
GAMES AND ECONOMIC BEHAVIOR 8, 164--212 (1995) 

Learning in Extensive-Form Games: Experimental 

Data and Simple Dynamic Models in the 

Intermediate Term* 

ALVIN E .  ROTH AND IDO EREV 

Tile University of Pittsburgh, Pittsburgh, Pennsylvania, 15260; 

and The Technion, 32 000 Haifa, Israel 

Received July 30, 1993 

We use simple learning models to track the behavior observed in experiments 

concerning three extensive form games with similar perfect equilibria. In only 

two of the games does observed behavior approach the perfect equilibrium as 

players gain experience. We examine a family of learning models which possess 

some of the robust properties of learning noted in the psychology literature. The 

intermediate term predictions of these models track well the observed behavior 

in all three games, even though the models considered differ in their very long 

term predictions. We argue that for predicting observed behavior the intermediate 

term predictions of dynamic learning models may be even more important than 

their asymptotic properties. Journal of Economic Literature Classification Num- 

bers: C7, C92. © 1995 Academic Press. Inc. 

I. INTRODUCTION 

No one can look widely at experimental data without noticing that 

experience matters. At least for the first few times a game is played, 

observed behavior is likely to change as players acquire experience, in a 

way that suggests that learning is important--learning not only about the 

structure of the game being played, but also about the behavior of the 
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other players. (This is an observation that can be made with field data 

also, a point to which we will return in the conclusion.) So it is natural 

to consider how well we can explain observed behavior in terms of adapta- 

tion. And, while adaptative behavior may potentially be quite complex, 

it is useful to see how much of what we observe can be explained with 

very simple models of adaptation. 

This paper considers the behavior observed in experiments with three 

different two-stage sequential games; a public goods provision game, a 

market game, and an "ultimatum" bargaining game, which will all be 

described shortly. The three games have in common not only a two-stage, 

alternating move structure, but also that the perfect equilibrium prediction 

for each game is that all or almost all of the gains will be captured by one 

player. However,  the observed behavior for the three games is different. 

For the public goods and market games, under a variety of conditions 

involving different subject pools and different information about payoffs, 

behavior is observed to converge quickly to the perfect equilibrium predic- 

tion. But in the ultimatum game, also under a variety of conditions, behav- 

ior is observed to be far from the perfect equilibrium prediction even after 

players have gained a reasonable amount of experience. Furthermore, the 

behavior observed in the ultimatum game is different in different subject 

pools, and appears to become more different as the players acquire expe- 

rience. 

We consider adaptive models from a simple family of dynamics, in 

which players increase the probability of playing pure strategies that have 

met with success in previous periods. These simple dynamics do a surpris- 

ingly good job of reproducing the major features of the experimental data. 

Each dynamic we consider from this family converges quickly to the 

perfect equilibrium of the public goods and market games, from a wide 

range of initial conditions. However these same dynamics do not converge 

quickly, if at all, to the perfect equilibrium of the ultimatum game, and 

their behavior in the ultimatum game is sensitive to the initial conditions. 

In fact, when we initiate each of the dynamics with initial conditions 

estimated from those observed experimentally in different subject pools, 

we see the dynamic paths diverge in much the same way as the ultimatum 

game data. 

One lesson we will seek to draw, therefore, concerns differences among 

the games, captured by the fact that the same dynamic models make 

different predictions for the different games. Both the experimental and 

computational results we report support the intuition that we can expect 

to find classes of games in which certain kinds of equilibrium are quickly 

observed, and others in which they are not. And some games are relatively 

insensitive to initial conditions, while in other games initial conditions are 

important. 
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A second lesson concerns which aspects of dynamic models offer testa- 

ble predictions. While almost all of the theoretical literature on adaptive 

dynamics has focused on the very long term, via theorems about conver- 

gence as time goes to infinity, we will argue that intermediate term results 

(such as paths, velocities, and transit durations) may be even more impor- 

tant. To make this argument, we will consider particular dynamic models 

with quite different long term propertiesmmodels whose asymptotic pre- 

dictions approach perfect equilibria, imperfect equilibria, and non-equilib- 

r i a - a n d  observe that these models nevertheless make similar intermedi- 

ate term predictions for these three games. We will argue that, both 

because it would be difficult to distinguish among these different dynamics 

on the basis of data, and because dynamic models are more likely to be 

informative when the learning curve is steep than when it is flat, there is 

reason to pay attention to their intermediate term predictions. (Although 

we will not try to precisely define what constitutes the "intermediate" 

term, our operational definition will be to take the intermediate term 

predictions of a model to be those it makes as the learning curve begins 

to be very flat.) 

To use an analogy, even if we believe that time and the tide eventually 

turn all coastlines into sandy beaches, knowing the difference between 

granite and sandstone is a great help in understanding why, in the interme- 

diate term, some coastlines have rocky cliffs. 

To summarize, this paper makes several kinds of comparisons. We 

demonstrate differences among the games by looking at a single dynamic 

model (at a time) and observing that it acts differently on the different 

games. And we demonstrate which aspects of the dynamic models seem 

to us to be potentially most descriptive of observed behavior, and most 

testable, by looking at the predictions of several dynamic models simulta- 

neously, and comparing them to each other and to the experimental data. 

We will see that the intermediate term predictions of all the models we 

consider are similar both to each other and to the experimental data, even 

though the long term predictions of these models can be quite different 

(both from each other and from the experimental data). 

This paper will be organized as follows. Section II presents the experi- 

mental games and observed outcomes. Section III introduces the family 

of dynamic models we consider. Section IV presents the details of the 

computational models of the games--i t  explains how and why we repre- 

sent the strategy spaces in the three games by smaller sets than were 

actually available in the experiments. Section V studies the differences 

among the three games by comparing the dynamics they induce when 

the initial conditions are randomly generated. Section VI presents the 

predictions of these dynamic models about the experimental games, start- 

ing from the observed initial conditions, and compares them with each 
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other and with the experimental data. Section VII concludes with a sum- 

mary of what we think we have learned, some directions for further 

work, and some final reflections on intermediate term versus long term 

predictions. 

I I .  EXPERIMENTAL DATA 

The data we consider come from two papers: Roth et al. (1991); and 

Prasnikar and Roth (1992). The first of those papers compares the behavior 

observed in a two-player ultimatum bargaining game and a ten-player 

market game (of the "one right shoe, nine left shoes" variety) played 

under comparable conditions in four countries.~ The games and the envi- 

ronment in which they were played are described as follows (Roth et al. 

(1991) pp. 1068-1169): 

The two-player bargaining environment we look at is an ultimatum game: 

one bargainer makes a proposal of how to divide a certain sum of money with 

another bargainer, who has the opportunity to accept or reject the proposed 

division. If the second bargainer accepts, each bargainer earns the amount 

proposed for him by the first bargainer, and if the second bargainer rejects, 

then each bargainer earns zero. To allow us to observe the effects of experience, 

subjects in the bargaining part of the experiment each participate in ten bargain- 

ing sessions against different opponents. Although different pairs of bargainers 

interact simultaneously, each bargainer learns only the result of his own negoti- 

ation. 

The multi-player market environment we examine has a similar structure: 

multiple buyers (nine, in most sessions) each submit an offer to a single seller 

to buy an indivisible object worth the same amount to each buyer (and nothing 

to the seller). The seller has the opportunity to accept or reject the highest 

price offered. If the seller accepts then the seller earns the highest price offered, 

the buyer who made the highest offer (or, in case of ties, a buyer selected by 

lottery from among those who made the highest offer) receives the difference 

between the object's value and the price he offered, and all other buyers receive 

zero. If the seller rejects, then all players receive zero. Each player learns 

whether a transaction took place, and at what price. To allow us to observe 

the effects of experience, subjects in the market part of the experiment each 

participate in ten markets, with a changing population of buyers. 

i These were Israel, Japan, Slovenia (when it was still part of Yugoslavia), and the U.S.A. 

Ultimatum game experiments have been reported by Guth et al. (1982), and by many others 

since, along with sequential bargaining games having more periods (inspired in part by the 

theoretical work of Stahl, 1972, and Rubinstein, 1982, on multiperiod games). Both in the 

one-period ultimatum games and in the longer bargaining games, experimental results typi- 

cally diverge from the perfect equilibrium predictions (see, e.g., Ochs and Roth, 1989, or 

Bolton, 1991, or see Roth, 1994, for a survey of such bargaining experiments). "Right shoe 

left shoe" games have been a source of theoretical examples for a long time; some earlier 

experimental results are reported in Murnighan and Roth (1980). 
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In both the market and bargaining environment, the prediction of the unique 

subgame perfect equilibrium (under the auxiliary assumption that subjects seek 

to maximize their monetary payoffs) is that one player will receive all the 

wealth (or almost all, if payoffs are discrete). 

We note in passing that many interesting problems of experimental 

design arise in conducting an experiment in four countries, if one wishes 

to control for the fact that the data are collected by different experimenters, 

and subjects are instructed in different languages and paid in different 

currencies. We refer the reader to Roth et  al. (1991) for how these problems 

were addressed. 2 For our present purposes, it is enough to note that the 

experiment gives us data about each game from subjects who played the 

game 10 times, but against different opponents each time (in order that 

the one-shot character of each game be preserved). Thus subjects gained 

experience with the game at the same time as they encountered other 

subjects who had gained a similar amount of experience. (Subjects played 

the same role in all rounds--e.g. ,  a subject who was a player I in the 

ultimatum game would be a player 1 in all 10 rounds.) 

All transactions were carried out in terms of "1000 tokens" with a 

smallest divisible unit of 5 tokens. Note the similarity in the equilibrium 

structure of the two games. At the perfect equilibria of both the ultimatum 

and market games, one player's payoff is either 995 or 1000; in the market 

game the perfect equilibrium offers are 995 or 1000, and in the ultimatum 

game these are the perfect equilibrium demands (for himself) by the pro- 

poser. But for both games any offer can be made at a nonperfect Nash 

equilibrium. Nevertheless, the behavior observed in the two games is 

different; quickly approaching perfect equilibrium in the market game in all 

four countries, and remaining far from perfect equilibrium in the ultimatum 
game. 3 

In the market game, offers made in round 1 were dispersed, but equilib- 

rium was reached in all four countries by round I0, with from almost 40% 

to over 70% of all offers being at the highest feasible prices in the different 

subject pools. (Note that perfect equilibrium is achieved in a given market 

whenever two or more offers of 1000 are made, so that no prediction is 

made about the dispersal of lower offers.) 

2 We emphasize that the details of how experiments are conducted are often of critical 

importance in understanding the results. We skip over many details so lightly here not 

merely because they are published elsewhere, but because they are important primarily 

for evaluating the differences observed between subject pools. We are content to leave 

unexplained here those differences observed in the first periods of play, and we will show 

that the remaining differences can largely be explained via the adaptive models we consider. 

3 To conserve space, we must content ourselves below with a verbal description of the 

data, which are described much more completely, of course, in the original papers. Later 

in the paper we will offer more formal comparisons of the learning simulations and the data 

from these experiments (see, e.g., the first (data) columns of Figs. 4-6). 
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The ultimatum game data tell a very different story. In round 1, the 

same modal demand, of 500, was observed in each country. But in round 

10, the modal demands were still 500 in the U.S. and Slovenia, while in 

Japan there were modes at 550 and 600, and in Israel there was a mode 

at 600. These differences in the modes reflect significant differences in 

the distributions of observed demands. 4 That is, unlike what we saw in 

the market game, tenth round demands in the ultimatum game did not begin 

to approach the perfect equilibrium, and there were significant differences 

among the subject pools. 

The paper by Prasnikar and Roth compared ultimatum and market 

games with a third game called a "best  shot" game. The best shot game 

is a two-player game whose rules are that player 1 states a quantity ql,  

after which player 2, informed of q j ,  states a quantity q2- An amount of 

public good equal to the m a x i m u m  of qj and q2 (the "best  shot") results, 

and each player i receives a payoff which is a function of that quantity 

of public good (q = max{ql, q2}) minus $0.82 times qi (see Table I). The 

perfect equilibrium prediction is that player 1 will choose q~ = 0 and 

player 2 will choose q2 = 4, giving player 1 a profit of $3.70 and player 

2 a $0.42 profit. 5 Prasnikar and Roth (1992) observed these games under 

two information conditions. Subjects in the full information condition 

knew that both players had the same payoff table (Table I), while subjects 

in the partial information condition knew only that Table I determined 

their own payoffs-- they did not know how the other player's payoffs 

were determined. As in the ultimatum and market games, each subject 

participated in ten one-shot games against different opponents, always in 

the same position (player 1 or player 2). 6 In both information conditions 

the players learned quickly not to both  provide positive quantities. In the 

full information condition (but not the partial information condition) every 

4 The observed distributions are significantly different for every pair of countries except 

the U.S.A. and Slovenia, and the between country differences are larger than the differences 

between groups within a given country. (Because the distributions are highly asymmetric, 

the statistical test used is the Mann-Whitney U test, which is based on the rank of each 

observation in the sample distribution.) 

5 Thus the ratio of predicted payoffs to the two players is nine to one. To see that (ql = 

0, q2 = 4) is the unique perfect equilibrium outcome, observe from Table I that if player l 

provides ql = 0, then player 2's unique best response is to provide q2 = 4 ,  since the first 

four units of public good all have a higher marginal value than the cost to player 2 of 

providing each unit, while the fifth unit of public good has a lower marginal value. And if 

player 1 provides a quantity ql -> l, then player 2's unique best response is to provide 

q2 = 0 ,  which gives player l a strictly lower payoff than if he provides 0 and player 2 

provides 4. Note there is one other outcome, ql = 4, q2 = 0 ,  which can occur at a Nash 

equilibrium (but not at a perfect equilibrium). 

6 Harrison and Hirshleifer (1989) had earlier reported experimental results for the best 

shot game under the partial information condition, similar to those discussed here. 
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TABLE I 

REDEMPTION VALUES AND EXPENDITURE VALUES FOR THE BEST SHOT FULL 

AND PARTIAL INFORMATION GAMES 

Redemption values Expenditure values 

Redemption Number of Cost to you of the 

Project level value of Total redemption units you number units you 

(units of q) specific units value of all units provide provide 

0 $0.00 $0.00 0 $0.00 

1 1,00 1.00 I 0.82 

2 0,95 1.95 2 1.64 

3 0.90 2.85 3 2.46 

4 0.85 3.70 4 3.28 

5 0.80 4.50 5 4.10 

6 0,75 5.25 6 4.92 

7 0,70 5.95 7 5.74 

8 0,65 6.60 8 6.56 

9 0.60 7.20 9 7.38 

10 0,55 7.75 10 8.20 

11 0,50 8.25 I 1 9.02 

12 0,45 8.70 12 9.84 

13 0.40 9.10 13 10.66 

14 0.35 9.45 14 11.48 

15 0.30 9.75 15 12.30 

16 0.25 10.00 16 13.12 

17 0.20 10.25 17 13.94 

18 0.15 10.35 18 14.76 

19 0.10 10.45 19 15.58 

20 0.05 10.50 20 16.40 

21 0.00 10.50 21 21.22 

player 1 learned (before round 10) to provide q l = 0. And in both conditions 

the perfect equilibrium outcome (q~, q2) = (0, 4) was the modal outcome 

by round 10, although convergence towards the perfect equilibrium was 

faster in the full information condition than in the partial information 

condition. 

Thus all of these three games have extreme perfect equilibrium predic- 

tions, and the experimental results (nevertheless) show quick convergence 

to the perfect equilibrium in the market game and best shot game in the 

full information condition, somewhat slower convergence in the best shot 

game with partial information, and no apparent approach to perfect equilib- 

rium at all in the ultimatum game. We turn next to see what insight into 

this behavior we can derive from a family of very simple learning models. 
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I I I .  A FAMILY OF ADAPTIVE MODELS 

We describe here a family of stochastic dynamic models of individual 

behavior, which determine the probability that a given player will choose 

a given pure strategy at time t, and how these probabilities evolve over 

time in response to the player's experience. We defer to Sections V and 

VI the descriptions of the multiplayer interactions in the computational 

simulations. 

Our selection of dynamic models has been guided by three principle 

criteria. First, the models should be consistent with the robust properties 

of learning observed in the large experimental psychology literature on 

both human and animal learning. Perhaps the most robust of these proper- 

ties is that choices that have led to good outcomes in the past are more 

likely to be repeated in the future. (This result, known as the "Law of 

Effect," has been observed in a very wide variety of environments at 

least since Thorndike, 1898.) Another robust observation is that learning 

curves tend to be steep initially, and then flatter. (This observation is 

known as the "Power  Law of Practice," and dates back at least to Black- 

burn, 1936. 7 ) 

The second criterion is that the model of how an individual changes his 

behavior in response to his experience should not depend on observations 

that cannot be made by the players in the experimental environments in 

question. In particularl in each game we consider there are information 

sets not reached on any given play of the game, so players cannot observe 

one another's strategies, only their choices. For example in the ultimatum 

game, if a player observes that a certain offer was rejected, he cannot 

observe which offers would have been accepted, and vice versa. 8 

The third criterion is that the models should not depend on observations 

about the players that cannot be observed in the experimental data. While 

the experimental data we consider reveal more than can be observed by 

7 A typical expression of this "power law," from which it derives its name, is that the 

relationship between the time T it takes to perform a task, as a function of how many times 

P it has been practiced, often fits well a curve of the form T = a P  -b for constants a and b, 

so that the decrease in time corresponding to increased practice quickly becomes small. 

s This rules out dynamic models such as "fictitious play," in which players observe each 

other 's  full pure strategies. Robinson (1951) showed that fictitious play converges to the 

Nash equilibrium for two-player zero sum games, and Shapley (1964) showed a non-conver- 

gent two-person nonzero-sum counterexample. Recently there has been renewed interest 

in convergence results for this and related dynamic models: see, e.g., Aoyagi (1992), Fuden- 

berg and Kreps (1993), Krishna (1992), Milgrom and Roberts (1991), and Monderer and 

Shapley (1992). There has also been some recent theoretical interest in notions of equilibrium 

which arise when players cannot observe each other 's  strategies, but only their behavior 

at information sets which are reached: see, e.g., Fudenberg and Levine (1993a,b) and Kalai 

and Lehrer (1993). 
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any individual player in the experiment (e.g., about distributions of choices 

across the population of players) the data do not reveal what players 

initially believe, or how they update their beliefs. We have chosen not to 

construct models with unobservable parameters for each individual. 9 

An additional criterion, harder to make precise, is that the models 

should be simple. The models we consider here will all be variations on 

the following basic model, which can be applied to games with finite pure 

strategy sets. 

A.  The Basic  Mode l  

At time t = 1 (before any experience has been acquired) each player n 

has an initial propensity to play his kth pure strategy, given by some 

number q,,~(l). If player n plays his kth pure strategy at time t and receives 

a payoff of x, then the propensity to play strategy k is updated by setting 

q,x(t + I) = q,,k(t) + x, while for all other pure strategies j ,  q,,i(t + 1) = 

q,o(t). The probability p,,~(t) that player n plays his kth pure strategy at 

time t is p,,k(t) = q,,k(t)/Eq,,j(t), where the sum is over all of player n's 

pure strategies j.  

So pure strategies which have been played and have met with success 

tend over time to be played with greater frequency than those which have 

met with less success; i.e. these dynamics obey the "law of effect." Also, 

the learning curve will be steeper in early periods and flatter later (because 

Eq,j(t) is an increasing function of t, so a payoff of x from playing pure 

strategy k at time t has a bigger effect on p,,k(t) when t is small than when 

t is large; i.e., the derivative of pnk(t) will respect to a payoff of x is a 

decreasing function of t). This latter property will permit our loose opera- 

tional definition for the "intermediate t e r m " - -  as the steep part of the 

learning curve gives way to the flat part, the short term ends and the 

intermediate term begins. 

These learning dynamics have a certain resemblance to evolutionary 

dynamics (cf. Maynard Smith, 1982) even though they are not the "replica- 

tor" dynamics customarily associated with evolutionary models, l0 (In fact 

9 That is not to say of course that such beliefs may not play a role, even an essential role, 

in players' behavior. There have recently been a number of interesting Bayesian models 

which explore long term convergence to Nash equilibria (e.g., Jordan, 1991; Kalai and 

Lehrer, 1993; and N yarko, 1992). Of particular interest is Crawford (1992), which estimates 

belief parameters for agents from the experimental data of Van Huyck et al. (1990, 1991) 

and uses these estimates to run simulations of their experiments which agree well with the 

experimental observations. We discuss in the conclusion how players' knowledge and beliefs 

might be influencing their behavior in the data we consider, despite the good results we get 

from models which ignore these factors. 

to See e.g. Friedman (1991) for a discussion of a broad class of evolutionary dynamics 

characterized by the fact that successful strategies increase their share of the population. 

And see Selten (1991) for a nontechnical discussion of the roles that both inherited and 
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this model was proposed as an approximation of evolutionary dynamics 

by Harley, 1981). The chief point of similarity is that the influence of other 

players' past behavior on any player n's behavior at time t is via the effect 

that their behavior has had on player n's past payoffs. 

This model is also quite similar to that of Bush and Mosteller (1955) 

(which was employed by Cross, 1983 to explain economic behavior), but 

it has some significant differences. Bush and Mosteller's model also obeys 

the law of effect, but, unlike the model we consider, their learning curves 

need not get flatter over time.~t 

The simple model we consider does not require (or permit) a player to 

observe the full strategies of other players, or to make calculations based 

on other players' payoffs. So it can be applied to the kinds of games we 

consider here in which players only observe one another's choices, not 

their strategies. And it can be applied to the best shot games under both 

full and partial information. 

B. Some Modifications 

Here we introduce three modifications of the basic model. The first has 

a "cutoff"  parameter/z which prevents events with unobservably small 

probabilities from influencing the outcome. The second modification has 

an "experimentation" (or "error"  or "generalization") parameter e which 

prevents the probability of a strategy from going to zero if it is "c lose"  

to a successful strategy. The third modification introduces a "forgetting" 

parameter ~, which speeds convergence by preventing the sum of any player 

n's propensities, Eq,,j(t), from growing without bound as t goes to infinity. 

When/x, e, and ~ all equal zero, we have the basic model described above. 

noninherited characteristics might play in learning in economic environments. Evolutionary 

models have been compared with experimental data by Crawford (1991) (for a series of 

coordination experiments the first of which is reported by Van Huyck et al. (1990)), and 

by Miller and Andreoni (1991) who considered the stylized facts from a number of public 

goods experiments. Another, more complex kind of biologically motivated model is that of 

"genetic algorithms" (Holland, 1975), which involve mating as well as selection. (See also 

Holland and Miller, 1991, for some further thoughts on using genetic algorithms to model 

economic behavior.) Arthur (1991, 1993) uses some individual choice data reported by Bush 

and Mosteller (1955) to calibrate a model very closely related to the basic model considered 

here (except that the rate of learning is kept constant by renormalizing the sum of the 

propensities after each choice), and reports a good fit with the learning behavior reported 

in that experiment. 
11 Bush and Mosteller's model updates the probabilities of choosing each strategy directly, 

without the intermediate "propensities" we employ. This has the effect (which Bush and 

Mosteller, 1955 p. 17, refer to as "Independence-of-path") of making the magnitude of 

change in any period dependent only on the current probabilities and not on the amount of 

previous experience. Their model also differs from the one we consider here in that it cannot 

converge to a pure strategy in an uncertain environment in which the post-hoc best response 

(but not the expected best response) changes from trial to trial. 
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1. Ext inct ion in Fini te  Time 

The first modification allows the probabilities pnk(t) t o  go to zero in finite 

time. We do this by simply truncating to zero probabilities which fall below 

some small "cutoff"  probability/z. That is, whenever in the basic model 

we get phi(t) = q,,k(t)/Y,q,,j(t) < /~, we set p,,k(t) = q,,k(t) = 0 instead. This 

has several advantages and some (potential) disadvantages. Not least of the 

advantages is that it allows us to avoid predicting that the long term behavior 

of the game depends on (intermediate term) events of such low probability 

that they would have virtually no chance of being observed in the data. It 

is good to avoid basing predictions on unobservables, when you can. (This 

also has the practical advantage of preventing roundofferror from becoming 

a factor in the computational results.) A second advantage is that setting 

these small probabilities to zero speeds convergence, which can now take 

place in finite time. Since our argument about the relative merits of interme- 

diate term as opposed to long term results will apply even to the speeded 

up model, this increases the force of the argument. 

Among the potential disadvantages of allowing finite extinction in this 

way is that it may add unwanted variance--there is even a positive proba- 

bility that a strictly inferior strategy will persist while superior strategies 

become extinct. Suppose for example that a player happens to play a 

strictly dominated strategy that nevertheless yields a small positive payoff. 

Since this payoff increases his propensity to play this strategy, there is a 

chance that he will play it again, and again, and a sufficiently long sequence 

of plays in which he employs only this strategy could result in its probabil- 

ity coming sufficiently close to one so that all other strategies would 

become extinct. This cannot happen in the next modification of the basic 

model, which introduces persistent local experimentation. 

2. Pers is tent  Loca l  Exper imenta t ion  or Error 

The modification we consider now will not employ a cutoff probability 

(i.e., p~ = 0 in this model), but neither will it allow the probability of 

playing a strategy to become arbitrarily close to zero if that strategy is 

"c lose"  to a high probability strategy. In particular, we introduce a param- 

eter e which, when it is positive, can be interpreted as guaranteeing persis- 

tent local experimentation or error. ~z We do this by changing the way 

each player updates the propensities to play each pure strategy. If player 

n A much more nuanced model of persistent experimentation in extensive form games is 

given by Fudenberg and Kreps (1988). Kandori et al. (1993) explore an evolutionary model 

in which persistent experimentation (or mutation, or entry) produces a stationary Markov 

process with a positive probability of transiting in one step from any state to any other. For 

related work see Foster and Young (1990), Young 0993), and Binmore and Samuelson 

(1993). 
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n plays his kth pure strategy at time t and receives a payoff of x, then the 

propensity to play strategy k is updated by setting q,k(t + 1) = q,k(t) + 
( 1  - e)x. The remaining quantity ex will be added to the propensities to 

play the strategies adjacent to strategy k, where "adjacent" remains to 

be precisely defined in Section IV when we describe the simplified games 

on which the computations are performed. For all other pure strategies j 

(i.e., for j neither equal to nor adjacent to k), q,j(t + 1) = q,j(t). When 

e = 0 this model is the same as the basic model. When e is positive, 

there is persistent "local" experimentation--strategies close to a high 

probability strategy must also be played with a positive probability that 

is bounded away from zero.~3 

3. Gradual Forgetting 

The final modification we consider has a "forgetting" parameter ~o, 

which limits how flat the learning curve can become. At the end of 

each period t, each propensity q,o(t) obtained as before is multiplied 

by I - ~o, e.g. if ~o = 0.001 then each propensity is multiplied by 0.999 

to obtain the propensities for the next period. (This has no effect on 

the p,,~, since the ratios of propensities are unchanged, but it keeps 

the sum of the propensities from growing without bound.) When Zq,,j(t) 

is small, this has little effect on player n's rate of learning. But suppose, 

for example, that player n earns an average payoff of p per round, 

and that ~o = .001. Then Y~q,o(t) will tend to grow over time until it 

reaches 1000p, after which the amount gained per round will just 

equal the amount "forgotten," so that Zq,o(t) will thereafter remain 

approximately constant (unless player n's average payoff should change). 

At that point the "weight of the past" will stop growing, and each 

new payoff will start to have approximately the same influence on 

player n's propensities. This will allow us to show more clearly how 

the models diverge in the very long term. For this purpose, we will use 

a positive forgetting parameter together with a positive experimentation 

13 If persistent global experimentation is desired, the residual propensities ex can be 

distributed over all pure strategies. The choice of local experimentation is motivated in part 

by the observation that feedback which reinforces a given choice also reinforces similar 

choices (a phenomenon referred to as "generalization" in the behavioral psychology litera- 

t u r e - s e e ,  e.g., Guttman and Kalish, 1956, for an early study of this phenomenon in pigeons). 

Note that when the states of the system are modeled as being the vector of propensities to 

play each pure strategy, the resulting stochastic process is a Markov process with an infinite 

state space, with nonrecurring states (because every agreement increases the sum of the 

propensities). Thus descriptive simplicity does not insure analytical simplicity. (More gener- 

ally, the initial steps of a project designed to produce models of observed behavior can be 

expected to be different from the initial steps of projects directed at showing how equilibria 

might arise. The two agendas may eventually show signs of convergence . . . .  ) 
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parameter, so that we will be considering a model of local experimenta- 

tion with gradual forgetting. 

The local experimentation models (with or without forgetting) have 

quite different long term properties than the cutoff model. This is 

easiest to see by noting that the local experimentation models cannot 

converge to pure strategies (since if strategy k were to be played with 

probability approaching I - e, the probabilities of strategies k - 1 

and k + 1 would eventually each approach e/2). Nevertheless, we will 

see that the intermediate term predictions of all three models are quite 

similar. The differences in the models'  long term predictions only 

become apparent in the ultimatum game, and only in the very long 

term. 

4. Parameters of  the Models 

Within each of the computations which follow, players on the same 

side of a game will have the same initial propensities, i.e., for each 

pure strategy k, and for any two players n and m on the same side 

of the game q,,k(1) = qmk(1).  (Of course this equality will not in general 

hold for times t > 1, since at time t = 1 even players with the same 

initial propensities will choose different strategies, encounter different 

behavior from their opponents,  etc.) So there are two kinds of choices 

of initial propensities which will influence the predictions of the model 

for subsequent times t. The first of these are the ratios q,k(l)/qnj(1) of 

propensities to play different pure strategies k and j ,  which determine 

the relative probabilities that k and j will be played at time t = 1. The 

second is the sum over all pure strategies j of the initial propensi- 

ties, which we call the strength of the initial propensities, 

S(1) = 2q,i(1). 

When the initial propensities are strong, i.e. when S(1) is high, learning 

will be slower than when S(I) is low. (If player n plays pure strategy k at 

time t = 1 and earns x, the updated probability that he will play k at t = 

2 is p,k(2) = (q,,~(1) + (1 - e)x)/(S(1) + x).) In the computations which 

follow, we will report results for initial strengths of 10, the same order of 

magnitude as the payoffs in the games.~4 

t4 We have briefly examined the models studied here with S(1) = 100 also, which produces 

somewhat  slower initial learning but does not appear to be different in any other way from 

the parameters we report.  Note  that the cutoff  and experimentation parameters can also 

influence the importance of  each player 's  initial experience at time t = 1. When S(l) is 

small, p. is large, and e = cp = 0, the experience at t = l has the most chance of  influencing 

the long term predictions of  the dynamic model,  since learning is fast and there is a chance 

for one strategy to drive out all others.  Note also that a model which had both e and/~  

positive could behave differently than the local experimentation models we concentrate on, 

and could have one pure strategy played with probability one in the long term (when the 

probability of  playing an adjacent strategy might fall below the cutoff even after the addition 

of  (e/2)x). 
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We will report results for the cutoff model with /~ = 0.01 (and e = 

~o = 0), for the local experimentation model with e -- 0.05 and O. 1 (and 

/z = ~o = 0), and for the experimentation model with forgetting with 

e = 0.05 and O.1, ~o = .001, and/z  = O. 

IV. THE  SIMPLIFIED GAMES USED FOR COMPUTATIONS 

The games played in the experiments described earlier have finite 

pure strategy sets, and so, when we prepare to run a learning model 

through a simulation of the experiments, we could in principle estimate 

from the data the initial propensities to play each strategy. The problem 

with this approach is that it would require enormous amounts of data 

to estimate reliable probabilities for playing each of so many distinct 

strategies. Instead, we simplify the games by aggregating the many 

strategies into a relatively small set of strategies, so that when the 

data are similarly aggregated, we have a chance of having multiple 

observations for each strategy of the simplified game. ~5 The games are 

simplified as follows. 

The Simplified Ultimatum Game. Players 1 and 2 each have nine pure 

strategies. Player 1 chooses a demand d~, which is an integer between 1 

and 9, and is the amount player 1 demands for himself. Player 2 chooses 

a maximal acceptable demand m2, which is also an integer between 1 and 

9. If player l ' s  demand is acceptable to player 2, i.e., ifd~ -< m2 then player 

1 earns d~ and player 2 earns 10 - d~. If the demand is not acceptable, i.e. 

if d~ > m2 then each player earns 0. So dl and m2 constitute a Nash 

equilibrium if and only if d~ = m2, while the unique perfect equilibrium 

is d I = m2 = 9. 

The Simplified Best Shot Game. Player I chooses one of three possible 

contributions q~ = 0, 2 or 4. Player 2 chooses one of 27 response rules: 

000, 002, 004, 020, 022, 024, 040, 042, 044, 

200, 202, 204, 220, 222, 224, 240, 242, 244, 

400, 402, 404,420, 422, 424, 440, 442, 444, 

where the first number in each response rule is the amount q2 that player 

2 will provide in response to a contribution ofq~ = 0, the second a response 

to qj = 2 and the third a response to q~ = 4. The payoffs are determined, 

as in the experiment, from Table I (e.g., at the perfect equilibrium, when 

15 Note that even though these are all games of perfect recall, strategies and behavioral 

strategies are not equivalent for the adaptive models we are considering. We are modeling 

strategies, not behavioral strategies. 
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player 1 chooses q~ = 0 and player 2 chooses the response rule 400, the 

payoffs are (3.70, 0.42), corresponding to the quantities q~ = 0 and q2 = 

4). 

The Simplified Market Game. Each buyer n chooses one of 11 prices 

from the set {.25, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9.75}. If the price Pn chosen by 

buyer n is strictly higher than the price chosen by any other buyer,  then 

buyer n earns 10 - p,, and all the other buyers earn 0. If the maximum 

price p, is chosen by k buyers, then each one of them earns (I0 - p,)/k, 

while all the other buyers earn 0. (In this simplified market game we have 

suppressed the role of the seller, who in the data of Roth et al. (1991) 

never rejected an offer. It will be apparent that we could have included the 

seller, modeled like player 2 in the ultimatum game, without substantively 

changing the results.) 

We can now complete our description of how, when the experimenta- 

tion parameter e is positive, the propensities to play pure strategies 

are updated for strategies "ad jacen t"  to the one most recently played. 

For the simplified ultimatum and market games, adjacent strategies are 

determined by the usual order of the real line. For example in the 

ultimatum game if e = 0.05, and players I and 2 choose d t = 7 and 

m2 = 8, then player 1 earns 7, and his propensity to choose 7 in the 

next period is increased by 0.95 × 7 = 6.65 while his propensities to 

choose 6 and 8 are each increased by 0.175. In the same way, player 

2 earns 3 and his propensity to choose 8 is increased by 0.95 × 3 = 

2.85, and his propensities to choose 7 and 9 are each increased by 

0.075. 

If a player has chosen an extreme strategy, such as 9 in the ultimatum 

game, and earns x, then the propensity to play 8 is increased by (e/2)x as 

before, while the propensity to play 9 is increased by (1 - e/2)x (instead 

of by (I - e)x that would have been allocated if there were a higher 

adjacent strategy). This " ex t r a "  (e/2)x allocated to the extreme strategy 

gives a slight local upward bias to the dynamics of the ultimatum game 

which we will see is not sufficient to make the ultimatum results approach 

in the intermediate term the perfect equilibrium prediction that player I 

will demand 9.16 

For the best shot game the situation for player I is exactly analogous 

to the other two games, but if player 2 plays response rule xyz and player 

I has chosen q~, the adjacent response rules are those which agree with xyz 

on those components different from q~. For example if player 1 chooses 

q l = 2 and player 2 chooses response rule 222, then (from Table I) each 

16 If we had chosen instead the option of  allocating the extra (el2)x to strategy 8 in this 

case,  it would have produced a slight downward bias, and it might have appeared that this 

was the cause of  the failure to converge to 9. 
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player receives a payoff of 1.95-1.64 = 0.31, and player 2's propensity 

to play 222 is increased by (1 - e)(0.31) while his propensities to play 242 

and 202 are each increased by (e/2)(0.31). 

In Section VI we will report full simulations of the experimental 

environment, starting from observed initial conditions. First, however, 

we demonstrate differences in the dynamics of these three games 

independently of the experimental observations, by considering random 

initial propensities (rather than initial propensities estimated from the 

experimental data). 

V. DYNAMICS OF THE THREE GAMES 

WITH RANDOM INITIAL CONDITIONS 

Here we report the results of simulations of each of the three games, 

starting from initial conditions drawn randomly, from a uniform distribu- 

tion. We will see that the intermediate term behavior of the cutoff and 

the two local experimentation models are very similar, but the three games 

are very different (although the learning curves quickly become flat in all 

three games). The market game simulations converge rapidly and consis- 

tently to the perfect equilibrium. In the best shot game simulations, (except 

in the rare case that player 1 starts out with an initial probability of playing 

the perfect equilibrium that is near the cutoff level) player I quickly learns 

to provide the perfect equilibrium quantity, q l = 0, with high probability, 

while player 2's behavior moves more slowly in the direction of perfect 

equilibrium. In the ultimatum game simulations, the predicted behavior 

using the cutoff model converges both to imperfect equilibria and to non- 

equilibria, typically quite far from the perfect equilibrium, and even the 

simulations using the local experimentation model with forgetting do not 

begin to approach perfect equilibrium until the very long term (i.e., until 

the predicted behavior has lingered for a long time far from the perfect 

equilibrium). 

We begin with the two-player games, i.e., the best-shot and ultimatum 

games. Each simulation reported in this section is the result of a two 

player interaction, repeated for 1000 rounds (and reported for t = 1 to 

t = 300, and for t = 1,000), starting from initial propensities chosen 

randomly from a uniform distribution over each player's pure strategies. ~7 

For the ultimatum game we also report results for t = 10,000, 100,000, 

and 1,000,000 rounds (which will begin to allow us to distinguish the 

t7 For each player, a "pre-propensity" for each of his pure strategies is drawn from a 
uniform distribution of [0,1], and then these are normalized so that S(I), the strength of the 
initial propensities, equals 10. 
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different long term behavior of the cutoff and experimentation models, 

particularly when the forgetting parameter is positive). 

Figure la shows the results of five simulations of the best shot game 

with the cutoff model (with/x = 0.01). The figure is read vertically, i.e., 

the results of simulation A are read from the first column, simulation B 

from the second, etc. Each column contains three graphs, the lowest 

corresponding to the choice by player 1 of q m = 0, the middle to q n = 2, 
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b 

and the top to q~ = 4. The lines made of  dark dots show how the probability 

that player 1 will choose each of  these strategies evolved over time. (Note 

that in every round these three probabilities must sum to 1, i.e., P(q~ = 

O) + P(q~ = 2) + P(qj = 4) = 1.) In simulation A player l's initial 

propensity to play q~ = 0 is so close to the cutoff that it is extinguished. 

However  in each of  the other four simulations, the probability that player 

1 chooses q~ = 0 (the perfect equilibrium prediction) quickly approached 

1. (This is representative: See Table II.) 

Player 2's predicted behavior is a little harder to graph, since player 2 
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C 

has 27 pure strategies. The probability that player 2 will respond to a 

given choice of q n with a choice of q2 = 0, 2, or 4 is shown by the lines 

composed of the corresponding numbers in the graph corresponding to 

each value of ql .  (So, for example, the line graphing the probability that 

player 2 will choose q2 = 4 in response to q] = 0 is the sum over all nine 

of player 2's response rules which produce this result.) In all but simulation 

D, the probability that player 2 will choose q2 = 0 in response to q] = 0 

quickly becomes small. Player 2 does not learn as fast as player I. There 

are a number of reasons for this: (i) player 2 has many more strategies 
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TABLE II 

BEST SHOT GAME WITH RANDOM INITIAL PROPENSITIES 

183 

Model 

t /.~ = 0.01 ~ = 0.05 e = 0.05, ~o = 0.001 

Mean 300 0.74 0.8 i 0.82 

1000 0.83 0.87 0.88 

Median 300 0.93 0.91 0.91 

1000 0.99 0.95 0.95 

Note. Descriptive statistics for 100 simulations at t = 300 and t = 1,000; mean and me- 

dian values of P (player 1 chooses ql = 0). 

than player 1; (ii) since player 1 quickly learns to offer qt = 0 with high 

probability, player 2 has multiple strategies (namely those with a given 

response to ql =. 0) which have almost the same expected payoff, so 

learning among these is slow; and (iii) since player 2's payoffs are small 

when q~ = 0, learning is slow even at distinguishing the two positive 

responses to q~ = 0. 

Figure lb shows the same information for five simulations of the best 

shot game using the local experimentation model (with e = 0.05 and/z = 

~o = 0). These simulations have the same initial conditions as those reported 

in Figure la. Note that the positive experimentation parameter makes an 

important difference in simulation A, where it saves the strategy ql = 0 

from extinction. ~8 The. qualitative features of the other simulations go in 

the same direction as when e was zero. Figure lc shows the similar results 

for the local experimentation model with forgetting (e = 0.05, tz = 0, 

~o = 0.001). 

Table II shows that in all three models the median probability that 

player 1 will choose the perfect equilibrium quantity q~ = 0 is over 90% 

by round 300. 

Figure 2a shows the results of ten simulations of the ultimatum game, 

using the cutoff model. As this figure contains a lot of information, we will 

walk through one of the simulations in detail in just a moment. The figure 

shows results for the first 300 rounds, and then for round 100,000. Again, 

the results are read vertically, e.g., simulation A is represented by the first 

column. The dark line in rows 1 to 9 graphs the probability that player 1 will 

make the corresponding demand, the dotted line graphs the probability that 

18 Strategy qt = 0 is also saved from extinction when we run this simulation with both e 

and/z positive, so it is the presence of  the positive rate of experimentation, not the absence 

of the cutoff, which accounts for the difference in the intermediate term. 
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player 2 will reject that demand. 19 The top row graphs the mean demand. 

In each column the modal demand, which may change from round to round, 

n9 Since the round 1 propensities are chosen from a uniform distribution over strategies, 

there is an a priori probability (before the propensities are chosen) that player 1 will make 

each demand from 1 to 9 with probability I/9. And since player 2's strategies are choicesof  

maximally acceptable demands,  there is an a priori probability of  0 that a demand of  I will 

be rejected, of  1/9 that a demand of  2 will be rejected, on up to a probability of  8/9 that a 

demand of  9 will be rejected. Of course in any given simulation, the ex post probabilities, 

after the initial propensities are chosen,  may be different, and so the distribution of  demands 

and rejections in round 1 may be different. 
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is highlighted by a broader line. The demands which remain with positive 

probability at round 100,000 are shown by asterisks, and the rejection proba- 

bilities which remain positive at round 100,000 are shown by circles. 

To make things clear, look at simulation A, represented by the first 

column of Figure 2a. Consider first the demands of player I. In the very 

first rounds, the modal demand of player 1 is 5, represented by a single 

broad dot in row 5. Almost immediately, the modal demand drops to 4, 

however, represented by the broad line in row 4. In the meantime, the 

probability that player 1 demands 5 declines quickly to almost zero, while 



L E A R N I N G  IN G A M E S :  D A T A  A N D  M O D E L S  187 

DEMAND 
Mean 

7.5  • o v ~ = m B  o o o  .~' 

5 . ~ e  

2.5- 

PROB 

P(9)- ~ , = ~ A ~ , *  • . " ."  

P(8)- ~ • .2'~i~ ' 

P ( 7 ) -  

P(6)" ~ o •  

~/~muk• °'9._ _ k P(5) 

P(4) 

P(3) 

P(2)- 

P(1) 

t _ 

0 

pm=,.oo 
t3 "u 

d 

u 
0 

4" " "  

. - ~ "A - - ~ .A  

• 0 ' A •  • 
" .' ', " . / "A. , 

& O , L .  ".  o ." o ~ . . ~  n .  0 
I I  

i ~ m ~ m B 6  & 

.o. 

~o.,L,_ ~o._ L --2, ,0 . . . . . . . . . .  ~_ 

- -  L . . . . . . . .  ~..:.±= i I L ~ Q ¢ _ _  

- - : . t :  ~ m - " Q ° - -  ~ 1 2 9 ; :  ~ e . - _  

L_ ~ -  - -  

L 

A B C D E 

SIMULATION 

--- ~- : Prob of demand at T = 0 - 1 0 0  

-" :- -" Prob of rejection ut T - 0 - 1 0 0  

• • • Modal  demand 

e - - e - - e  Mean demand 

o .  o • o Demand at T - 1,000, 10,000, 100,000 and  1,000,000 

-b .  <b • ~ prob of rejection st T = %000, 10,000, 100,000 a n d  1,000,000 

FIG, 2--Continued. 

the probability that he demands 6 starts to rise, as does the probability 

that he demands 7. The probability that player 1 demands anything other 

than 4, 5, 6, or 7 starts low in this simulation, and drops quickly to zero. 

As we near the end of the 300 trials, the modal demand shifts from 4 to 

6, represented by the broad line in row 6. By the end of the 300 trials, 

the probability that player 1 will demand 4 is still not much below 0.5, 

but it has dropped almost to zero by the end of 100,000 trials, as indicated 

by the asterisk in row 4. Similarly, the other demands which still have a 

positive probability at round I00,000 are 6 and 7, as indicated by the 
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asterisks in those rows, and these probabilities have both reached approxi- 

mately 0.5. The lack of an asterisk in rows 8 and 9 (and in rows 1, 2, 3, 

and 5) means that the probability that player l will make those demands 

has dropped to zero by round 100,000, i.e., these demands have been 

completely extinguished. 

Continuing to look at simulation A, note that the probability that player 

2 rejects a demand of 8 quickly rises to near 1, as represented by the 

dotted line in row 8, and at round 100,000 it is very near l, as represented 

by the open circle. The probability that player 2 will reject a demand of 

7 however, has dropped to zero in the very first rounds. This means that, 

with very high probability, player 2's maximal acceptable demand is 7, but 

by round 100,000 there is still a small chance that his maximal acceptable 

demand is 8. In simulation A all of player 2's other strategies have quickly 

dropped away, but in some of the other simulations the progress of the 

dotted lines representing player 2's probability of rejecting each demand 

can be more clearly followed. 

Finally, the overall progress of simulation A is reflected in the very top 

row, which graphs the mean demand of player 1. Notice that this starts 

around 5, and after an almost imperceptible dip climbs very slowly 

throughout the first 300 rounds. (So even though the modal demand drops 

to 4 for many initial rounds, the increasing probability of demands of 5 

or 6 keep the mean demand moving up.) By round 100,000, player l 's 
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mean demand has moved to between 6 and 7. (Note that it cannot  go 

above 7 even as t goes to infinity, since the demands of 8 and 9 have been 

extinguished, and in the cutoff  model extinction is forever  . . . .  ) 

Looking now at all 10 simulations, observe that even after 100,000 

rounds, the modal demands are mostly between 4 and 6, far from the 

perfect equilibrium demand of  9. In fact, although the process has not 

converged in every  case by round 100,000, in all ten of these simulations 

the probability that a demand of  9 or 8 is ever  made has been driven to 

zero,  so that convergence must be to a demand no greater than 7. Some 

simulations do converge to demands of 9, but only rarely: descriptive 

statistics are given for the cutoff  model in Table III. Of the 35 out of 100 

simulations that had converged by round 100,000 to a single demand with 

probability one, only 3 converged to a demand of  9 (while 9 converged 

to a demand of  6). The picture is similar when we look at the modal 

demands at t = 100,000 for all 100 simulations in the sample (i.e., including 

those which have not yet converged to a single demand): only 5 have a 

modal demand of  9, compared,  e.g., to 23 with a modal demand of 6. 

Of the 10 simulations shown in Figure 2a, four have actually converged 

by round I00,000, in the sense that a single demand is made with certainty. 

These are worth closer examination. 

Simulation C converged,  after 2090 rounds, to an equilibrium in which 

player 1 demands 7 with certainty, and player 2 accepts this demand but 

rejects higher demands with positive probability. 2° Simulation D con- 

verged, after 21,723 rounds to an equilibrium at which player 1 demands 

6 with certainty and player 2 accepts,  but rejects higher demands with 

high probability (i.e., player 2 sets his maximal acceptable demand at 6 

with high probability). Simulation E converged,  after 26,865 rounds,  to 

an outcome that is n o t  a Nash equilibrium: player 1 is demanding 7, but 

player 2 would not reject a demand of  8. Simulation I, after 3988 rounds, 

also converges to an outcome that is not a Nash equilibrium: player 1 is 

demanding 6 with certainty,  but player 2 accepts demands as large as 8 

with high probability (although he rejects demands of  9 with certainty), 

so player 1 could do bet ter  by demanding 8. '-I 

20 At round 100,000 player 2's probability for setting his maximal acceptable demand to 
7 (and hence of rejecting offers of 8 or 9) had declined to 0.11306. (Otherwise his maximal 
acceptable demand is 9, i.e., he accepts all demands.) Because player 1 converged to 
demanding 7 with certainty, both of these strategies give player 2 a payoff of 3, so there is 
no more learning going on, only random drift between m2 = 7 and m2 = 9. Of course, since 
the cutoff probability/z is positive, either of these may go to zero. By round I00,000 the 
state of the system has drifted a little out of equilibrium: if player 1 were to demand 8, his 
expected payoff would be 7.096, i.e., a little more than 7. 

2t However, note that both of these non-Nash equilibrium outcomes are consistent with 
various notions of "self-confirming" equilibria such as those studied by Fudenberg and 
Levine (1993). 



190 ROTH AND EREV 

TABLE III 

ULTIMATUM GAME WITH RANDOM INITIAL PROPENSITIES 

Cutoff model 

/~ = 0.01, e = 0  

Experimentation with 

forgetting model 

/z = 0, e = 0.05, ~ = 0.001 

No. of sim with No. No. of sim with 

Demand the mode converged Mean P the mode Mean P 

i 0 0 0.00 0 0.00 

2 2 1 0.02 0 0.00 

3 4 2 0.05 0 0.00 

4 12 3 0.12 0 0.00 

5 18 7 0.20 0 0.00 

6 23 9 0.22 0 0.03 

7 19 8 0.19 8 0.19 

8 17 2 0.14 80 0.57 

9 5 3 0.05 12 0.21 

Sum 100 35 1.00 100 1.00 

Local experimentation models (without forgetting) 

/z = 0, e = 0.1,~o = 0 

No. of sim with No. of sim with 

Demand the mode Mean P the mode Mean P 

p. = 0, e = 0.05, ~p = 0 

I 0 0.00 0 0.00 

2 1 0.01 0 0.01 

3 3 0.05 3 0.05 

4 8 0.11 I1 0.11 

5 22 0.19 19 0.18 

6 23 0.23 25 0.23 

7 22 0.20 27 0.25 

8 15 0.14 11 0.13 

9 6 0.06 4 0.05 

Sum 100 1.00 100 1.00 

Note. Descriptive statistics for 100 simulations at t = 100,000. 

To adequately compare the three models for the ultimatum game, we 

need to carry the simulations out to t = 1,000,000. Figures 2b-2d graph 

the results for five such simulations, for the cutoff, local experimentation, 

and experimentation with forgetting models, respectively. Each of the 

five simulations A through E in these three figures are begun with the 

same initial propensities (i.e. the randomly generated initial propensities 

are the same in each of the three simulations labeled A, etc.), so the 

results of each simulation can be compared for each of the three models. 

This comparison is easiest to make by looking at the top row of each 
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figure, which graphs the mean demand. For convenience, the means for 

all three models are presented together in Fig. 2e, for t = 0-100 and for 

t = 1000, 10,000, 100,000, and 1,000,000. 

For our present purposes, the notable feature of these three models is 

that they are not very different until t = 10,000, even though their long 

term behavior is quite different, in that the experimentation model with 

forgetting converges to the perfect equilibrium demand in all five simula- 

tions, while the other two models do not. 

The easiest way to see the differences between the models is to focus 

on simulation D, in which the cutoff model converged to a unique demand 

of 6, shortly before t = 1000 (at t -- 801). So in Figures 2b and 2e, 

the cutoff model is flat for simulation D from t = I000 on. In the local 

experimentation model without forgetting (Fig. 2c) the probability that 

player 1 will demand 6 starts to decline even before t = 100, although it 

remains the modal offer at t = 1,000,000. But in the experimentation 

model with forgetting (Fig. 2d) the probability that the demand will be 6 

has dropped to virtually zero by t = 100,000 (at which time the modal 

demand is 8), and by t = 1,000,000 the modal demand is the perfect 

equilibrium demand of 9. 22 

Table III presents some statistics for 100 simulations out to t = 100,000, 

for various choices of parameters. It serves to emphasize just how long 

the long term can be. Note that by t = 100,000 the modal probability is 

only for a demand of 8 in the forgetting model, although the t = !,000,000 

simulations (Fig. 2e) reveal that with high probability this will eventually 

move to a demand of 9. 

So a conventional treatment of these models, which focuses on their 

asymptotic behavior, would treat the cutoff model and the experimentation 

with forgetting model as fundamentally different. But their intermediate 

term behavior is the same, and we will see in what follows that this is 

what is descriptive of the experimental results. 

After all this somewhat complex behavior it is a relief to look at Figs. 

3a-3c which each show five market simulations. (Once again, these figures 

are read vertically, each column corresponding to one simulation.) Each 

simulation has ten buyers, each of whose initial propensities are randomly 

drawn (independently) from a uniform distribution as described above, 

with the same initial propensities being used for all three models. The 

public announcement of the market price is modeled by having each player 

update his propensity to play the winning bid after each round. 23 Figures 

22 These simulations have e = 0.05. When e = 0.1 the mode for the model with forgetting 

appears (from a small sample) to be more often at 8 than 9, even at t = 1,000,000. 

23 The reinforcement x (equal to the profit from the winning bid) is distributed among the 

ten players; e.g.,  if the winning bid is 8, the tendency to play 8 is increased by 2/10 for all 

players. When the propensities are updated by x (instead of x~ 10), convergence to the perfect 

equilibrium price is correspondingly faster. 
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3a-3c graph the average probability over the I0 buyers that an individual 

buyer will state each of his feasible bids. (So this is a measure of individual 

behavior, not merely of market behavior as we would get by graphing the 

probability for the maximum bid.) As the figures show, this probability 

quickly goes to 1 for the highest feasible bid, and zero for all the other 

bids, using either the cutoff or local experimentation models. 

These simulations show that the three games have different properties, 

which shows up early in the simulations, even using dynamic models with 

different long term behavior. What these simulations do not do is model 
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the experimental environments discussed in Section II, because these 

simulations do not model the manner in which a population of experimental 

subjects gained experience with changing partners, nor do these simula- 

tions model the initial conditions observed in the experiments. Since these 

simulations do show that the ultimatum game in particular is sensitive to 

the initial conditions, this is likely to be important. We address these 

issues next. 
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VI. SIMULATION OF THE EXPERIMENTS 

Here we describe simulations which model the experimental environ- 

ments in which the data discussed in Section II were collected. We first 

describe how the initial propensities to play each pure strategy of the 

simplified games described in Section IV were estimated from the data. 

Separate estimations are carried out for each cell of the experiments, i.e., 

for the ultimatum and market games in each of four countries, and for 
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the best shot game in each of two information conditions. We begin with 

a description of how the initial conditions were estimated for the ultimatum 

game, which the results of the previous section suggest is the game which 

will be most sensitive to the estimates of initial propensities. 

The Ultimatum Game. Each of the observed player 1 demands in the 

first two rounds was first transformed into the closest demand in the 

simplified game (an integer from 1 to 9). When two values were equally 

close the lower one was chosen (i.e., 0.5 was rounded downward). The 

initial propensity (IP) to follow each strategy was computed as the relative 

frequency of the transformed demands, which are tabulated in the appen- 

dix. For example, if 6 of the 60 demands were in the range [5.5, 6.5) the 

IP of 6 was set to be 6/60 = .I. 

To assess the initial propensities of player 2 the proportion of rejections 

of each of the nine demands was first computed. Under the assumption 

that player 2's strategies are of the form "accept a demand of no more 

than m" these proportions should not decrease as the demands increase. 

As can be seen jn the appendix, violations of this assumption were ob- 

served in only 6 of the 32 cases (8 (increase) x 4 (countries)). In order 

to compute the IP, it was assumed that these violations reflect random 

error and monotonicity was restored by "pooling" categories. For exam- 

ple, if4 of 6 demands of "8"  were rejected and only 2 of 4 demands of "9"  

were rejected, the rejection rates in those two categories were replaced by 

a pooled estimate of 0.6 -- (4 + 2)/(6 + 4). The six monotonicity corrections 

are also presented in the appendix. 

Once monotonicity was restored the calculation of the initial propensit- 

ies is straightforward. If the corrected rejection rate of demand i is R(i), 

the estimated tendency to follow a strategy that accepts i, but rejects 

higher demands is IP (m = i) = R(i + 1) - R(i). 

The Market Game. Buyers' bids were treated precisely as player 1 

demands in the ultimatum game. Each of the observed prices in the first 

two rounds was transformed into the closest price in the simplified game 

(with upward rounding--see the appendix). IPs were assessed by the 

relative frequencies. As noted earlier, no rejections by sellers were ob- 

served. 

The Best Shot Game. For the best shot game we had the smallest 

number of observations, but the largest number of possible strategies. To 

reduce the number of strategies for which there are no observations, 

observations that fell between two strategies were divided between the 

two. Player l 's observed choices (ofq~ = 0, I, 2, 3, or 4) in the first two 

rounds of the experiment were transformed into the closest demand in 

the simplified game (q i = 0, 2, or 4), by counting intermediate observations 

as half an observation each for the simplified strategies (i.e., an observation 
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of q~ = 1 is counted as half an observation each of ql = 0 and q~ = 2) 

and the IPs were estimated by the relative frequencies. For  player 2, the 

probabilities of each of the possible responses (q2 = 0, 2, or 4) were first 

calculated from the simplified player I behavior in the first two rounds of 

the experiment. Then, the probability of each of the 27 response rule 

triples (response to q t = 0 with x, to q~ = 2 with y, and to q~ = 4 with 

z) was estimated to be P(xyz)  = P(x[O)P(y[2)P(z[4) (see the Appendix). 

The simulations were modeled on the experiments, so that in each best 

shot simulation there are ten player I 's  and ten player 2's. In each round 

of  each simulation, ten games are played, each one pairing one of  the 

player l 's  against one of the player 2's, and from round to round the 

pairings change, so that after ten rounds each player 1 has played each 

player 2. In the full information simulations, each player 1 starts with the 

(same) initial propensities estimated from the data for players 1, and 

each player 2 starts with the initial propensities estimated for players 2. 

Similarly in the partial information simulations, the players 1 and 2 each 

start with the propensities estimated from that data set. 

Figure 4 shows representative results for the best shot game. The first 

two columns summarize the experimental data observed in Prasnikar and 

Roth (1992), while the next two columns graphs the average of one hundred 

simulations with parameters/x = 0, e = 0.05, and ~o = 0.001, for times 

t = 0, 10, and I00 (i.e., for substantially more than the 10 rounds actually 

observed in the experiments). Both the experimental data and the simula- 

tion results are presented in terms of the simplified game, so that, in 

particular, the simulations in each information condition are initialized 

from the corresponding data as shown in the figure. 

Table IV displays the results of 100 simulations for each of the three 

models, for both the full and partial information conditions. As the table 

shows, the three models are virtually identical at both t = 10 and t = 100. 

(The simulations with e = 0.1 are very similar.) 

Looking first at the Full Information simulations, note that even after 

only ten rounds, the probability that player 1 will choose the perfect 

equilibrium quantity qj = 0 is just  about 80%, while the probability that 

player 2 will respond to q~ = 0 with the perfect equilibrium response of 

q2 = 4 is slightly over 50%. Thus the simulations are strikingly close to 

the experimental data in real time, i.e., in I0 periods. By t = 100 the 

simulations have moved still closer to perfect equilibrium, with player 2's 

response moving more slowly than player I 's ,  for the reasons discussed 

earlier. 

The Partial Information simulation results are also comparable to the 

experimental results in real time. At t = I0 the probability is over 50% 

that player 1 will play the perfect equilibrium, and not quite 20% that 

player 2 will make the perfect equilibrium response. By t = I00 player 1 
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has moved very much closer to perfect equilibrium, while player 2 is 
learning much more slowly. 

Comparing the Full and Partial Information conditions, we see that in 
the simulations, just as in the experimental data, the full information 
condition moves towards perfect equilibrium more quickly than the partial 
information condition. This makes plausible the hypothesis that, in the 
experiments as in the simulations, the effect of letting the players know 
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TABLE IV 

BEST SHOT GAME WITH INITIAL PROPENSITIES ESTIMATED FROM THE DATA 

Model 

t ~ = 0.01 e = 0.05 e = 0.05, ~ = 0.001 

Full information 

Player I: Mean and median values of P(player I chooses q~ = 0) 

Mean 10 

100 

I000 

Median 10 

100 

1000 

Player 2 :Mean  and median values 

Mean 10 

100 

1000 

Median 10 

100 

1000 

Player 1: Mean and median values 

Mean 10 

100 

1000 

Median 10 

100 

1000 

Player 2: Mean and median values 

Mean 10 

100 

I000 

Median 10 

100 

1000 

0.80 0.78 0.78 

0.96 0.93 0.93 

1.00 0.96 0.97 

0.81 0.79 0.79 

0.97 0.93 0.93 

1.00 0.96 0.97 

of P(player 2 chooses q2 = 4 ] ql = 0) 

0.56 0.55 0.55 

0.67 0.63 0.64 

0.78 0.74 0.77 

0.56 0.55 0.56 

0.67 0.69 0.65 

0.78 0.74 0.78 

Partial information 

of P(player 1 chooses ql = 0) 

0.53 0.51 0.52 

0.88 0.85 0.86 

0.99 0.95 0.96 

0.53 0.51 0.53 

0.88 0.85 0.87 

0.99 0.96 0.96 

of P(player 2 chooses q2 = 4 ] q l  = 0) 

0.16 0.17 0.18 

0.19 0.20 0.21 

0.29 0.30 0.36 

0.15 0.17 0.17 

0.19 0.19 0.20 

0.28 0.31 0.36 

Note. Descriptive statistics for 100 simulations at t = 10, t = 100, and t = 1000. 

each others '  payoffs is felt primarily in the first period, after which similar 

adaptive behavior  is observed.  

Figure 5 shows results for  the ultimatum game. The first four columns 

summarize the experimental  data observed in Roth et al. (1991), while 

the next four columns graph the average of  one hundred simulations with 

parameters /x  = 0, e = 0.05, and ~o -- 0.001, for times t = 0, 10, and 100. 

In the ultimatum game simulations there are also ten player l ' s  and ten 
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F I G .  5. Ultimatum: Experimental data and simulations (initialized from the data). T = 1 

and 2, 9 a n d  10 (in the experiment); T = 0, 10, 100 (in the simulation). S ( I )  = 10, e = 0 . 0 5 ,  

/x = 0,  ~p = 0 . 0 0 1 .  

player 2's. In each round, 10 games are played, each one pairing one of 

the player l's against one of the player 2's, and from round to round the 

pairings change, so that after 10 rounds each player 1 has played each 

player 2. In each of the country simulations, each player 1 starts with the 

(same) initial propensities estimated from the data for players 1, and each 

player 2 starts with the initial propensities estimated for players 2 for that 

country. 
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T A B L E  V 

U L T I M A T U M  GAME WITH INITIAL PROPENSITIES ESTIMATED FROM THE DATA 

Mean demand 

Mean probability Probability of 

simulation with 

t = 10 t = 100 t = 1000 mode above 5 

Med. 

move t = 10 100 1000 P(5) P(6) P(5) P(6) P(5) P(6) t = 10 100 1000 

Cutoff model: S(I) = 10, e = 0,/,t = 0.01, qJ = 0 

Israel 3.5 5.47 5.63 5.83 0.37 0.28 0.39 0.36 0.39 0.40 0.47 0.63 0.83 

Japan >1000 5.13 5.17 5.29 0.34 0.22 0.43 0.26 0.46 0.27 0.13 0.17 0.28 

U.S.A. >1000 5.09 5.25 5.45 0.50 0.28 0.53 0.31 0.53 0.33 0.09 0.25 0.45 

Slovenia >1000 5.00 5.01 5.12 0.60 0.20 0.61 0.24 0.62 0.25 0.00 0.01 0.12 

Local experimentation model: S(I) = 10, e = 0.05, p. = 0, qJ = 0 

Israel 4.0 5.49 5.71 5.92 0.37 0.35 0.34 0.41 0.29 0.46 0.49 0.71 0.91 

Japan >1000 5.16 5.20 5.42 0.40 0.26 0.41 0.31 0.39 0.36 0.16 0.20 0.42 

U.S.A. 510.0 5.10 5.32 5.55 0.49 0.31 0.45 0.35 0.39 0.40 0.10 0.32 0.55 

Slovenia >1000 5.01 5.05 5.25 0.58 0.24 0.53 0.30 0.47 0.37 0.01 0.05 0.25 

Experimentation model with forgetting: S(I) = 10, e = 0.05, ~ = 0, ~b = 0.001 

Israel 4.0 5.49 5.71 5.95 0.37 0.35 0.34 0.41 0.28 0.46 0.49 0.71 0.94 

Japan 626.5 5.16 5.21 5.53 0.40 0.26 0.41 0.31 0.38 0.37 0.16 0.21 0.52 

U.S.A. 428.5 5.10 5.32 5.64 0.49 0.31 0.45 0.36 0.38 0.41 0.10 0.32 0.64 

Slovenia >1000 5.01 5.05 5.31 0.58 0.24 0.53 0.30 0.46 0.39 0.01 0.05 0.31 

Note. Descriptive statistics for 100 simulations at t = 10, t = 100, and t = 1000. 

Table V presents mean results of I00 simulations of each of the three 

models, starting from the initial propensities estimated for each country, 

at times t = 10, t = I00, and t = 1000. Recall that at round 1 the modal 

demand in every country was 5, and in the experimental data it had moved 

by round 10 to a modal demand of 6 in Israel, to modal demands of 5.5 

and 6 in Japan, but remained at a modal demand of 5 in the U.S. and 

Slovenia. The first column of numbers (labeled MedMove) reports the 

median round in which the modal demand moved from 5 to 6 in the 

simulations. In each of the three models the modal demand in the Israeli 

simulations moved from 5 to 6 in real time (on average by round 4), while 

the Slovenian simulations remained at a mode of 5 through time t = 1000. 

The modal demands in the Japanese and US simulations sometimes moved 

from 5 to 6 in the intermediate term, but were sensitive to the path of 

play in each simulation. Each of the other descriptive measures preserves 

the relationship that demands decline as we move from Israel to Slovenia, 

with Japan and the U.S. in between. For example, at t = 10 the mean 

demands in the cutoff model simulations decline from 5.47 for Israel to 

5.00 for Slovenia, while the probability that a player 1 will demand 6 

declines from 0.28 to 0.20, and the probability of a simulation in which 

the modal demand is above 5 declines from 0.47 to 0.00. Notice that the 

forgetting model, which we have seen moves much closer to the perfect 

equilibrium than the local experimentation model in the long term, never- 
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1 and 2, 9 and 10 (in the experiment); T = 0, 10, 100 (in the simulation). S(I) = 10, e = 

0.05, p. = 0, ~0 = 0.001. 

theless yields very similar predictions in the intermediate term. And it 

is the intermediate term results (for each of the models) that track the 
experimental data well. 

Note also that the results of the ultimatum game simulations initiated 

with data from the four countries are quite different in the intermediate 

term from those initiated with random propensities. Thus the observed 

initial behaviors were not random, but reflected something of the players' 
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T A B L E  VI 

MARKET GAME WITH INITIAL PROPENSITIES ESTIMATED FROM THE DATA 

t = 10 t = 100 

P(8) P(9) P(9.75) P(SPE) P(9.75) P(SPE) 

Cutoff model: e = 0, p. = 0.01, $ = 0 

Israel 0.18 0.30 

Japan 0.22 0.29 

U.S.A.  0.20 0.24 

Slovenia 0.28 0.24 

Local experimentation model: e = 0.05, 

Israel 0.18 0.31 

Japan 0.22 0.29 

U.S .A.  0.20 0.24 

SIovenia 0.28 0.25 

Local experimentation model with forgetting: 

Israel 0.18 0.31 0.38 

Japan 0.22 0.29 0.26 

U.S.A.  0.20 0.24 0.08 

Slovenia 0.28 0.25 0.18 

1.00 0.79 1.00 

0.14 0.75 1.00 

0.00 0.69 1.00 

0.00 0.71 1.00 

0.38 

0.26 

0.09 

0.19 

t~ = 0,~0 = 0  

0.38 1.00 0.76 1.00 

0.26 0.07 0.72 1.00 

0.08 0.00 0.65 1.00 

0.18 0.00 0.69 1.00 

e = 0.05, p, = 0, ~ = 0.001 

1.00 0.77 1.00 

0.23 0.73 1.00 

0.00 0.67 1.00 

0.00 0.70 1.00 

Note. Descriptive statistics for 100 simulations at t = 10 and t = 100. 

probability that an individual buyer  bids x. P(SPE) equals  the probability 

price is 9.75. 

P(x) equals  the 

that the modal 

perceptions of the game--perceptions that were different in the different 

countries. 

Figure 6 shows results for the market game. The first four columns 

summarize the experimental data observed in Roth et al. (1991), while 

the next four columns graphs the average of one hundred simulations with 

parameters/z = 0, e = 0.05, and ~p = 0.001, for times t = 0, 10, and 100. 

In the market simulations, as in the experiments, two markets were run 

simultaneously, with changing sets of buyers. There were ten buyers in 

each market simulation, and in each country condition all buyers had the 

same initial propensities, as estimated from the data. z4 Consistent with 

the results of the random simulations, the different initial propensities 

have no lasting effect. Table VI gives statistics from 100 simulations, for 

each of the three models. In each country simulation, each bidder quickly 

24 To model the fact that in the experiment all subjects learned the winning bid in both 

of the markets, in the simulations there were two reinforcements (to the two winning bids) 

distr ibuted among the 20 players.  If, for example ,  the winning bids were 9 in market  A and 

9.75 in market B, the propensity to play 9 is increased by 1/20, and the propensity to play 

9.75 is increased by 0.25/20 for all players.  
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converges to bidding the perfect equilibrium price with high probability. 
And the models track the data reasonably well in real time, i.e., by t = 
10, while by t = 100 the simulations have converged almost completely 
to perfect equilibrium behavior. 

VII. CONCLUSIONS 

The substantive results of this paper are easy enough to summarize. 
Independently of the experimental data, the simulation results starting 

from random initial propensities reveal a structural difference between 
the ultimatum game and the other two games. And in comparison with 
the experimental data, the intermediate term predictions of both the cutoff 
model and the local experimentation models track the major experimental 
observations well. Despite the different long term behavior of these dy- 
namic models, their intermediate term predictions agree with the experi- 

mental data in that: 

1. In the maFket and best shot games, both predicted and observed 
behavior quickly approach perfect equilibrium play, but in the ultimatum 
game neither predicted nor observed behavior approaches perfect equi- 

librium. 
2. Both predicted and observed behavior approach perfect equilib- 

rium play more quickly in the best shot game with full information (in 
which the experimental subjects knew one another's payoffs) than in the 
best shot game with partial information (in which the experimental subjects 

knew only their own payoffs). 
3. Both predicted and observed behavior in the ultimatum games (but 

not in the market or best shot games) are different in the different countries 
sampled, and the predicted intermediate term differences track the ob- 
served differences (within the limitations of the simplified games). 

These results indicate that even very simple adaptive models may be quite 
useful both for distinguishing which games are likely to be sensitive to 
initial conditions and for predicting how initial conditions matter. 25 

,2 And while it seems clear that much of the progress to be made in understanding learning 

in games will come on the interface of economics and psychology, the fact that there are 

some games which exhibit both predicted and observed behavior that seems not to be 

sensitive either to initial conditions or subject pools suggests that there is also substantial 

progress to be made by understanding which classes of games fall into this category. That 

is, there appear to be classes of games for which it will turn out that the observed learning 

behavior is primarily a property of the game, rather than of the particular learning processes 

used by the players. (This is the traditional economists' viewpoint, but similar views have 

begun to emerge among cognitive psychologists. See in particular Anderson (1990), who 

argues that in many cases the best available predictions about mental processes come from 

an understanding of the structure of the environment.) 
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Recall that the adaptive models studied here do not model in any way 

what players know about the game, or believe about the future behavior 

of other players. That such simple dynamic models, when initiated with 

first period observed behavior, nevertheless do a good job of predicting 

how observed behavior will evolve, suggests that a substantial part of 

how players' knowledge and beliefs influence the game may be reflected 

already in first round data. For example, the data from the two information 

conditions of the best shot game suggest that players' behavior in that 

game approaches perfect equilibrium faster when they know each others' 

payoffs. But the simulation results suggest that the effect of this knowledge 

may be primarily to alter the first period behavior, and that the ways in 

which players adapt in subsequent periods to their experience may be 

similar in both information conditions. The same can be said about the 

between-country differences in the ultimatum game data. It could be that 

these differences result from different perceptions (of the game, and of 

their countrymen) held by players in different countries, or it could be 

that they result from different patterns of adaptation. That the same dy- 

namic model can track the between-country differences when initiated 

from the first round data lends support to the former hypothesis. 

Of course the comments of the previous paragraph are still somewhat 

speculative, based as they are on a relatively small data set arising from 

only three kinds of games. Preliminary indications are that the correspon- 

dence between predicted and observed behavior may survive the transition 

to larger data sets and different kinds of games. We hope to report on 

both some successes and failures of this simple model in a future paper. 

To speculate a little on theoretical matters, there are reasons to think 

that these results will also be robust to the choice of dynamics, so that 

very different dynamic models might produce similar results. The family 

of models we have considered are driven in the early rounds by the payoff 

differences among strategies, based on the initial propensities to play each 

strategy. For example, the reason that behavior in the ultimatum game 

remains distant from the perfect equilibrium is that the propensity to make 

very high demands falls more quickly than the propensity to accept very 

high demands rises. This is because the difference between accepting and 

rejecting a very high demand is small and thus has only modest impact 

on the propensities of players 2, while the difference for players 1 between 

having a very high demand rejected, and earning zero, or having a moder- 

ately high demand accepted, and consequently earning more than half the 

pie, is much larger, and more quickly increases the propensity to make 

only moderately high demands. Once players 1 seldom make very high 

demands, there is even less pressure on players 2 to learn not to reject 
them, and s o  o n .  26 

26 A similar conclusion about ultimatum games is reached by Gale et al. (1995), using a 

model of evolutionary dynamics. 
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Note also that there are good reasons to think that the actual learning 

rules (or even the strategies) used by the subjects in the experiments differ 

in important ways from our simple models, and that this too supports the 

conjectured robustness of the results. 27 That the simple simulated learning 

rules may be very different from those used by the experimental subjects, 

but both sets of rules produce similar intermediate term outcomes, sug- 

gests that very different learning rules will quickly approach perfect equi- 

librium in the best shot and market games, but not in the ultimatum game. 

Methodologically, an important difference between this paper and most 

of the recent theoretical literature on game dynamics is our concern with 

intermediate term results, rather than asymptotic convergence. Although 

we have not attempted to define the "intermediate term" any more pre- 

cisely than to say that it starts when the learning curve flattens out, this 

has not proved to be a problem in looking at the simulated behavior we 

report, precisely because the learning curves soon become very flat in- 

deed. For the dynamics considered here, the intermediate term starts in 

the tens of iterations, and, at least in the ultimatum game, does not give 

way to the sometimes very different long term predictions for thousands 

or even hundreds of thousands. Of course these numbers will be different 

for different dynamics. 28 To the extent that intermediate term behavior 

of dynamic models is important, it may be useful for theorists to pay more 

attention to the entire vector field generated by a dynamic, and not just 

to its limit points and basins of attraction. 29 

27 Particularly in repeated games, the set of strategies possibly available to the players 

may be enormous. The traditional posture of game theory has been to regard all possible 

strategies as available, but just  as players may not be hyperrational in other respects, their 

capacity to consider a vast number of strategies may also be limited. (One attempt to deal 

with this has been to represent the strategies available to a player in a repeated game as 

those which can be implemented by finite state automata of limited size. An early example 

of this approach can be found in Tsetlin, 1973. Before his untimely death in 1966, he 

developed interesting models of learning in repeated games, with players modeled as autom- 

ata.) Research in psychology has often identified particular strategies which may occur with 

high initial propensities. For example, in repeated experiments with T mazes, rats have an 

initial propensity to follow an alternation strategy (i.e., not to choose the same leg of the 

maze twice in succession); see, e.g., Dember and Fowler (1958). We anticipate that the 

accuracy of predictions of models like those considered in this paper may be improved by 

assessing the repeated game strategies the subjects employ. 

28 For our present purposes, the very slow convergence of the models without forgetting 

only serves to emphasize the difference between the ultimatum game and the other two 

games (in which all three models nevertheless converge quickly). For more extended study 

of games with very slow convergence properties it will likely be desirable to consider faster 

converging dynamics, e.g., by having a positive forgetting parameter, or some other way 

of keeping the strengths of the propensities from growing without bound. This has the effect 

of giving more weight to recent events, instead of weighting all payoffs equally whenever 

they occur, as in our models without forgetting. (The flat learning curves come about because 

after a while there are so many more past events than recent ones.) 

29 More generally, new tools may be required, since for stochastic learning rules under- 

standing the intermediate term means examining the transient phase of a stochastic process, 
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To bring together our conclusions about games and about models, recall 

once again that the three games considered here have similar equilibria: 

in the ultimatum and market games all prices can be supported by some 

Nash equilibrium, but only extreme outcomes, in which all the wealth 

accrues to one side, can be supported by a perfect equilibrium. Similarly, 

the perfect equilibrium of the best shot game yields extreme payoff differ- 

ences. The experimental results of Roth et al. (1991) and Prasnikar and 

Roth (1992) show that this similarity of equilibria does not produce similar- 

ity of behavior: only in two of the games did observed behavior approach 

the perfect equilibrium. To the extent that equilibrium is reached, if at 

all, through a dynamic adjustment process that begins out of equilibrium, 

the possibility of dissimilar behavior seems natural, since games with 

similar equilibria may be quite dis-similar out of equilibrium. The present 

paper further shows that the path of the dynamic process may also be 

insufficient to predict behavior if its velocity is not also taken into account. 

This is clearest in our model with experimentation and forgetting, whose 

predictions approach perfect equilibrium eventually (e.g., by t = 

1,000,000) for all three games, but whose rates of change become very 

low much earlier (e.g. by t = 100). It is the real (t = 10) or intermediate 

term (e.g. t = 100) predictions which correspond to the observed behavior, 

both when these predictions are close to the perfect equilibrium and when 

they are not (and both in the models whose intermediate term predictions 

are close to their long term predictions and those in which they are not). 

That being the case, the reasons for our concern with real time and 

intermediate term predictions (in contrast to asymptotic predictions) for 

both field and experimental data are worth restating. 

First, we believe that much of the economic phenomena we observe in 

the world is intermediate term in nature. Although we have concentrated 

here on demonstrating this for a body of experimental data, it is not only 

in experiments that long term behavior may be difficult to observe. For 

example, none of the annual labor markets and matching processes whose 

historical evolution is studied in Roth (1984, 1990, 1991), Mongell and 

Roth (1991), and Roth and Xing (1994) have gone for more than fifty 

years--i .e.  50 iterations--without a change of environment substantial 

enough to mean that the same game was no longer being played. After 

such a change the behavior of participants typically goes through a period 

of readjustments as they adapt both to the new environment and to the 

new strategies of other agents. 

Second, even when we identify economic phenomena with sufficient 

longevity and stationarity so that it is reasonable to believe they are 

A recent monograph on adaptive algorithms (Benveniste et al., 1990) devotes an extremely 

short section to the subject, which we quote in its entirety (Section 1.4.2, The Transient 

Phase, p. 30): "Alas! As will be seen, there is very little to say." 
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yielding long term behavior, there is reason to be cautious about the long 

term behavior of any models we create. This is because every model 

includes some elements of the situation being modeled while ignoring 

others. And when the learning curve becomes flat, there is room for 

unmodeled factors to become important--factors that may be present at 

every stage of the learning process, but are unimportant when the learning 

curve is steep. 

To extend the geological analogy used in the introduction, erosion is 

not the only force that acts on coastlines. If we can expect volcanic 

eruptions every millenium or two, then, if erosion is slow, this will change 

our predictions about whether all coastlines will be sandy beaches. And 

there are also gentle but steady forces such as sedimentation, that work 

in the opposite direction from erosion, so that when erosion is fast we 

may be able to neglect them, but when it is slow, they may cause coastlines 

to rise rather than fall. So the reasons for devoting more attention to 

intermediate term results are not only that we live and die in the intermedi- 

ate term and that changes in the environment (including the players) make 

data for the very long term hard to gather, but also that we have less 

reason to be confident in a particular model of learning when the learning 

curve is fiat than when it is steep. Our results here suggest, however, that 

such models may have considerable predictive power when the learning 

curve is steep. 
In conclusion, this paper reports an exercise in " low" (rationality) game 

theory. Low game theory differs from traditional, "high" game theory in 

how the players are modeled: Where high game theory models the players 

as hyperrational, we have modeled them as simple adaptive learners. 3° 

What low game theory has in common with high game theory, which 

distinguishes both approaches from nongame-theoretic models, is the cen- 

tral place given to modeling the strategic environment, i.e., to the game 

itself. But here too, there is room to consider the cognitive capacities of 

the players, since the full strategy sets in a repeated or multiperiod game 

quickly become large. Although the players in the experiments discussed 

here were engaged in multiperiod games, we have modeled their strategies 

by (discretized subsets of) their stage game strategies. This has proved 

to be sufficient, perhaps because they are not engaged in repeated games 

(i.e., against the same opponent). However, it is likely that future research 

in low game theory will have to, at least sometimes, pay close attention 

to what subsets of very large strategy sets are accessible to and employed 

by the players. 

3o Of course we have chosen one of  very many possible ways to model less-than-complete 

rationality, and the question of  what are the best ways will be empirical. (The equilibrium 

refinement literature shows that there are also a multitude of  ways to model hyperrationality.) 
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M o s t  o f  the  t h e o r e t i c a l  r e s e a r c h  on  a d a p t i v e  m o d e l s  has  f o c u s e d  on  

f inding c o n d i t i o n s  u n d e r  w h i c h  the  a d a p t i v e  m o d e l s  c o n v e r g e  to equi l ib-  

r ium as  t ime  goes  to infini ty.  (Thus  high g a m e  t h e o r y  can  s o m e t i m e s  a r i se  

f rom low g a m e  t h e o r y . )  In  con t r a s t ,  we  have  a rgued  tha t ,  when  the  o b j e c t  

is to d e v e l o p  low g a m e  t h e o r y  in d i r ec t i ons  useful  for  emp i r i ca l  e c o n o m i c s ,  

infinite t ime  ho r i zons  d e s e r v e  to be  t r e a t ed  wi th  the  s ame  s k e p t i c i s m  as 

o t h e r  idea l i za t ions .  N e v e r t h e l e s s ,  we  have  seen  (in the  bes t  sho t  and  

m a r k e t  games )  tha t  for  s o m e  g a m e s  the  i n t e r m e d i a t e  t e rm  p r e d i c t i o n s  o f  

low g a m e  t h e o r y  c o r r e s p o n d  with  t h o s e  o f  high g a m e  t he o ry .  W e  c on j e c -  

ture  tha t ,  w h e n  they  c o i n c i d e ,  the  c o m m o n  p r e d i c t i o n s  o f  bo th  k inds  o f  

g a m e  t h e o r y  will  qui te  gene ra l l y  p r o v e  to be  r o b u s t l y  d e s c r i p t i v e  o f  ob-  

s e r v e d  b e h a v i o r ,  as  t hey  we re  here .  F o r  o t h e r  g a m e s ,  l ike the  u l t i m a t u m  

g a m e ,  the  p r e d i c t i o n s  o f  low and  high game  t h e o r y  d ive rge .  W e  have  

s h o w n  he re  tha t  (even)  in such  cases ) ,  the  p r e d i c t i o n s  o f  low g a m e  t h e o r y  

m a y  be  o f  i n d e p e n d e n t  in t e re s t ,  b e c a u s e  they  are  d e s c r i p t i v e  o f  o b s e r v e d  

b e h a v i o r .  

APPENDIX 

Data and Initial Propensities for the Ultimatum Game 
Simulations by Countl~y 

Demand 

l 2 3 4 5 6 7 8 9 Total 

Israel 
No of demands 0 0 0 l 22 17 7 6 7 60 
Player l 's IP 0 0 0 0.02 0.37 0.28 0.12 0.10 0.12 1 
No. of rejections 0 2 1 3 3 5 14 
Rej. rate: 0 0.09 0.06 0 .43  0.50 0.72 
Mon. correction 0.08 0.08 
Player 2's IP 0 0 0 0.08 0 0.35 0.07 0.22 0.28 1 

Japan 
No. of demands 4 0 2 3 20 13 7 4 5 58 
Player l 's IP 0.07 0 0 .03  0.05 0.34 0.22 0.12 0.07 0.09 1 
No. of rejections 0 - -  0 2 2 4 4 3 3 18 
Rej. rate 0 0 0 0.67 0.10 0.31 0.57 0 .75  0.60 
Mon. correction 0.17 0.17 0.67 0.67 
Player 2's IP 0 0 0.17 0 0.14 0.26 0.10 0 0.33 1 

USA 
No. of demands 0 0 2 4 27 15 3 2 I 54 
Players I's IP 0 0 0.04 0.07 0.50 0.28 0.06 0.04 0.02 1 
No. of rejections - -  - -  0 0 5 4 2 I 0 
Rej. rate - -  - -  0 0.25 0.18 0.27 0.67 0.50 0 
Mon. correction 0.19 0.19 0.50 0.50 0.50 
Player 2's IP 0 0 0.19 0 0.08 0.23 0 0 0.50 1 



APPENDIX--Continued 

Demand  

1 2 3 4 5 6 7 8 9 Total 

Slovenia 

No. of  demands  0 0 0 3 36 12 8 1 0 60 

Player l ' s  IP 0 0 0 0.05 0.60 0.20 0.13 0.02 0 1 

No. of  rejections 0 7 2 4 1 - -  

Rej. rate 0 0.19 0.17 0.50 1 - -  

Mon. correct ion 0.19 0.19 

Player 2 ' s  IP 0 0 0 0.19 0 0.31 0.50 0 0 1 

Data and Initial Propensities for the Best Shot Game: Number of 

Obseroations in Each of the Simplified Game's Nine Contingencies in 

the First Two Rounds 

Condition: Full Partial 

Quanti ty:  q2 q2 

0 • 2 4 Sum 0 2 4 Sum 

0 1.5 3 5 9.5 2 2 2 6 

ql 2 1.5 0.5 1 3 4.25 0.75 0 5 

4 3 0 0.5 3.5 5.75 0.75 0.5 7 

Sum 6 3.5 6.5 16 12 3.5 2.5 18 

Calculation of  player l ' s  IP 

0 9.5/16 = .59 6/18 = .33 

2 3/16 = .19 5/18 = .28 

4 3.5/16 = .22 7/18 = .39 

Calculation of  player 2 's  IP (a few examples)  

000 (1.5/9.5)(1.5/3)(3/3.5) = 0.07 

002 (1.5/9.5)(1.5/3)(0/3.5) = 0 

004 (1.5/9.5)(1.5/3)(0.5/3.5) = 0.01 

020 (1.5/9.5)(0.5/3)(3/3.5) = 0.02 

and so forth . . .  

(2/6)(4.25/5)(5.75/7) = 0.23 

(2/6)(4.25/5)(0.75/7) = 0.03 

(2/6)(4.25/5)(0.5/7) = 0.02 

(2/6)(0.75/5)(5.75/7) = 0.04 

The Market Game: Number of Bids in the First Two Rounds, 

by Country 

Bid 

0.25 1 2 3 4 5 6 7 8 9 9.75 

Count ry  

Israel 0 1 0 0 0 2 4 5 16 27 17 

Japan 1 1 0 0 1 4 4 10 19 24 8 

USA 0 4 I 2 2 14 6 6 14 14 l 

Slovenia 0 0 0 0 l 3 5 16 24 19 4 
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