
Unit 1  
Lesson 9 : The Big M Method 
 
Learning outcomes 
 

 

• The Big M Method to solve a linear programming problem. 
 

 
 
In the previous discussions of the Simplex algorithm I have seen that the method 
must start with a basic feasible solution.  In my examples so far, I have looked 
at problems that, when put into standard LP form, conveniently have an all slack 
starting solution.  An all slack solution is only a possibility when all of the 
constraints in the problem have <= inequalities.  Today, we are going to look at 
methods for dealing with LPs having other constraint types. 
 
Remember that simplex needs a place to start – it must start from a basic 
feasible solution then move to another basic feasible solution to improve the 
objective value. 
With these assumptions, I can obtain an initial basic feasible solution /dictionary 
by letting all slack variables be basic, all original variables be non basic 
Obviously, these assumptions do not hold for every LP.  What do I do when they 
don’t?  
When a basic feasible solution is not readily apparent, the Big M method or the 
two-phase simplex method may be used to solve the problem. 
 
 
The Big M Method 
 
If an LP has any > or = constraints, a starting basic feasible solution may not be 
readily apparent. 
The Big M method is a version of the Simplex Algorithm that first finds a basic 
feasible solution by adding "artificial" variables to the problem. The objective 
function of the original LP must, of course, be modified to ensure that the artificial 
variables are all equal to 0 at the conclusion of the simplex algorithm. 
  
Steps  

1. Modify the constraints so that the RHS of each constraint is nonnegative 
(This requires that each constraint with a negative RHS be multiplied by -
1. Remember that if you multiply an inequality by any negative number, 
the direction of the inequality is reversed!). After modification, identify 
each constraint as a <, >, or = constraint.    2.      Convert each inequality 
constraint to standard form (If constraint i is a < constraint, we add a 



slack variable si; and if constraint i is a > constraint, we subtract an 
excess variable ei). 

3.      Add an artificial variable ai to the constraints identified as  > or =   
constraints at the end of Step 1. Also add the sign restriction ai > 0. 

4. If the LP is a max problem, add (for each artificial variable) -Mai to the 
objective function where M denote a very large positive number. 

5. If the LP is a min problem, add (for each artificial variable) Mai to the 
objective function.  

6. Solve the transformed problem by the simplex .  Since each artificial 
variable will be in the starting basis, all artificial variables must be 
eliminated from row 0 before beginning the simplex. Now (In choosing the 
entering variable, remember that M is a very large positive number!). 

  
If all artificial variables are equal to zero in the optimal solution, we have 
found the optimal solution to the original problem. 
 
If any artificial variables are positive in the optimal solution, the original problem 
is infeasible!!!  
Let’s look at an example. 
 
Example 1 
 
Minimize       z  = 4x1 +   x2 
Subject to: 
   3x1 +   x2   = 3 
   4x1 + 3x2 >= 6 
     x1 + 2x2 <= 4 
 
   x1, x2 >= 0 
 
 
 
 
By introducing a surplus in the second constraint and a slack in the third 
we get the following LP in standard form: 
 
Minimize     z  = 4x1 +  x2  
Subject to: 
   3x1 +   x2                = 3 
   4x1 + 3x2 – S2         = 6 
     x1 + 2x2        + s3   = 4 
 
   x1, x2, S2, s3 >= 0 
 
Neither of the first two constraint equations has a slack variable or other 
variable that we can use to be basic in a feasible starting solution so we 



must use artificial variables.  If we introduce the artificial variables R1 and R2 
into the first two constraints, respectively, and MR1 + MR2 into the objective 
function, we obtain: 
 
Minimize     z  = 4x1 +  x2 + MR1 + MR2 
Subject to: 
   3x1 +   x2         + R1                 = 3 
   4x1 + 3x2 – S2          + R2        = 6 
     x1 + 2x2                          + s3 = 4 
 
   x1, x2, S2, s3, R1, R2 >= 0 
 
We can now set x1, x2 and S2 to zero and use R1, R2 and s3 as the starting 
basic feasible solution. 
 
In tableau form we have: 
 
 
Basic z x1 x2 S2 R1 R2 s3 Solution

z 1 -4 -1 0 -M -M 0 0 

R1 0 3 1 0 1 0 0 3 
R2 0 4 3 -1 0 1 0 6 
s3 0 1 2 0 0 0 1 4 

 
 
 
At this point, we have our starting solution in place but we must adjust our z-
row to reflect the fact that we have introduced the variables R1 and R2 with 
non-zero coefficients (M). 
 
We can see that if we substitute 3 and 6 into the objective function for R1 
and R2, respectively, that z = 3M + 6M = 9M.  In our tableau, however, z is 
shown to be equal to 0.  We can eliminate this inconsistency by 
substituting out R1 and R2 in the z-row.  Because each artificial variable’s 
column contains exactly one 1, we can accomplish this by multiplying each of 
the first two constraint rows by M and adding them both to the current z-
row. 
 
New z-row = Old z-row + M*R1-row + M*R2-row 
 
Old z-row:  (1        -4        -1        0        -M        -M        0        0 ) 
+ M*R1-row: (0       3M       M        0         M          0         0       3M ) 
+ M*R2-row: (0       4M      3M    –M         0          M        0        6M ) 
 
New z-row:  ( 1 -4+7M –1+4M  –M         0           0         0       9M) 
 



 
Our tableau now becomes 
 
Basic z x1 x2 S2 R1 R2 s3 Solution

z 1 -4+7M -1+4M -M 0 0 0 9M 

R1 0 3 1 0 1 0 0 3 
R2 0 4 3 -1 0 1 0 6 
s3 0 1 2 0 0 0 1 4 

 
Now we have the expected form for our starting solution. 
 
We now apply the simplex method as before.  Since this is a minimization 
problem we select the entering variable with the most positive objective 
row coefficient.  In this case, that is x1.  Calculating the intercept ratios we get: 
 
R1 – 3/3 = 1 
R2 – 6/4 = 1.5 
s3  -- 4/1 =  
 
So we select R1 as our leaving variable.   
 
Performing the Gauss-Jordan row operations, we obtain the new tableau: 
 
Basic z x1 x2 S2 R1 R2 s3 Solution

z 1 0 (1+5M)/3 -M (4-7M)/3 0 0 4+2M 

x1 0 1 1/3 0 1/3 0 0 1 
R2 0 0 5/3 -1 -4/3 1 0 2 
s3 0 0 5/3 0 -1/3 0 1 3 

 
  
In this tableau, we can see that x2 will be our next entering variable and R2 
will leave.   
 
We can thus see that the simplex algorithm will quickly remove both R1 and 
R2 from the solution just as we intended when we assigned them the 
coefficient of M in the objective function.  If we continue to apply the simplex 
algorithm, we will find that the optimal solution is: 
 
x1 = 2/5 
x2 = 9/5 
S2 = 1 
 
with z = 17/5 
 
Two important considerations accompany use of the M method.   
 



The use of the penalty M may not always force the artificial variable to zero 
level by the final iteration.  This can occur in the case where the given LP has 
no feasible solution.  If any artificial variable is positive in the final iteration 
than the LP has no feasible solution space. 
 
Theoretically, the application of the M technique requires that M approaches 
infinity but to computerize the solution algorithm, M must be finite while 
being “sufficiently large.”  The pitfall in this case is, however, if M is too large 
it can lead to substantial round-off error yielding an incorrect optimal 
solution.  For this reason, most commercial LP solvers do not apply the M-
method but use, rather, an artificial variable method called the two-phase 
method.  For educational purposes, TORA, allows the implementation of the M-
method with a user selected value for M where M is sufficiently large to allow 
solution of the problem.  The definition of the term “sufficiently large” is 
dependent upon the problem in question and requires some judgment for 
implementation.   
 
  Example 2  Minimise z =  2x1 -3x2 + x3  
                                    subject to  

3x1 -2x2 + x3 ≤ 5, 

x1 +3x2 -4x3 ≤ 9, 

                                                            x2 +5x3 ≥ 1, 
x1 + x2 + x3 = 6, 

     x1, x2, x3 ≥ 0. 
 
 

Solution We obtain the linear programming problem: minimise x8 subject to  

3x1 -2x2 + x3 + x4=5,   
x1 +3x2 -4x3 + x5=9,   
x1 + x2 + x3 + x6=6,   
- x2 -5x3 + x7=-1,   
-2x1 +3x2 - x3 + x8=0,   

x1,..., x7 ≥ 0,   

•  
where x6 is an artificial variable. In tableau T1 of Table 1, pivoting about y33 
(= 1) removes a6 from the basis. The rows of tableau T2 are then 
rearranged to give tableau T3 so that the bad row is below the others, and 
column a6 is ignored from here on. Pivoting in T3 about y12 (= 7) gives 
tableau T4 which has the basic feasible solution (0, 33/7, 9/7, 92/7, 0, 0, 
71/7, - 90/7). This has x6 = 0 and is an optimal solution, so x1 = 0, x2 = 
33/7, x3 = 9/7 is an optimal solution of the original problem with optimal 
value -90/7. 



           Min z = 2x1+3x2   

s.t. 

                1/2x1+1/4x2 ≤ 4…………………1 

                x1+3x2 ≥ 20………………………2 

                x1+x2=10…………………………3 

                x1,x2 ≥ 0 

 Step1: Make the right hand side of all constraints positive. 

We don’t have any negative right hand side. 

  Step2:Identify each constraint which is ≥ or=. 

Constraints 2 and 3 apply the above conditions. 

  Step3: For each<= constraint add a slack variable and for 
each�constraint subtract an excess variable to make them 
equalities. 

1……………………….1/2x1+1/4x2+s1   =4 

2…………………………..x1+ 3x2    -e1=20 

 Step4:For each>=or = constraint add an artificial variable 
ai(ai’s>0),which is to be chosen in the starting bfs.           

2……………………….x1+3x2-e1+a2=20 

3……………………….x1+x2+    +a3=10 

 Step5: If the LP is a min add +Mai to the objective function. If it is 
a max add –Mai to the objective function. Here M represents a very 
big number such that in the min problem +Mai is arbitrarily large so 
that ai the artificial variable is best to be chosen as zero, which we 
require . Similar reasoning applies in the max problem. 

   Min z =2x1+3x2+Ma2+Ma3 

 Step6: Choose those artificial variables in the starting bfs and 
proceed to find the Optimal Tableau. If in the end, artificial variables 



are zero we find the solution, but if they are not equal to zero then 
we don’t have a optimal solution. Thus, original LP is infeasible. 

    After these steps we have the LP: 

                   Min z=2x1+3x2+Ma2+Ma3  

st 

                                 1/2x1+1/4x2+s1               =4 

x1+3x2                -e1+a2=20  

x1+x2                        +a3=10 

 After all, we have the table: 

   In the optimal solution, we have: {z,s1, x2, x1}={25,1/4,5,5}. Since 
we don’t have any of artificial variables a1and a2in the optimal 
solution, the solution is feasible. If any of the artificial variablesa1, 
a2were not equal to zero then we would have infeasibility as 
described below: 

        Min z=x1+3x2  

s.t. 



             1/2x1+1/4x2 ≤ 4 

                  x1+3x2  ≥ 10 

                   x1+x2     =10 

 After going through all the steps described above we end with the 
optimal tableau: 

 

   In the above example, we have the optimal tableau since reduced 
costs of all non basic variables are non positive. However note that 
the optimal solution contains the very big number M, which should 
not have been the case for a min problem, thus we say that our 
original LP was infeasible. We also say that from the fact that we 
have the artificial variablea2 in the basic variables, which shouldn’t 
have been the case for a feasible LP.  

Example 3 
Maximize Z = x1 + 5x2  
Subject to:  
3x1 + 4x2 £ 6 
x1 + 3x2 ³ 2 
Where x1, x2 ³ 0 

Solution  

Introducing slack and surplus variables 

3x1 + 4x2 + x3 = 6 
x1 + 3x2 – x4 = 2 

Where: 
x3 is a slack variable 
x4 is a surplus variable. 

The surplus variable x4 represents the extra units. 



Now if we let x1 and x2 equal to zero in the initial solution, we will have x3 = 6 and 
x4 = –2, which is not possible because a surplus variable cannot be negative. 
Therefore, we need artificial variables. 

Maximize x1 + 5x2 – MA1 

Subject to: 

3x1 + 4x2 + x3 = 6 
x1 + 3x2 – x4 + A1 = 2 

Where: 
x1 ³ 0, x2 ³ 0, x3 ³ 0, x4 ³ 0, A1 ³ 0 

 

 

  Cj  1  5  0 0 –M   

CB  Basic 
variables 

B  

x1  x2  x3 x4 A1 Solution 
values  
b (= XB)  

0  x3  3  4  1 0 0 6  

–M  A1  1  3  0 –1 1 2  

Zj – Cj    –M – 
1  

–3M 
– 5  

0 M 0   

Here, a11 = 3, a12 = 4, a13 = 1, a14 = 0, a15 = 0, b1 = 6 
a21 = 1, a22 = –3, a23 = 0, a24 = –1, a25 = 1, b2 = 2 

 
Calculating Zj – Cj 

First column = 0 * 3 + (–M) * 1 – 1 = –M – 1 
Second column = 0 * 4 + (–M) * 3 – 5 = –3M–5 
Third column = 0 * 1 + (–M) * 0 – 0 = 0 
Fourth column = 0 * 0 + (–M) * (–1) – 0 = M 
Fifth column = 0 * 0 + (–M) * 1 – (–M) = 0 
 
Choose the smallest negative value from Zj – Cj. 
Substitute M = 0 
Smallest negative value is –5. So second column is the element column. 
Now find out the minimum positive value. 



Minimum (6 / 4, 2 / 3) = 2 / 3 
So second row is the element row. 
Here, the pivot (key) element = 3. 
Therefore, A1 departs and x2 enters. 

 Calculating values for table 2 

Calculating values for first row 

a11 = 3 – 1 * 4 / 3 = 5 /3 
a12 = 4 – 3 * 4 / 3 = 0 
a13 = 1 – 0 * 4 / 3 = 1 
a14 = 0 – (–1) * 4 / 3 = 4 / 3 
b1 = 6 – 2 * 4 / 3 = 10 / 3 

Calculating values for key row 

a21 = 1 / 3 
a22 = 3 / 3 =1 
a23 = 0 / 3 = 0 
a24 = –1 / 3 
b2 = 2 / 3 

Table 2 

  Cj  1  5  0  0    

CB  Basic 
variables  

B  

x1  x2  x3  x4  Solution 
values  
b (= XB)  

0  x3  5 / 3  0  1  4 / 3 10 / 3  

5  x2  1 / 3  1  0  –1 / 3 2 / 3  

Zj – Cj     2 / 3  0  0  –5 / 3   

Table 3 

  Cj  1  5  0  0    

CB  Basic variables 
B  

x1  X2  x3  x4  Solution 
values  
b (= XB)  

0  x4  5 / 4 0  3 / 4  1  5 / 2  

5  x2  3 / 4 1  1 / 4  0  3/2  



Zj – Cj    11 / 4 0  5 / 4  0    

Since all the values of Zj – Cj are positive, this is the optimal solution. 

x1 = 0, x2 = 3 / 2 

Z = 0 + 5 * 3 / 2 =15 / 2 

 



 


