Lesson 20 Quadratic Formula and Its Proof

CA Standard Alg 1 19.0

The quadratic formula is used to find the roots of a quadratic function. The formula was generated by completing the square on the standard form of a quadratic function.

Proving the Quadratic Formula

The standard form of a quadratic function is $y = ax^2 + bx + c$, where *a*, *b*, and *c* are constants. Follow the steps to complete the square on this function to find the solutions. The expression that equals *x* is known as the quadratic formula. You can substitute values of *a*, *b*, and *c* to find the roots of a quadratic function without factoring or completing the square.

 $ax^2 + bx + c = v$ Standard form $ax^2 + bx + c = 0$ Substitute 0 for y. $x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$ Divide by *a* so that the coefficient on x^2 is 1. $x^2 + \frac{b}{a}x = -\frac{c}{a}$ Subtract $\frac{c}{a}$ from both sides of equation. $x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2$ Make the left side of the equation a perfect square. $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$ Factor left side of the equation. Simplify right side. $\sqrt{\left(x + \frac{b}{2a}\right)^2} = \sqrt{\frac{b^2 - 4ac}{4a^2}}$ Take square root of both sides of the equation. $x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$ Simplify each side. $x + \frac{b}{2a} - \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} - \frac{b}{2a}$ Isolate x term. Subtract $\frac{b}{2a}$ from both sides of equation. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Simplify right side of equation.

Using the Quadratic Formula

EXAMPLE 1 -

Values from a quadratic function were substituted into the quadratic formula to get $x = \frac{-5 \pm \sqrt{25 - 4(1)(-3)}}{2}$. Name the function. Determine the values of *a*, *b*, and *c*. Use those values to write the function in standard form. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{25 - 4(1)(-3)}}{2}$ b = 5, a = 1. and c = -3

The function is
$$v = x^2 + 5x - 3$$
.

CA Standards Check 1

1a. Values from a quadratic function were substituted into the quadratic

formula to get $x = \frac{2\pm\sqrt{4} - 4(5)(1)}{10}$. Name the function.

1b. Values from a quadratic function were substituted into the quadratic formula to get $x = \frac{1 \pm \sqrt{1 - 4(4)(-4)}}{8}$. Name the function.

EXAMPLE 2

Use the quadratic formula to find the roots of the quadratic function $2x^2 + 6x - 1 = y$. *Identify the values of a, b, and c. Substitute those values into the quadratic formula.* a = 2, b = 6, c = -1

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{6^2 - 4(2)(-1)}}{2(2)}$$

$$x = \frac{-6 \pm \sqrt{38 + 8}}{4} = \frac{-6 \pm \sqrt{44}}{4} = \frac{-6 \pm 2\sqrt{11}}{4} = \frac{-3 \pm \sqrt{11}}{2}$$

$$x = \frac{-3 \pm \sqrt{11}}{2} \quad \text{or} \quad x = \frac{-3 - \sqrt{11}}{2}$$

CA Standards Check 2

- **2a.** Use the quadratic formula to find the roots of the quadratic function $-3x^2 2x + 5 = y$.
- **2b.** Use the quadratic formula to find the roots of the quadratic function $x^2 8x 3 = y$.

Name___

A
$$x = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{1}$$

B $x = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{2}$
C $x = \frac{-1 \pm \sqrt{1 - 4(1)(1)}}{1}$
D $x = \frac{-1 \pm \sqrt{1 - 4(1)(1)}}{2}$

- 2 What do you do to the standard form of a quadratic function to change the coefficient of x^2 to 1?
 - A Multiply both sides of the equation by -1.
 - **B** Divide both sides of the equation by *a*.
 - **C** Multiply both sides of the equation by a.
 - **D** The coefficient is already 1.
- 3 What does $\sqrt{b^2 4ac}$ equal when using the quadratic formula to solve the quadratic function $y = -2x^2 5x + 7$?
 - A $\sqrt{31}$
 - **B** 9
 - $C \sqrt{-31}$
 - **D** $\sqrt{-81}$

4 What term is added to both sides of the standard form when completing the square?

Date_

Class_

- **A** $\left(\frac{b}{a}\right)^2$ **B** $\frac{b^2}{2a}$
- **C** $\frac{b}{2a}$
- **D** $\left(\frac{b}{2a}\right)^2$
- 5 Which shows the use of the quadratic formula for $y = -6x^2 2x + 10$?

A
$$x = \frac{6 \pm \sqrt{6 - 4(-2)(10)}}{-2}$$

B $x = \frac{-2 \pm \sqrt{4 - 4(-6)(10)}}{12}$
C $x = \frac{2 \pm \sqrt{4 - 4(-6)(10)}}{-12}$
D $x = \frac{6 \pm \sqrt{36 - 4(-2)(10)}}{-4}$

- 6 What is the denominator when using the quadratic formula to solve the quadratic function $y = 10x^2 x + 4$?
 - **A** −20
 - **B** −2
 - **C** 8
 - **D** 20