
© Copyright Khronos Group, 2007 - Page 1

Streaming Media Streaming Media
PortabilityPortability

Shiv Ramamurthi, Software Technology
Marketing Manager, Texas Instruments

OpenMAX Chair

© Copyright Khronos Group, 2007 - Page 2

What is OpenMAX?What is OpenMAX?

• A set of open royalty-free APIs for abstracting multimedia
functionality on embedded devices

• Strong OpenMAX Participation

http://www.intel.com/index.htm?iid=HMPAGE+Header_1_Logo
http://www.st.com/

© Copyright Khronos Group, 2007 - Page 3

Why OpenMAX?Why OpenMAX?

• Classic reason for a standard: fragmentation compromises portability

• Multiple pieces to a multimedia ecosystem
- General purpose processors with varying ISA
- Media co-processors, DSP, dedicated HW
- Codecs, readers/parsers, renderers, sources, post processors
- Multimedia frameworks/middleware
- Applications

• Multiple implementations of each piece multimedia processing

• Multiple (often proprietary) API solutions between any two pieces

• Portability problem:
- How do you write a single implementation of a codec, multimedia framework, or application

across different platforms?

© Copyright Khronos Group, 2007 - Page 4

Multimedia EcosystemMultimedia Ecosystem

Media Engines - CPUs, DSP, Hardware Accelerators etc.

“Development Layer”
Defines media primitives and

concurrency constructs

Audio
Components

e.g. MP3

Media components can be integrated into
flexible media graphs for advanced

streaming media processing

Media components can be written using
primitives for portability across diverse
parallel and serial silicon architectures

Application

Platform Media Framework

“Application Layer”
Defines high-level playback and

recording interface API

Media applications can be written
portably, independent of the
underlying media platform

IL

DL

“Integration Layer”
Defines media component interfaces

Video
Components

e.g. H.264

Image
Components

e.g. JPEG

AL

OpenMAX layers can be implemented together or
independently from the other layers

© Copyright Khronos Group, 2007 - Page 5

OpenMAX DL OpenMAX DL –– OverviewOverview

Problem: Porting media components to new platforms is costly and time consuming

Media Engines - CPUs, DSP, Hardware Accelerators etc.

“Development Layer”
Defines media primitives and concurrency constructs

Audio Components e.g.
MP3

Video Components e.g.
H.264

Image Components e.g.
JPEG

DL

• Software components are not portable across processors
- Exacerbated by proliferation of media standards and increasing silicon complexity

• Software component & silicon vendors need a reliable way to accelerate
diverse codecs on diverse silicon

Solution: OpenMAX DL – media components are written using primitives for rapid portability
across diverse parallel and serial silicon architectures

• Focus on what one does best
- Component vendors provide advanced functionality without worrying about hardware

specific optimization
- Silicon vendors provide optimized implementations of DL primitives to reduce cost to

market [DL APIs are IP free]

© Copyright Khronos Group, 2007 - Page 6

OpenMAX DL OpenMAX DL –– OverviewOverview

DL Domains

• Video Domain
- MPEG-4 SP/H.263 BL (encode and decode)
- H.264 (encode and decode)

• Image Processing Domain
- Color space conversion
- Pixel packing/unpacking
- De-blocking / de-ringing
- Rotation, scaling, compositing, etc.

• Image Codec Domain
- JPEG (encode and decode)

• Multimedia Audio Domain
- MP3
- AAC

• Signal Processing Domain
- FIR
- IIR
- FFT
- Dot Product

A wide range of media
acceleration silicon using

many diverse architectures

Silicon vendors supply optimized
OpenMAX DL library covering 80% of

processing requirement

An increasing number of
multimedia codecs for video,
audio, graphics and images

D
L

© Copyright Khronos Group, 2007 - Page 7

OpenMAX DL OpenMAX DL –– OverviewOverview

DL API Examples (Video)
OMXResult omxVCCOMM_Average_8x(...)

OMXResult omxVCCOMM_Copy8x8(...)

OMXResult omxVCCOMM_SAD_16x(...)

OMXResult omxVCM4P2_IDCT8x8blk(...)

OMXResult omxVCM4P2_DecodeVLCZigzag_Inter(...)

OMXResult omxVCM4P10_InvTransformResidualAndAdd(...)

OMXResult omxVCM4P10_DeblockLuma_I(...)

Advanced Concurrency Mechanisms
• aDL (Asynchronous DL)

- Chain together multiply DL primitives to create one API
- Each building block could run aBetter optimization on some platforms

• iDL (Integrated DL)
- Integration of DL APIs in OpenMAX Integration Layer (IL)
- DL APIs are mapped into IL structures; execution is controlled by IL state machine

© Copyright Khronos Group, 2007 - Page 8

OpenMAX ILOpenMAX IL

• Componentized architecture for abstracting blocks of multimedia
functionality

- Could be implemented in software or hardware

• Building blocks categorized by
- Domain: Audio, video, image, of some combination thereof
- Function: Encode, decode, apply an effect, capture, render, split, mix, etc

• Allows blocks from different sources to work together

• Allows clients to build arbitrary multimedia pipelines by plugging blocks
together

Portable & Re-usable ‘building blocks

© Copyright Khronos Group, 2007 - Page 9

OpenMAX IL OpenMAX IL ““ComponentComponent””

• A component is a building block encapsulating one function

• Plumbing
- Each component port is either the entrypoint or exitpoint for one particular stream of

data of the component
- A port may be connected to the client or to a port on another component
- A client exchanges buffers with a port or two ports (from different components)

exchange buffers with each other

• Knobs
- A component parameter is a value that is set prior to component execution
- A component config is a value that may be set during component execution
- OpenMAX defines an independent set of “knobs”
- Examples: rate, volume, resolution, scaling, bitrate, error correction, brightness, etc

• Control
- Via a standard interface common to all components (i.e. a structure of function

pointers)
- The connection of ports
- Data flow in and out of ports
- State management
- Query/set configs and parameters

© Copyright Khronos Group, 2007 - Page 10

Component State MachineComponent State Machine

• The client controls the operation of each component by manipulating its
state.

- Loaded: alive without resources
- Waiting for resources: deficient of resources and actively waiting for them to become available
- Idle: has resources but not transferring buffers
- Paused: has resources, transferring buffers, but not processing data
- Executing: has resources, transferring buffers, and processing data

LOADED

IDLE

EXECUTING

PAUSED

INVALID

UNLOADED

WAIT FOR

RESOURCES

© Copyright Khronos Group, 2007 - Page 11

OpenMAX IL Standard ComponentsOpenMAX IL Standard Components

• OpenMAX IL 1.1 (just released!) defines a set of standard components

• Examples
- Readers/writers: 3gp, asf, image, video, audio
- Audio decoders/encoders: AAC, AMR, MP3, WMA, Real Video
- Audio post-processor: stereo widening, equalizer, reverb
- Video decoders/encoders: MPEG4, H.264, etc
- Image decoders/encoders: JPEG
- Input devices: camera, audio input
- Output devices: audio renderer, video renderer
- Synchronization: clock component, video scheduler

• Each component definition is a “black box” recipe consisting of:
- Functional description
- Which ports of which type are required
- Which configs/parameters and which settings on those configs/parameters are required

• Standard set of building blocks allows for more portable graphs

© Copyright Khronos Group, 2007 - Page 12

OpenMAX IL Example GraphOpenMAX IL Example Graph

• Standardized component interfaces enable flexible media graphs

• Includes multi-stream synchronization

• Allows for custom plug-ins

*.mp4 / *.3gp
File Reader

*.mp4 / *.3gp
File Reader

Clock
for AV Sync

Clock
for AV Sync

Audio
Decoder

Audio
Decoder

Audio
Renderer

Audio
Renderer

Video
Scheduler

Video
Scheduler

Video
Renderer

Video
Renderer

Speakers

Display

AAC Audio

Time
Data

MPEG4/
H.264 Video

Video
Decoder

Video
Decoder Decompressed

Video

OpenMAX IL Component Interfaces
Enables components to be flexibly
connected in any graph topology

Example: MPEG-4 video synchronized with AAC audio decode

Plug-inPlug-in

E.g. send dance beats

to application for visualization

© Copyright Khronos Group, 2007 - Page 13

OpenMAX AL MotivationOpenMAX AL Motivation

• OpenMAX IL has more complexity than most application developers require

• Instead of building a multi-component playback graph and coordinating the
numerous pieces most app developers just want to

- Specify where the content comes from
- Where the content should be rendered to
- Manipulate a few playback controls
- Have simple configurability

• Likewise for recording use cases

• That’s what OpenMAX AL provides…
- A simple high level multimedia API for playback and recording use cases

© Copyright Khronos Group, 2007 - Page 14

Use CasesUse Cases

• OpenMAX AL was designed around satisfying a few specific use case yet
also to have a model general enough to be extensible to other use cases

• Targeted by 1.0:
- Audio player
- Audio recorder
- Image displayer
- Image capture
- Synchronized audio/video playback
- Synchronized audio/video recording
- Analog Radio

© Copyright Khronos Group, 2007 - Page 15

How to learn moreHow to learn more

• On the web: http://www.khronos.org

• Availability
- OpenMax DL 1.0 available now
- OpenMax IL 1.1 available now
- OpenMax AL available Q2 2007

• Download materials www.khronos.org
- Specification
- Headers
- White papers

http://www.khronos.org/

© Copyright Khronos Group, 2007 - Page 16

OpenSL ES OpenSL ES –– changing the changing the
face of mobile audioface of mobile audio

© Copyright Khronos Group, 2007 - Page 17

The Embedded Audio ProblemThe Embedded Audio Problem

• Lots of fragmentation!

• Many closed proprietary audio APIs of varying functionality
- Playing a simple sound on different platform requires different code.

• No standard way to access audio hardware acceleration
- Lots of work for developers to re-write code for every platform – no application/source level

portability

• Newer multimedia devices incorporating more advanced audio functionality
- Increases in audio quality & functionality further complicate the efforts of content developers

aggravating the portability problem.

Solution - Open standard application level API for
embedded audio !

© Copyright Khronos Group, 2007 - Page 18

High performance & low
latency access to audio

features

Support a diversified
market space of

embedded devices

Open standard for embedded audio

The Embedded Audio SolutionThe Embedded Audio Solution

• Diversified collection of embedded devices
- Target devices include “Mobile phones, personal media players & handheld gaming consoles”.

• High performance, low latency access to audio

• Application developer friendly
- Source-level portability of native code from platform to platform
- Same interface for both hardware and software solutions

• Royalty-free open standard

Open Standard API for
application developers

enabling application
portability

© Copyright Khronos Group, 2007 - Page 19

Target ApplicationsTarget Applications

• OpenSL ES API is designed with the application developers in mind

• Example applications include:

Simple 2D Games

Ring-tone PlaybackRecording3D Games

User interface soundsMusic Playback

Sequencer

© Copyright Khronos Group, 2007 - Page 20

Features OverviewFeatures Overview
• Playback of audio files

- Playback PCM and encoded content
- Good for sound effects; device UI sounds

• SP-MIDI, Mobile DLS, Mobile XMF
- For interactive music and ring-tones

• Effects & Controls
- Music and media player effects
- Advanced environmental effects for gaming

• 3D Audio
- Provided for gaming as companion to OpenGL

ES

Doppler

MIDI messages

Preset Reverb

EQ PitchVolume

Buffer QueuesRate Metadata extraction

Environmental Reverb

Virtualization Stereo widening LED & Vibra

3D position

© Copyright Khronos Group, 2007 - Page 21

Supporting ApplicationsSupporting Applications

• Native application support

• Cross-platform foundation for other APIs
- Support foundation APIs (JSR-135, JSR-234)

• Same API for H/W and S/W solutions

Applications

Media silicon
(audio HW, CPUs, DSPs)

Middleware, JSR-135, JSR-234,
High-level Audio Libraries

© Copyright Khronos Group, 2007 - Page 22

Sneak preview of OpenSL 1.0Sneak preview of OpenSL 1.0
Architecture: ObjectsArchitecture: Objects
• Object and interface API architecture

• Engine
- An instantiation (or “context”) of the API
- Created at startup; destroyed at shutdown
- Used to instantiate other objects.
- Affect the state of all objects created from that engine

• Media Objects (Player, Recorder, MIDIPlayer)
- Implements an audio use case
- Each Media Object type exposes a different set of interfaces

• Listener
- Abstract object representing the listener of the 3D positioned players

• 3D Groups

Disclaimer: OpenSL ES is not due for release until later this year.
Details are still being finalized so some things might change!

© Copyright Khronos Group, 2007 - Page 23

Relationship with OpenMAXRelationship with OpenMAX--AL (1/2)AL (1/2)

• Working groups collaborating to define the common API functionality.

3D Audio

Audio
Effects

Advanced
MIDI

Audio
Playback

Audio
Recording

MIDI

Video
playback

Camera

Video
recording

Image capture
& displayBuffer

queues

Analog Radio & RDS

(Enhanced audio API) (Multimedia API)

© Copyright Khronos Group, 2007 - Page 24

Relationship with OpenMAXRelationship with OpenMAX--AL (2/2)AL (2/2)

• Independent
- There is no dependency between the APIs.
- A device can support a combination of the APIs that most suits the device:

- OpenMAX AL + OpenSL ES (Music)
- OpenMAX AL + OpenSL ES (Game)
- OpenMAX AL only
- OpenSL ES (Phone, Game, Music) only

• Compatible
- Working groups collaborated to make sure the APIs work well together.

• Consistent
- Identical API architecture.
- Identical APIs for same functionality.

© Copyright Khronos Group, 2007 - Page 25

2Q071Q07

ScheduleSchedule

• Khronos working group
- Started in Q4 2005
- Requirements for 1.0 release finalized

• Draft Specification for developer review
- Requires signing Khronos reviewer agreement

- Provides opportunity for developers to specification issues

• OpenSL ES 1.0 scheduled for release 2Q07
- Release includes specification & headers
- Conformance tests soon after

4Q063Q062Q061Q064Q05

OpenSL ES
Started

Draft for
developer review

OpenSL ES
1.0 Released

1st draft
Complete

© Copyright Khronos Group, 2007 - Page 26

Any questions?Any questions?

