not exceeding
the limit of acceptable workload for me. I think the additional time invested allowed me to

95

B Project Management

complete the project as good as possible and due to the opportunity to work over christmas
and new years break, to deliver in time.

96

C Project Setup

C Project Setup

This Section covers the project setup used in the TurboMove plug-in including the necessary
dependencies and configurations using maven [Pro12]. This project setup is based on the
project setup process described in [Thr10] and [Thr11]. For maven related configurations, we
recommended to use the maven Eclipse plug-in [Son10].

C.1 Structure

The TurboMove plug-in contains six maven projects:

ch.hsr.cdt.turbomove
The maven parent project. All other projects are subfolders of this project.

ch.hsr.cdt.turbomove.app
A plug-in project containing the refactoring implementations and the user interface.

ch.hsr.cdt.turbomove.app.feature
Feature project to collect all plug-ins required to deploy the TurboMove refactorings
using an update-site.

ch.hsr.cdt.turbomove.test
This plug-in project contains all test files along with the testing environment.

ch.hsr.cdt.turbomove.test.feature
Feature project for the test plug-in to run the tests.

ch.hsr.cdt.turbomove.updatesite
Update-Site project using the feature project of the TurboMove application plug-in
providing an installable version of the refactorings

C.2 Creating POM Files

After the projects have been created, the maven pom.xml files have to be created. The easiest
way to do this is to use Tycho [Son12], a maven plug-in using a manifest-first approach for
creating and building an Eclipse plug-in. For this, open a terminal window, navigate to your
parent project folder and execute the command shown in Listing 57. Please note that Tycho
requires maven 3.0 or higher.

1 mvn org. sonatype .tycho:maven -tycho - plugin :generate -poms

-DgroupId =<group -id > -Dtycho . targetPlatform =</cdt >

Listing (57) Creating POM Files with Tycho

The group-id is used as an identification name for your plug-in. Normally, the name of the
parent project is used for this. The target-platform parameter is used to point to the Eclipse
CDT installation for which the plug-in is developed. Make sure to use a location which
is available on both, your development machine and the build-server. In this project, the
following parameters are used:

97

C Project Setup

Group-ID:
ch.hsr.cdt.turbomove

Target-Platform:
/usr/local/cdtmaster-8.0.0/

C.3 Maven Repositories

The next step is to specify the maven repositories required to build the Eclipse plug-in. For
this, two entries have to be added to the pom.xml file of the parent project:

1 <repositories >

2 <repository >

3 <id>eclipse - indigo </id>

4 <url >http: // download . eclipse .org/ releases / indigo /</

url >

5 <layout >p2</ layout >

6 </ repository >

7 <repository >

8 <id>eclipse -indigo -cdt </id >

9 <url >http: // download . eclipse .org/tools/cdt/ releases

/ indigo /</url >

10 <layout >p2</ layout >

11 </ repository >

12 </ repositories >

Listing (58) Eclipse Maven Repositories

These repositories are used to load the required dependencies for the plug-in development.

C.4 Add Target Definition

The Tycho maven plug-in uses target-platform definition file to build the plug-in for a specific
platform. This target specification should be added to the main application plug-in project.
The name of this file must be equal to the containing plug-in name, but with the extension
”.target”. To create the target definition, navigate to ”New → Target Definition” and enter the
name of the file. In the TurboMove plug-in, the file name is ch.hsr.cdt.turbomove.app.target.
In the target definition, both previously added repositories and the local installation of the
target Eclipse CDT platform should be specified:

Local Installation:
/usr/local/cdtmaster-8.0.0/

Maven Eclipse Repository:
http://download.eclipse.org/releases/indigo/

Maven Eclipse CDT Repository:
http://download.eclipse.org/tools/cdt/releases/indigo/

98

C Project Setup

The target definition can now be set to active using the ”Set as Target Platform” link on the
top right corner in the editor.

C.5 Maven Dependencies

The plug-in requires several dependencies that have to be added to successfully compile. In
the application project, the following dependencies exist:

• org.eclipse.ui

• org.eclipse.ui.ide

• org.eclipse.cdt.ui

• org.eclipse.cdt.core

• org.eclipse.core.runtime

• org.eclipse.core.resources

• org.eclipse.ltk.core.refactoring

• org.eclipse.ltk.ui.refactoring

• org.eclipse.jface.text

• org.eclipse.ui.editors

In the test plug-in project there are different dependencies to use:

• org.junit4

• org.eclipse.ui

• org.eclipse.cdt.ui

• org.eclipse.cdt.ui.tests

• org.eclipse.cdt.core

• org.eclipse.core.runtime

• org.eclipse.core.resources

• org.eclipse.ltk.core.refactoring

• ch.hsr.cdt.turbomove.app

These dependencies should be added using the ”Dependencies” tab in the manifest file of the
plug-in projects. There may are more dependencies required depending on the plug-in to
develop, however, the TurboMove plug-in only uses those listed above.

99

C Project Setup

C.6 Exporting Packages for External Use

The separation between an application and a test plug-in is recommended. This way, it is
possible to easily deploy the application without having unnecessary dependencies to the
testing environment and the test classes are omitted as well. However, the test plug-in requires
access to the packages of the application plug-in to run refactoring tests. Therefore, the
required packages of the application plug-in project must be exported. This functionality is
available in the ”Runtime” tab of the manifest file in the application plug-in.

C.7 Important Maven Commands

By using maven to build the plug-in project, different commands are available for testing,
building the update-site and cleaning up the artifacts.

mvn integration-tests:
Run the maven tests. This command is normally used in the test plug-in project.

mvn clean:
Removes all previously build results from the specified output folders.

mvn package:
This command build the update-site for the plug-in project.

100

D Testing Environment

D Testing Environment

The TurboMove plug-in uses the extend testing environment originally developed in [Thr10].
The base infrastructure was developed in [Ema06] with additional explanations in [Ind10].

D.1 RefactoringTester

The testing environment uses the class RefactoringTester to create test instances using
configuration files. Unfortunately, the refactoring tester employs the plug-in activator to load
the base path for the lookup of test configuration files. In addition, there are Java restrictions
for loading files from another plug-in. Therefore, the original refactoring tester must be copied
to the test plug-in. Afterwards, the class must be changed to use the correct plug-in activator.
This can be done by changing the createReader(..) method.

1 Bundle bundle = Activator . getBundle ();

Listing (59) Changing Activator in Test Plug-In

To verify the correct activator is used, the import directives can be checked to point to the
correct package in the test plug-in.

D.2 Test Configuration

The test configuration is a text file, normally located in a resource folder in the plug-in project.
Traditionally, the file extension .rts (refactoring test) is used, however, this is not mandatory.
The format of the test configurations is described in [Thr10], but we will point out some
special fields added to the refactoring tests for the TurboMove plug-in.

userSelection:
This parameter is used to tell the refactoring which move proposal was selected.

destinationName:
The filename of the move destination.

destinationOffset/destinationLength:
Position of the destination node in the destination file.

expectedInitErrorCount:
Expected amount of errors in the initial condition test phase.

expectedFinalErrorCount:
Expected amount of errors in the final condition test phase.

expectedInitWarningCount:
Expected amount of warnings in the initial condition test phase.

expectedFinalWarningCount:
Expected amount of warnings in the final condition test phase.

101

D Testing Environment

D.3 Test Class

A refactoring performs three steps in the transformation lifecyle. First, the initial conditions
are checked followed by user input. The second step is to check the final conditions. In
the end, the change is generated and applied to the source-code. This lifecycle was already
implemented for a testing environment in [Thr10], thus, we reuse it here. However, the class
was changed to be able to work with the TurboMove refactorings.

D.4 Improved Tests

The TurboMove plug-in uses the improved tests described in [Thr10] including the XML
based test description. We refer to the explanations made in [Thr10] for this Section.

D.5 Common Errors

Next to the common errors described in [Thr10], an additional problem that can occur was
found. Normally, a test failure is displayed in the JUnit user interface with a blue failure sign.
By clicking on the failure, the expected and the actual output can be examined. However,
in some cases this is not possible, because the test failure is not displayed as a failure, but
does not have a green success sign either. If this is the case, the configuration file related
to this test specifies source-files having the same names as source-files listed in another test
configuration. Changing the names of this source-files will solve this problem.

102

E Replace Complete Parameter with Parameter Data

E Replace Complete Parameter with Parameter Data

In this Section, we will give a brief description of a refactoring that may be useful in
collaboration with the move member-function to another class described in Section 3.1 on
page 13 and move member-function to free-function refactoring described in Section 3.3 on
page 37.

E.1 Motivation

The above mentioned refactorings add an additional parameter to the moved member-function
if the function requires access to a member-variable or another member-function of the
originating type. The new parameter is used as the new invocation owner of the existing
dependencies. However, adding the complete type as a new parameter may not be reasonable.
Consider the transformed example in Listing 60.

1 /* *===

2 Example of unnecessarily passing 'Payment ' completely

3 instead of 'amount '

4 ===* */

5 // DebitCard .h

6 # include " Payment .h"

7

8 struct DebitCard {

9 void settle(class Payment & newPayment) {

10 if(getBalance ()< newPayment.amount) {

11 // refuse payment ...

12 }

13 reduce (newPayment.amount);

14 }

15 double getBalance () {

16 return balance ;

17 }

18 void reduce (double amount) {

19 balance -= amount ;

20 }

21 double balance ;

22 // ...

23 };

24

25 // Payment .h

26 # include " DebitCard .h"

27

28 struct Payment {

29 double amount ;

30 };

Listing (60) DebitCard Example after Move

103

E Replace Complete Parameter with Parameter Data

The parameter Payment is passed to the settle function, however, only the member-variable
amount is used. In addition, amount only affects the member-variable balance in DebitCard,
but is not changed in Payment. Therefore, it is reasonable to only pass amount instead of the
complete payment.

E.2 Mechanics

Applying this refactoring involves several steps. Each step retains compilability, however, not
completing a step can yield erroneous code.

1. Add a new local variable to the function initialized with the parameter access to replace

2. Replace the parameter accesses with the local variable

3. Apply the ”Add Parameter” refactoring [Fow04] for the local variable replacement

4. Assign the new parameter to the local variable

5. Apply the ”Inline Temp” refactoring [Fow04]

6. Apply the ”Remove Parameter” refactoring [Fow04] for the old parameter

E.3 Benefits

There are some benefits of applying this refactoring:

Lower Coupling:
The coupling of the code is reduced, because the function no longer has a dependency
to the type previously passed as a parameter.

Understandability:
Passing only the data required for a function to perform a task is easier to understand,
rather than passing a complete object.

Controlled Side-Effects:
By avoiding to pass a complete object, it is assured that depending on the parameter
passing mechanism only the passed data will have side-effects.

E.4 Consequences

However, there are also consequences:

Lost Side-Effects:
By avoiding to pass a complete object, side-effects for this object may be lost (may
depent on the parameter passing mechanism).

Breaking Dependent Code:
Third party users of your code can not update to the actual version of the source-code
without breaking compilability.

104

F Refactoring Development in a Nutshell

F Refactoring Development in a Nutshell

Creating a refactoring plug-in is not always easy. It is not only the task to solve that can
raise problems, sometimes the provided infrastructure is complicated to use or does not
behave as expected. In this Section, we try to explain the most important parts of refactoring
development. We hope that these ”best practices” can help refactoring plug-in developers in
the future.

F.1 Refactoring Hook-In

In this Section, we aim to explain the hook-in classes for refactorings and the associated
lifecycle.

F.1.1 CRefactoring or CRefactoring2

To create a refactoring plug-in, a developer can chose between two classes, either CRefactoring
or CRefactoring2. CRefactoring is older than CRefactoring2 and should not be used anymore.
With CRefactoring2, there is also a built-in caching infrastructure for ASTs available per
default.

F.1.2 Plug-In Lifecycle

A refactoring plug-in lifecycle consists of different phases. After the creation and initialization
of the plug-in class, the initial conditions are tested. The initial conditions are used to
determine whether a refactoring can be performed at all. This test is performed before the
refactoring user interface is visible. For example, checking if the selection in the editor is valid
for a given refactoring is normally a task performed in the initial condition test phase. The
next part in the lifecycle is testing the final conditions. Final conditions are used to ensure
the refactoring is possible with the configurations a user made in the refactoring wizard. All
required informations should be calculated in this phase. Otherwise, it may be possible that
the actual transformation of the source-code yields an error. This is not a good idea, because
in the transformation process, it is not possible to give a structured feedback to a user. Only
exceptions can be shown to a user without a chance of recovering from the error. The last
phase in the refactoring lifecycle is the generation of the change and applying the change.
The generated change is not yet made active in the source-code, but is shown to a user in the
preview window of the refactoring. Only applying the change will modify the source-code. In
this modification collection process, all changes should be applied. These changes should not
yield any error if possible, however, this may not be possible due to using the index in this
phase.

When developing a refactoring plug-in it is a good idea to always be aware of this lifecycle.
Otherwise the risk of placing functionality into the wrong phase of the refactoring lifecycle is
high.

105

F Refactoring Development in a Nutshell

F.2 The Index

In an Eclipse refactoring plug-in it is wise to use the index to perform lookups for nodes used in
the transformation. However, it is necessary to think about the type of change to perform. We
call this ”local changes” vs. ”distributed changes”. Local changes are refactorings transforming
nodes related to the selection and the neighbourhood of this node. If the transformation
only changes these nodes and no further information is required from other parts of the code,
the index can be ignored. In contrast, distributed changes must use the index. For example,
changing call-sites of a function requires looking up these call-sites using the index.

F.2.1 Index Lookup

The index can be used to perform different lookups.

findNames(IBinding, int):
Find names will search all names which resolve to the given binding. The search can
be restricted to all, declarations, definitions, references and combinations of these flags.
These flags are accessible using the constants defined in IIndex.

findDefinitions(IBinding):
This is the same as findNames(..) using the definition flag.

findDeclarations(IBinding):
This is the same as findNames(..) using the declaration flag.

findReferences(IBinding):
This is the same as findNames(..) using the reference flag.

findBindings(char[], IndexFilter, IProgressMonitor):
With this method, all bindings with the specified name are returned, independent of
whether the bindings are equal. This is valuable if you try to analyse overload conflicts
or similar tasks.

adaptBinding(IBinding):
This method will adapt a binding to an index binding. The reason for this is explained
in Section F.2.2.

Please note that these lookup methods can return more candidates than you need. Normally,
the returned results require further processing to select the appropriate results for the
transformation. Considering the various ways C++ is offering to accomplish tasks, this can be
inconvenient to do. In our opinion the best solution for this is to use a similar approach to the
tree pattern matching described in [Kes10]. However, an implementation of this functionality
available in a more general aspect for refactorings does not exist.

F.2.2 Comparing Bindings

Bindings are an important part of the AST . They can occur in two variations, either a normal
binding or an index binding. A binding is used to ”bind” names together. For example, a

106

F Refactoring Development in a Nutshell

function name binding can be used to find call-sites of this function, because the bindings
belong together. Bindings can be compared whether they are equal. This can be necessary to
evaluate whether a given node must be changed or not. The important thing when comparing
bindings is to always compare index bindings. If it is not sure whether a binding is an index
binding, the adaptBinding(..) method of the index can be used for conversion. Comparing a
normal binding with an index binding will yield false, even if they are equal.

F.2.3 Resolving Nodes

Once you found an entry using the index, it is necessary to find the related AST node.
Normally, the results of an index lookup are bindings or index names. With an index name,
you can load the related translation unit using findElement(..) on the project associated to
the refactoring. With the AST of the translation unit, a node selector can be created using
getNodeSelector(null). Using the index name length and offset, the node selector is able to
perform a lookup for the node.

F.3 Abstract Syntax Tree

The Abstract Syntax Tree (AST) is a representation of the source-code that can be used by
the refactoring to perform transformations. The top node of an AST is always a translation
unit containing several subnodes and subtrees, depending on the code in the originating
source-file. In the beginning it may be hard to understand the structure of this syntax tree,
however, Eclipes provides a view to show the AST for a given translation unit, accessible using
”Window → Show View → DOM AST”. This view is a good start to get a basic understanding
of the structure and nodes that can exist in a translation unit.

F.4 Caching Syntax Trees

The process of creating an AST is separated into different phases. A source-file is analysed
and an ITranslationUnit is created. This translation unit can be used to build an AST using
getAST(..). However, every invocation of this method will yield a new instance of the same
syntax tree. This is not a desirable behaviour, because applying transformations to different
AST instances of the same translation unit are likely to conflict. Fortunately, a facility to
solve this was introduced with the CRefactoring2 class, namely the RefactoringASTCache.
Loading an AST using this cache will always return the same instance of the syntax tree if it
was already loaded before or create a new instance instead. It is noteworthy to mention that
the translation unit loading must be done manually by using the findElement(..) method
on the associated project. However, it is important to load all translation units using either
absolute or relative paths. Creating a translation unit by using an absolute and a relative
path is possible, but the cache will create two AST instances for these translation units.

F.5 Visitors

Visitors [Gam00] are widely used in refactoring plug-ins. They ease the traversal of the AST
by visiting specific nodes and allowing to perform custom actions for them. For example,

107

F Refactoring Development in a Nutshell

a visitor implementation can search the selected node in an AST . To implement a custom
visitor, the abstract base class ASTVisitor is available in Eclipse. Applying a visitor to an
AST can be accomplished by invoking the accept(..) method of an AST node.

F.6 Casting Nodes

The inheritance hierarchy of a node in the syntax tree can include several different base
interfaces. However, methods invoked on node instances and other lookup methods mostly
have the highest possible interface in the hierarchy as their return type. Unfortunately, in most
situation a downcast is necessary to access required information. This can yield unexpected
results. For example, if you try to downcast a node to a given interface, but this type is not
implementing this interface, a class-cast exception is thrown. Therefore, you have to add
checks to make sure the correct cast is applied. To avoid this, every AST node provides a
getAdapter(..) method. This method is a ”safe cast”, providing you with the desired instance
or null, if the cast would not be successful. However, you still have to check for null values
this way.

108

References

[Ecl11] Eclipse, Foundation: Eclipse CDT Project (2011), URL
http://www.eclipse.org/cdt/, timestamp: 2011.11.17

[Ecl12a] Eclipse, Foundation: Eclipse CDT Indigo 8.0.0 Download (2012), URL
http://www.eclipse.org/cdt/downloads.php, timestamp: 2012.02.09

[Ecl12b] Eclipse, Foundation: Eclipse CDT Indigo 8.0.0 Update-Site (2012), URL
http://download.eclipse.org/tools/cdt/releases/indigo/, timestamp:
2012.02.09

[Ecl12c] Eclipse, Foundation: Eclipse CDT Static Code Analyser (2012), URL
http://wiki.eclipse.org/CDT/designs/StaticAnalysis, timestamp:
2012.02.09

[Ema06] Emanuel Graf, Leo Buettiker: C++ Refactoring Support fuer Eclipse CDT,
Diploma thesis, University of Applied Sciences Rapperswil, HSR (2006)

[Fel11] Felber, Lukas: Static Include Analysis for Eclipse CDT (2011), URL
http://www.includator.ch/, timestamp: 2011.11.17

[Fow04] Fowler, Martin: Refactoring - Improving the Design of Existing Code,
Addison-Wesley (14th Printing, 2004)

[Gam00] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John: Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley (21st
Printing, 2000)

[Ind10] Indermuehle Matthias, Knoepfel Roger: CDT C++ Refactorings, Bachelor
thesis, University of Applied Sciences Rapperswil, HSR (2010)

[ISO11] ISO/IEC: Working Draft, Standard for Programming Language C++ (2011), URL
http://open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3242.pdf,
timestamp: 2011.12.12

[Ker04] Kerievsky, Joshua: Refactoring to Patterns, Addison-Wesley (1st Printing, 2004)

[Kes10] Kesseli, Pascal: Loop Analysis and Transformation towards STL Algorithms,
Master-thesis, University of Applied Sciences Rapperswil, HSR (2010)

[Lar07] Larman, Craig: Applying UML and Patterns, Prentice Hall (9th Printing, 2007)

[Mat10a] Mattias Holmqvist: Building with Tycho, Tutorial Part 1 (2010), URL
http://mattiasholmqvist.se/2010/02/

building-with-tycho-part-1-osgi-bundles/, timestamp: 2012.02.09

[Mat10b] Mattias Holmqvist: Building with Tycho, Tutorial Part 2 (2010), URL
http://mattiasholmqvist.se/2010/03/

building-with-tycho-part-2-rcp-applications/, timestamp: 2012.02.09

[Mat10c] Mattias Holmqvist: Building with Tycho, Tutorial Part 3 (2010), URL http:

//mattiasholmqvist.se/2010/06/building-with-tycho-part-3-testing\

-code-coverage-and-easier-development-using-target-definitions/,
timestamp: 2012.02.09

109

References

[Opd92] Opdyke, William F.: Refactoring Object-Oriented Frameworks (1992), URL
www.laputan.org/pub/papers/opdyke-thesis.pdf, timestamp: 2011.11.17

[Pro12] Project, Apache Maven: Apache Maven Project (2012), URL
http://maven.apache.org/, timestamp: 2012.02.09

[Sch10] Schwab Martin, Kallenberg Thomas: One touch C++ code automation for
Eclipse CDT, Semester-thesis, University of Applied Sciences Rapperswil, HSR
(2010)

[Son10] Sonatype: Maven Eclipse Plugin (2010), URL http://eclipse.org/m2e/,
timestamp: 2012.02.09

[Son12] Sonatype, SAP: Tycho Maven Plug-In (2012), URL
http://www.eclipse.org/tycho/, timestamp: 2012.02.09

[Thr10] Thrier, Yves: CloneWar - Refactoring/Transformation in CDT: Extract Template
Parameter, Semester-thesis, University of Applied Sciences Rapperswil, HSR
(2010)

[Thr11] Thrier, Yves: Troi - C++ Template Concepts in Eclipse, Semester-thesis,
University of Applied Sciences Rapperswil, HSR (2011)

110

List of Abbreviations

List of Abbreviations

ADL Argument Dependent Lookup
AST Abstract Syntax Tree

CDT C/C++ Development Tooling

ECTS European Credit Transfer System

HSR University of Applied Sciences Rapperswil

IDE Integrated Development Environment

TDD Test-Driven Development

111

List of Figures

List of Figures

1 TurboMove User Interface Example . IV
2 Class Diagram of the Refactoring Extension Point Classes 64
3 Sequence Diagram of the Refactoring Extension Point Classes 65
4 TurboMove Packages . 66
5 Class Diagram of Delegation Mechanism to Move Proposals 67
6 Sequence Diagram of the Initial Conditions Test 69
7 Sequence Diagram of the User Selected Options 70
8 Sequence Diagram of the Final Conditions Test 71
9 Class Diagram of the Move Transformation and Factory Class 72
10 Class Diagram of the Move Diagnostic and Factory Class 73
11 Sequence Diagram of the Move Diagnostic and Factory Class 73
12 Namespace Transformation Before and After 77
13 Class Diagram of the Extend Rewrite Facility 79
14 Sequence Diagram of the Extended Rewrite Facility 80
15 Entries in the Refactoring Menu . 81
16 User Interface with Proposals only . 82
17 User Interface with Proposals and Destination selection 82
18 Eclipse Menu to Install New Software . 90
19 Eclipse Refactoring Menu with TurboMove Refactorings 91
20 Refactoring User Interface with Proposals and Destination Dialog 92
21 Refactoring User Interface with Proposals . 93
22 Actual vs. Target Hours/Week . 95

112

