
 1 

Estimating Models for Panel Survey Data under Complex Sampling 

 

Marcel D. T. Vieira  

Universidade Federal de Juiz de Fora 
Departamento de Estatística, Juiz de Fora, 36036-330, MG, Brazil 

and  

Chris J. Skinner 

University of Southampton 
Southampton Statistical Sciences Research Institute, Southampton, SO17 1BJ, United Kingdom 

 

Abstract. Complex designs are often used to select the sample which is followed over time in a 

panel survey. We consider some parametric models for panel data and discuss methods of 

estimating the model parameters which allow for complex schemes. We incorporate survey weights 

into alternative point estimation procedures. These procedures include pseudo maximum likelihood 

(PML) and various forms of generalized least squares (GLS). We also consider variance estimation 

using linearization methods to allow for complex sampling. The behaviour of the proposed 

inference procedures are assessed in a simulation study, based upon data from the British 

Household Panel Survey. The point estimators have broadly similar performance, with few 

significant gains from GLS estimation over PML estimation. The need to allow for clustering in 

variance estimation methods is demonstrated. Linearization variance estimation performs better, in 

terms of bias, for the PML estimator compared to a GLS estimator. 
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1. Introduction  

A broad class of ‘regression-type’ models has found a wide range of useful applications with panel 

survey data (e.g. Wooldridge, 2001; Diggle et al., 2002). Such data often consist of repeated 

observations on the same variables for the same individuals across equally spaced waves of data 

collection. The ‘regression-type’ models considered here are broadly concerned with representing 

the relationship between one of the variables, treated as dependent, and a number of the other 

variables, treated as covariates. A typical example of the kind of panel survey considered here is the 

British Household Panel Survey (BHPS), in which a sample of households was selected at wave 

one and then individuals in this sample were followed up repeatedly at annual intervals.  

It is common for the selection of the initial panel sample at wave one to involve a complex 

sampling scheme. For example, stratification and multistage sampling were employed in the 

selection of the initial BHPS sample. In addition, sample individuals are often selected with unequal 

probabilities and weights are constructed to compensate for these unequal probabilities as well as 

for different forms of wave nonresponse and other complexities (Kalton and Brick, 2000). In the 

mainstream panel data modelling literature there is little consideration of such sampling schemes 

other than through extensions of models to capture clustering effects (e.g. Wooldridge, 2001).  

A number of methods has been developed in the survey sampling literature to take account of 

complex sampling schemes in the regression analysis of cross section survey data.  See Chambers 

and Skinner (2003) for references. One broad approach which has increasingly been implemented in 

statistical software packages is pseudo maximum likelihood estimation (Skinner, 1989), where 

maximum likelihood point estimators are adapted using survey weights and the variances of these 

point estimators are estimated using survey sampling methods, such as Taylor series linearization.  

In this paper we shall extend this broad approach to the estimation of panel data model 

parameters, allowing for complex sampling designs. We shall discuss methods of statistical 

inference for models with parametric assumptions about the covariance structure of errors over 

time. We shall incorporate survey weights into alternative point estimation procedures, including 
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maximum likelihood, generalized least squares and asymptotically distribution free (ADF) 

approaches. We shall also consider standard error estimation approaches using linearization 

methods to allow for complex sampling, and indicate connections with some established ADF 

methods. We shall adopt an aggregate modelling strategy (Skinner, Holt and Smith, 1989) rather 

than a multilevel covariance modelling approach. For developments of the latter approach see 

Müthén and Satorra (1995, Section 5). 

Some previous work on estimation for panel data models under complex designs has been 

undertaken by Feder, Nathan and Pfeffermann (2000), who propose combining multilevel 

modelling, time series modelling and survey sampling methods; Sutradhar and Kovacevic (2000), 

where a generalised estimating equations approach is developed by considering an autocorrelation 

structure in a multivariate polytomous longitudinal survey data context; Skinner and Holmes 

(2003), who study two approaches for dealing with sampling effects, either considering the repeated 

observations as multivariate outcomes and adopting weighted estimators that account for the 

correlation structure, or considering a two-level longitudinal model and to modify weighting 

strategy proposed by Pfeffermann et al. (1998); and Skinner and Vieira (2007), who presented some 

empirical evidence that the variance-inflating impacts of complex sampling schemes can be higher 

for longitudinal analyses than for corresponding cross-sectional analyses. 

This paper is organized as follows. The basic structure of the data and sample are described in 

Section 2. The models are given in Section 3. Point estimation methods, including weighted 

estimation of covariance matrices are reviewed in Section 4. Estimation of model parameters using 

least squares methods and pseudo maximum likelihood estimation are also considered. The paper 

proceeds in Section 5 to consider variance estimation methods, by adopting linearization methods to 

allow for complex sampling and also considering ADF variance estimation techniques. Two 

simulation studies, based upon data from the British Household Panel Survey, will be presented in 

Section 6 to assess the behaviour of the different estimation procedures. We make brief remarks in 

the concluding discussion in Section 7. 
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2. Sampling and Data 

We suppose that the data consist of the values 
it

y of an outcome variable and q×1  vectors of values 

itx  of covariates for each individual i in a sample, denoted s, and each wave of data collection 

1, ,t T= … . We shall sometimes write {1,..., }s n= , without loss of generality, where n is the sample 

size. The sample is assumed to be selected from a specified finite population at wave 1 according to 

a (without replacement) probability design for which the inclusion probability 
iπ  of each individual 

i  in s is known and the sample and the population are fixed thereafter. The design may be complex, 

for example involving stratification and multi-stage sampling. We suppose that sampling weights iw  

are available for estimation. In the absence of nonresponse, these may be design weights, i.e. the 

reciprocals of the sample inclusion probablities 
iπ . In practice, nonresponse will occur at each 

wave, especially as a result of attrition. In this case, we suppose that s denotes the set of individuals 

providing values 
it

y  and itx  at each of the T waves of data collection and we suppose that weights 

iw  are available that adjust not only for the sampling but also for the nonresponse. 

 

3. Models 

We consider standard kinds of models for the repeated measurements ( Diggle et al., 2002, Chapters 

4 and 5) in which the 
it

y  obey the (superpopulation) linear model: 

( ) βx itityE = ,        (1) 

in the population, where itx  is treated as fixed (or conditioned upon), β  is a q×1 vector of 

unknown parameters (and we make no distinction between the realised 
it

y  and the underlying 

random variables). We allow for serial correlation in the measurements by writing the repeated 

measurements for individual i as the 1T ×  vector ( )′= iTii yy ,,1 …y  and allowing for non-zero off-

diagonal elements of the covariance matrix Σ  of this vector: 

      ( ) }]][{[cov ′−−==Σ βyβyy iiiii XXE ,    (2) 
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where ( )́´,´,1 iTiiX xx …=  is the qT ×  matrix of covariate values. 

We consider two possible structures for the matrix Σ . The first is referred to as the uniform 

correlation model (UCM), where all the off-diagonal elements of Σ  are 2
uσ  and all the diagonal 

elements are 2 2
u vσ σ+ . This corresponds to the multilevel model:  

itiitit vuy ++= βx        (3)  

where  
i

u  and 
it

v  are random effects with zero means and variances 2
u

σ  and 2
v

σ  respectively, which 

are uncorrelated over time. In this case the correlation between 
it

y  and 'it
y  for any two occasions t  

and 't  for 't t≠  is given by 2 2 2/( )
u u v

ρ σ σ σ= + . 

In our second structure, referred to as the AR1 model, the correlation is allowed to decay over 

time. We again assume that all diagonal elements are 2 2
u vσ σ+  but now suppose that the covariance 

between 
it

y  and 'it
y  for occasions t  and 't  takes the form 2 2cov(y , )

t t

it it u vy σ γ σ′−
′ = + , where γ  is an 

additional parameter ( | | 1γ < ). This model corresponds to the following first-order autoregressive 

process for the 
it

v : 

ititit vv εγ += −1 ,        (4) 

where the 
itε  are mutually independent disturbances with zero mean and variance 2 2 2(1 )

vεσ γ σ= − . 

Note that in both models it is assumed that Σ  does not depend upon i. 

To emphasise the fact that the covariance matrix Σ  takes a particular parametric structure for 

each model, we write ( )θΣ=Σ , where θ  is a 1b×  parameter vector. In particular, ( )′= γσσ ,, 22
vuθ  

for the AR1 model and ( )′= 22 , vu σσθ  for the UCM model. Note that the UCM model is a special 

case of the AR1 model where 0γ = .  

We have so far only made assumptions about the correlation of the 
it

y  between different time 

points t but not between different individuals i. We shall, indeed, assume that the parameter vector 

θ  governing the inter-temporal covariance matrix ( )θΣ  is of scientific interest, but that any 
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correlation between values of 
it

y  for different individuals is a ‘nuisance’. In the UCM and AR1 

models we shall assume that the correlation between 
it

y  and ' 'i t
y  is zero for any two distinct 

individuals i  and 'i  and any two occasions t  and 't . We shall also consider a UCM(C) model, 

where C denotes cluster, for which this correlation is given by a fixed quantity, τ , for any distinct 

individuals i  and 'i  in the same cluster and any two occasions t  and 't  and zero otherwise, where 

the inter-temporal covariance structure ( )θΣ  is the same as for the UCM model.  

 

4. Point Estimation  

We shall suppose that β  is estimated following an established approach for repeated survey 

observations, as implemented for example in the software SUDAAN (Shah et al. 1997), by: 

∑∑
∈

−
−

∈

− ′






 ′=
si

iii

si

iii VXwXVXw yβ
1

1

1ˆ        (5) 

where V  is a specified ‘working’ covariance matrix of iy  (Diggle et al. 2002, p.70) and the iw  are 

the survey weights introduced in section 2. Provided (a) the linear model in (1) holds, (b) the 

weights 
i

w  have the property that weighted sample moments are consistent for population moments 

with respect to the joint sampling/nonresponse probability distribution, i.e. /
i i is s

w z w∑ ∑  is 

consistent for the finite population mean of 
i

z  (an arbitrary variable) and (c) V  is constant,  β̂  will 

be consistent for β  with respect to the joint model/sampling/nonresponse distribution as the sample 

size n increases (c.f. Fuller, 1975; Isaki and Fuller, 1982; Liang and Zeger, 1986).  

Note that this result allows for the possibility that the sampling/nonresponse scheme is 

‘informative’ with respect to the model, in the sense that the selection of individuals into the sample 

s is dependent upon 
it

y  conditional on the itx . In this case, weighting by 
i

w  (e.g. if they are 

inversely proportional to the probabilities of inclusion in s) in (5) may adjust for bias arising from 

such selection. In contrast, the omission of the weights from (5) could lead to bias in large samples 

in the presence of such selection.    
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In practice, condition (c) that V  is constant will not hold. In the simulation study we shall 

suppose that V  is estimated using the UCM model as the working model. This just requires 

estimating the intra-individual correlation ρ  since 2 2 2

u v
σ σ σ= +  cancels out of the two places 

where V  appears in (5). We shall estimate the correlation ρ  by iterating between GLS estimation 

of β  and survey-weighted moment-based estimation of the intra-individual correlation (Liang and 

Zeger, 1986; Shah et al., 1997). Following standard large sample arguments (Liang and Zeger, 

1986) β̂  will remain consistent for β  when V  is estimated in this way, even though there may be a 

loss of efficiency if the model underlying V is not well specified. 

As in section 3, let θ  denote the 1b×  vector of parameters of interest which determine the 

covariance structure ( )θΣ=Σ  of iy , as given in (2). In order to define a class of estimators θ , we 

first define the weighted residual covariance matrix: 

( )( )∑
∈

− ′
−−=

si

iiiiiw XXwNS βyβy ˆˆˆ 1       (6) 

where ∑
=

=
n

i

iwN
1

ˆ estimates the population size, N. The matrix 
w

S  is a consistent estimator of Σ  with 

respect to the joint model/sampling/nonresponse distribution, provided that the model assumptions 

in (1) and (2) hold and that the weights enable consistent estimation of population moments 

(condition (b) under equation (5)). Having defined 
w

S , we now define the class of  estimators θ̂  of 

θ  to be considered, as those that minimise different measures of ‘distance’ between 
w

S  and ( )θ̂Σ  

(Jöreskog and Goldberger, 1972). More precisely, if ( )Σ,wSF  denotes the fitting function, which 

measures the distance between 
w

S  and Σ , then θ̂  is defined as the value of θ  which minimises 

( )( )θΣ,wSF  across values of θ  in a specified b-dimensional parameter space.  

The simplest example of a fitting function is the unweighted least squares (ULS) function: 

( ) }]{[
2

1
, 2Σ−⋅=Σ StrSFULS

.      (7) 
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The resulting ULS estimator ULSθ̂  is uniquely defined and is consistent for θ , given that S (
w

S  

in our setting) is consistent for Σ  (Browne, 1982; Browne, 1984).  However, ULSθ̂  is not in general 

an asymptotically efficient estimator of θ . Moreover, it is not scale invariant (Jöreskog and 

Goldberger, 1972) although this does not seem a serious problem when the elements of iy  are 

repeated measurements of the same variable. With the aim of improving efficiency, we consider 

also a class of generalised least squares fitting functions: 

{ } { }1( , ) ( ) ( ) U ( ) ( )GLSF S vech S vech vech S vech−′Σ = − Σ − Σ ,   (8) 

where vech is the vector of distinct elements of a symmetric matrix (Fuller, 1987). For the T T×  

matrices considered here, vech is of dimension 1k × , where ( 1) / 2k T T= + . The ‘weight’ matrix U 

remains to be specified. For efficient estimation, we should like U to correspond to (approximately) 

to the covariance matrix of ( )vech S , for the relevant matrix S , which is 
w

S  in our setting. A 

traditional approach to the specification of U, which ignores the complex sampling scheme and is 

motivated by a working assumption of normality and independent and identically distributed 

observations, is: 

   ( )2 'U K W W K= ⊗ ,       (9) 

where K is the so-called ‘elimination’ matrix, W is any consistent estimator of Σ , and ⊗  is the 

Kronecker product operator (Muthén and Satorra, 1995). Expression (9) may alternatively be 

written elementwise as (Joreskog and Goldberger, 1972): 

tttttttttttt WWWWU ′′′′′′′′′′′′′′′′′′ +=, ,      (10) 

where ttttU ′′′′′′ ,  and 
ttW ′  represent typical elements respectively of U and W.  

Expressions (8) and (9) imply (Browne, 1982) that ( , )
GLS

F S Σ  takes the form:    

( ) ( ) }]{[
2

1
, 21−

− Σ−⋅






=Σ WStrSF NORMGLS ,    (11) 
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where GLS-NORM indicates that this choice of fitting function is based upon an underlying 

normality assumption. There are two natural choices of W. The first is given by S, since this (
w

S  in 

our setting) is assumed consistent for Σ . In this case we may write: 

   ( ) ( ) }]{[
2

1
}]{[

2

1
, 2121

1
−−

− Σ−⋅






=Σ−⋅






=Σ SItrSStrSF NORMGLS
. (12) 

An alternative choice is to set W equal to Σ , leading to: 

   ( ) }]{[
2

1
, 21

2 IStrSF NORMGLS −Σ⋅






=Σ −
− .    (13) 

We denote the resulting estimators of θ  as 1
ˆ

NORMGLS −θ  and 2
ˆ

NORMGLS −θ . An alternative approach, 

not based on the working assumption of normality, is to set U equal to an estimator of the 

asymptotic covariance matrix of ( )vech S , making no assumption about the underlying distribution. 

Such an approach is often called asymptotically distribution free (ADF). See e.g. Browne (1982, 

1984).  We shall consider the use of linearization methods of variance estimation for this purpose in 

the next section, following some earlier applications of this idea in Skinner (1989), Satorra (1992), 

and Muthén and Satorra (1995).  

Another approach to estimation is achieved by adopting the pseudo-maximum likelihood (PML) 

approach (Skinner, 1989) in which a census log-likelihood (assuming independent and identically 

distributed observations) is replaced by a weighted log-likelihood given by (ignoring constants):  

( ) ( )∑
∈

− −Σ′−−Σ−
si

iiiii XXwN ][][log
1

βyθβyθ    (14) 

If this weighted likelihood is first ‘concentrated’ by replacing β  by β̂ , maximising expression (14) 

becomes equivalent to minimising the value of the following fitting function:  

[ ] TSStrSFPML −Σ−Σ=Σ −− 11 log),( ,     (15) 

with S evaluated at 
w

S  to take account of the complex design and nonresponse. Alternatively, if this 

initial concentration does not take place, θ  could be estimated simultaneously with β  by 

maximising expression (14). If N is unknown, it might be replaced in (14) by ∑
=

=
n

i

iwN
1

ˆ .    
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The properties of the GLS-NORM1 and PML approaches may be compared by noting first that 

(12) may be alternatively expressed as (see Fuller, 1987, p. 334) 

   2
1

1

1
( , ) ( 1) ( 1)

2

T

GLS NORM w t
t

F S n λ−
=

Σ = − −∑ ,       

where 
tλλ ,,1 …  are the eigenvalues of 2/12/1 −− Σ ww SS . Similarly, (15) may alternatively be expressed as  

   1

1

( , ) (log )
T

PML w t t
t

F S λ λ −

=
Σ = +∑ .       

Moreover if the model holds, i.e. if ( )θΣ=Σ , both GLS-NORM1 and PML estimators are obtained 

by minimizing (see Fuller, 1987, p. 335) ∑
=

−
T

t

t

1

2)1(λ . Thus the GLS-NORM1 and PML estimators 

may be considered asymptotic equivalent. 

 

5. Variance estimation 

In this section, we consider variance estimation for two purposes: first, to determine possible 

matrices U to use in the generalised least squares fitting function in (8) and, secondly, for the 

purpose of estimating standard errors of the estimators of θ  considered in the previous section.  

As a preliminary step, we consider estimation of the variances and covariances of the elements 

of 
w

S , i.e. we seek to estimate the asymptotic covariance matrix of the vector ( )
w

vech S . To 

establish the asymptotic covariance matrix with respect to the sampling design, nonresponse and the 

underlying model requires defining a sequence of populations, sampling designs/nonresponse 

mechanisms and samples. We suppose that this sequence is such that there exists a non-negative 

definite matrix C such that the limiting distribution of )}()({ Σ−vechSvechn w  is normal with a 

mean vector consisting of zeros and covariance matrix, C (c.f. Isaki and Fuller, 1982), i.e.  

{ ( ) ( )} N(0, )
w L

n vech S vech C− Σ → .    (16) 

We seek an estimator of the asymptotic covariance matrix 1n C− . From (6), we may write 

1

1 1

ˆ[ ] c
n n

w i i i
i i

vech S w w

−

= =

 =  
 
∑ ∑ ,     (17) 
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where ( )iii vech εεc ′= ˆˆˆ  and βyε ˆˆ
iii X−= . In order to employ the linearization method of variance 

estimation, we first linearize expression (17) to obtain: 

( ) ∑
=

−+=
n

i

iwzw nSvech
1

1 u� µɺ ,     (18) 

where ( )wziiwi w µµ /1
�cu −= − , ( )iii vech εεc ′= , βyε

~
iii X−= , )(

1

1∑
=

−=
n

i

iiz wnE c� , 1

1

( )
n

w i
i

E n wµ −

=
= ∑  

and )ˆlim(
~

ββ p= . A linearization estimator of the asymptotic covariance matrix of ( )
w

vech S  may 

then be obtained (Wolter, 2007) by constructing an estimator of the covariance matrix of the linear 

statistic ∑
=

−
n

i

in
1

1 u , allowing for the complex design, and then replacing iu  by 

)/ˆ(ˆ 1
www iii zcu −= −  where 1

1

n

i
i

w n w
−

=
= ∑  and ∑

=

−=
n

i

iiwn
1

1 cz . 

Any feature of a complex design could, in principle, be handled in this linearization approach. 

Here, however, we only consider the case of a multistage stratified sampling scheme, where 

primary sampling units (PSUs) are sampled with replacement at the first stage within H strata 

independently, and sampling with or without replacement is used at subsequent stages. In this case, 

we rewrite ∑
=

−
n

i

in
1

1 u  as ∑∑∑
= = =

−
H

h

m

j

n

i

hji

h hj

n
1 1 1

1 u , where the triple suffix refers to elements within PSUs 

within strata, hm  is the sample number of PSUs in stratum h, nhj is the sample number of elements 

in PSU j in stratum h, and hjiu  is the 1×k  vector for element i in PSU j in stratum h. A standard 

estimator for the covariance matrix of ∑∑∑
= = =

−
H

h

m

j

n

i

hji

h hj

n
1 1 1

1 u  under this sampling scheme, assuming the 

hjiu  are observed and ignoring finite population corrections, is given by (Shah et al., 1995) 

( ) ( ) ( )∑ ∑∑∑∑
= =

++
−

= = =

−













−







−′−=







 H

h

h

m

j

lhlhjvhvhjh

lv

H

h

m

j

n

i

hjiL mmnn
hh hj

1 1
,,,,

2

,1 1 1

1 1v uuuuu ,  (19) 
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where ∑
=

+ =
hjn

i

hjihj

1

uu , ∑
=

+
−=

hm

j

hjhh m
1

1 uu  and the subscripts v and l denote respectively ( )ttv ′= ,  and 

( )ttl ′′′′′= , . Finally, to obtain a linearization estimator ( ){ }wL Svechv  of ]}[var{ wSvech , the values 

hjiu  in (19) need to be replaced by values hjiû , defined in the same way that iû  was defined above 

in terms of iu . The asymptotic validity of this variance estimator depends on each hm  being large if 

H is regarded as fixed. 

In the special case when the population consists of only one stratum and each individual i is a 

PSU, we rewrite (19) as  

( ) ( ) ( )]1[v
1

,,

,1

1 −






 −′−=







∑∑

==

−
nnn

n

i

llivvi

lv

n

i

iL uuuuu  

where ∑
=

−=
n

i

in
1

1 uu . When iu  is replaced by iû , we find u  reduces to zero and the linearization 

estimator of ]}[var{ wSvech  is: 

{ }
( )( )

( )( )2
L   2

1

1

ˆ ˆ ˆ ˆv (S )

1

n

w i it it w tt it it w t t
n i

i
i

n
vech w S S

n w

ε ε ε ε′ ′ ′′ ′′′ ′′ ′′′
=

=

= − −∑

− ∑

, (20) 

corresponding to the estimator proposed by Browne (1984) when the sampling weights are constant. 

Replacing U by ( ){ }wL Svechv  in (8) gives a fitting function and a point estimator which we 

denote ( , )
GLS L

F S− Σ  and LGLS −θ̂  respectively. In the classical setting of independent and identically 

distributed observations the latter estimator is usually referred to as the ADF estimator. The 

estimator may allow for the complex design both through weighting in 
w

S  and through the choice 

of linearization variance estimator ( ){ }wL Svechv . 

We now turn to the estimation of the variance of GLS estimators of θ . Assuming (16) and 

using linearization again (Skinner and Holmes, 2003), the asymptotic variance of the GLS estimator 

based upon the fitting function in (8) with a specified matrix U is: 

( ) ( ) ( ) 1111111ˆvar
−−−−−−− ∆∆′∆∆′∆∆′= UCUUUnθ ,    (21)  
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where 
( )[ ]{ }

θ

θ

∂
Σ∂=∆ vech

. 

The linearization estimator of this variance is then obtained by replacing ∆  in (21) by ∆̂ , 

defined as ∆  evaluated at θθ ˆ= , and by replacing 1n C−  by a variance estimator ( ){ }wL Svechv  as 

discussed above.  When there are no covariates, this approach corresponds to estimation methods 

proposed by Skinner (1989), Satorra (1992), Muthén and Satorra (1995) and Skinner and Holmes 

(2003).  

If U is chosen to be consistent for 1n C− , expression (21) reduces in the limit to: 

( ) ( ) 111ˆvar
−−− ∆∆′= Unθ  .      (22) 

Let us now consider estimation of the asymptotic covariance matrix of the PML point estimator 

PMLθ̂ . Following Binder (1983), we may write this asymptotic covariance matrix as:    

( ) ( )[ ] ( )[ ] ( )[ ] 11
varˆvar

−−= θθφθθ IIPML ,     (23) 

where ( )θφ  is the 1×b  pseudo-score function with jth element given by: 

( ) ( ) ( ) ( )[ ] ( ) ( )












∂
Σ∂Σ−ΣΣ=

∂
∂

= −−

j

11

j

j θθ
φ θ

θθθ
θ

θ w

PML Str
F

,  (24) 

using (14), and ( )θI  is the bb ×  pseudo information matrix ( ) ( ) θθφθ ∂∂−=I . To estimate the 

asymptotic covariance matrix of PMLθ̂  it is therefore necessary to estimate the covariance matrix of 

( )θφ . We may write:  

( ) ( ) ( )

∑

∑

=

=− +












∂
Σ∂Σ=

n

i

i

n

i

iji

w

zw

θ
trφ

1

1

j

1

j

θ
θθ ,      (25) 

where ( ) ( ) ( ) iiiz εθ
θ

θε
1

j

1

j

−− Σ
∂
Σ∂Σ′−=
θ

  .          (26) 

Linearizing the ratio in (25) gives: 

( ) ( ) ( )
∑

=

−








−++













∂
Σ∂Σ=

n

i ww

a

i

w

a
a

nθ
tr

1

j

j

j

j

1

j

11

µµ
µ

µ
µ

φ θ
θθ   
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where iii zwa jj = , ( )jj aEa =µ and ∑
=

−=
n

i

iana
1

j
1

j . 

The covariance matrix of ( )θφ  may thus be approximated by   

  ( ) 






= ∑
=

−
n

i

in
1

1var}var{ uθφ ɺ ,        

where iu  is the 1b× vector with jth element given by: 









−⋅

w

a

i

w

a
µ
µ

µ
j

j

1
.       (27) 

This covariance matrix may be estimated for a complex design as above, for example using 

(19), where iu  is, as above, replaced by iû , which is obtained by replacing θ  by θ̂  and iε  by iε̂  in 

(26) to give ˆ
ij

z , setting iii zwa jj ˆˆ =  and replacing ia j , jaµ  and 
w

µ  in (27) by ia j
ˆ , ∑

=

−
n

i

ian
1

j
1 ˆ  and w  

respectively. The linearization estimator of the variance of PMLθ̂  is then obtained from (23) by 

replacing ( )[ ]θφvar  by this estimator and by replacing θ  by θ̂   in ( )θI . 

Notice that the evaluation of the information matrix ( )θI  requires differentiating ( )θPMLF  and 

hence ( )θΣ  with respect to θ  twice. Some simplification is achieved by assuming that the model is 

correct, i.e. that [ ] ( )θΣ=wSE . If we then replace the information matrix in (23) by  

  ( ) ( )







∂
∂−=
θ

θφ
θ EI

~
, 

which is asymptotically equivalent, we find from (24) that the jkth element of ( )θI
~

 may be 

expressed as:  

( ) ( ) ( ) ( ) ( )












∂
Σ∂Σ

∂
Σ∂Σ= −−

k

trI
θθ
θ

θ
θ

θθ
1

j

1

jk

~
, 

and we only need to differentiate ( )θΣ  once.  
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6. Simulation with British Household Panel Survey data 

In this section we shall assess the properties of the point and variance estimation procedures of 

sections 3 and 4 using a simulation study. In order to simulate from a realistic model, we shall base 

our study upon a regression analysis undertaken by Berrington (2002), with individual women as 

units of primary analytic interest and a measure of attitude to gender roles as the outcome variable, 

y.  

The data come from waves 1, 3, 5, 7 and 9 (collected biannually between 1991 and 1999) of the 

British Household Panel Survey (BHPS) and these waves will be coded 1,..., 5t T= =  respectively. 

Respondents were asked whether they ‘strongly agreed’, ‘agreed’, ‘neither agreed nor disagreed’, 

‘disagreed’ or ‘strongly disagreed’ with a series of statements concerning the family, women’s 

roles, and work out of the household. Responses were scored from 1 to 5.  Factor analysis was used 

to assess which statements could be combined into a gender role attitude measure. The attitude 

score, 
ity , considered here is the total score for six selected statements for woman i at wave t. 

Higher scores signify more egalitarian gender role attitudes. Covariates for the regression analysis 

were selected on the basis of discussion in Berrington (2002) and include economic activity, which 

distinguishes in particular between women who are at home looking after children (denoted ‘family 

care’) and women following other forms of activity in relation to the labour market. Variables 

reflecting age and education are also included since these have often been found to be strongly 

related to gender role attitudes (e.g. Fan and Marini, 2000). All these covariates may change values 

between waves. A year variable (scored 1, 3, …, 9) is also included. This may reflect both historical 

change and the general ageing of the women in the sample. 

The BHPS is a household panel survey of individuals in private domiciles in Great Britain 

(Taylor et al., 2001). The sample was selected by a stratified multistage design, with individuals 

being selected with (approximately) equal inclusion probabilities. Given the interest in whether 

women’s primary labour market activity is ‘caring for a family’, our study population is defined as 

women aged 16-39 in 1991. This results in a subset of data on n = 1340 women. This subset 
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consists of the longitudinal sample of women in the eligible age range for whom full interview 

outcomes were obtained in all five waves. 

The simulation study consisted of simulating D replicate samples. Two approaches to 

generating the replicate samples were considered. The first involved both drawing a sample and 

generating 
ity  from a specified model, independently for each replicate. The second only involved 

the latter part, i.e. generating 
ity . Since we found the results virtually identical for the two 

approaches we only report the results for the second. For simplicity, we ignored stratification and 

survey weights. We considered only two sampling schemes: simple random sampling of individuals 

and two-stage sampling, consisting of simple random sampling of sim
m  primary sampling units 

(PSUs), followed by simple random sampling of sim

jn  individuals within each sampled PSU j. The 

population PSUs were defined to be 47 geographically contiguous clusters, formed by aggregating 

the original PSUs which consisted of 248 postcode sectors. The 1340 women were spread fairly 

evenly across these 47 PSUs. This aggregation was undertaken to strengthen the potential impact of 

clustering for the methodological purposes of this study, as in Skinner and Vieira (2007).  

In the first approach, the values itx  for the 1340 women were held fixed and subsamples of 

specified size 100, 200,500simn =  were drawn from these 1340 women according to the sampling 

scheme. The 
ity  were then simulated from specified models, independently for each replicate given 

these itx  values. The distribution across replicate samples may then be interpreted as joint with 

respect to both the sampling design and the model (for 
ity  conditional on itx ). In the second 

approach a single sample was drawn in the same way, but then retained across all replicates. The 

distribution across replicate samples may then be interpreted as being with respect only to the 

model.  The fact that the two approaches gave virtually the same results appears to be because the 

x β
it

 term in the model is assumed to be correctly specified and therefore the choice of sample has 

little impact on the distribution (with respect to the model) of 
w

S  and hence of θ̂  for the sample 

sizes considered. 
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The 
ity  were generated from either the UCM model or the UCM(C) model from Section 2, with 

parameters set at the values obtained from fitting these models to the BHPS subset and errors 

following either the normal distribution or a t distribution. When simulating from the UCM(C) 

model, the clusters consisted of the actual 47 PSUs above so that the clustering displayed by the  

itx values corresponded to that in the actual BHPS data, whereas the clustering in the 
ity values was 

generated from the (fitted) UCM(C) model.  

The implementation of the estimation procedures in sections 3 and 4 generally required iterative 

numerical methods, although explicit expressions for computation could be obtained in some 

special cases. The numerical minimisation of the fitting functions or maximisation of the pseudo 

likelihood was generally achieved through the numerical solution of equations obtained by 

differentiating the fitting functions. Several alternative methods for performing the numerical 

solution were considered. We eventually adopted an iterative Newton type algorithm, similar to that 

suggested by Pourahmadi (1999), and available in the function nlm of the statistical computer 

software R (R Development Core Team, 2003). The use of several other alternatives for performing 

the necessary numerical minimizations was also considered, but their performance was either the 

same or worse than the Newton type algorithm. In a small number of cases for the LGLS −θ̂ and 

2
ˆ

NORMGLS −θ  estimators, the iterative algorithms failed to converge. The non-convergence rates for 

the LGLS −θ̂  estimator varied across simulation set-ups between 0.1% and 1.0% of the replicate 

samples, while these rates varied from 0.1% to 0.3% for the 2
ˆ

NORMGLS −θ  estimator. For all the 

remaining estimation methods convergence was always achieved. The cases of non-convergence are 

omitted from the tables presented below.   

 

6.1 Point estimators  

In this subsection, we aim to present results based on 1000=D  replicate samples, derived as set out 

above. Five point estimators were considered: ULS, GLS-NORM1, GLS-NORM2 and PML, 
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defined in (7), (12), (13) and (15) respectively, and GLS-L, defined by (8) with U given by the 

estimator in (20). It was in fact found that the ULS and PML estimation methods produced virtually 

identical results for the UCM model and similar results for other models, a finding corresponding to 

that of Bollen (1989, p. 112). We therefore do not present the ULS results and focus instead on the 

remaining four estimators, assessing their properties in terms of relative bias and coefficient of 

variation (cv), estimated from across the replicate samples.  

Table 1 presents results produced when the UCM model with normal errors is used both to 

generate the 
ity  values and as a basis for model fitting. The parameter vector ( )′= 22 , vu σσθ  contains 

two parameters of interest. In this case, we might expect the estimators 1
ˆ

NORMGLS −θ , 2
ˆ

NORMGLS −θ  and 

PMLθ̂  which exploit the normality to outperform the estimator LGLS−θ̂  which does not. In fact we 

observe little difference between the performance of this estimator and that of 1
ˆ

NORMGLS −θ . We do 

observe that 2
ˆ

NORMGLS −θ  performs consistently better than 1
ˆ

NORMGLS −θ  (though sometimes only 

slightly) with respect to relative bias and to a lesser extent with respect to coefficient of variation. 

The estimator PMLθ̂  has a similar performance to 2
ˆ

NORMGLS −θ  with respect to coefficient of variation 

but displays different patterns of relative bias, being worse for 2
uσ  but slightly better for 2

vσ  . We 

repeated the simulation in Table 1 using the AR1 model and found similar results, which are not 

reported here.    

In Table 2, we consider the impact of clustering, with the data now generated from the UCM-C 

model. The UCM model continues to be the fitted model. We considered both normal and t-

distributed errors and present the results for t-distributed errors in Table 2. We expected the main 

difference between Table 2 and Table 1 to be an increase in cv from the clustering, but we also 

noticed an appreciable if not entirely consistent increase in relative bias. We again find that 

2
ˆ

NORMGLS −θ  performs consistently better than 1
ˆ

NORMGLS −θ  with respect to relative bias, but this is now 

not necessarily the case with respect to cv. As the sample sizes increase, we note that again 
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2
ˆ

NORMGLS −θ  and PMLθ̂  appear to be the preferred methods with respect to relative bias. In particular, 

PMLθ̂  performs especially well for the relative bias of 2
vσ̂ . There does not appear to be a great 

difference between all four methods with respect to cv, but there was a slight tendency for  

2
ˆ

NORMGLS −θ  to be outperformed by the other three methods. Simulation results produced for AR1 

model fitting in the current situation, which are not presented again, generally agreed with results 

presented in Table 2.     

We focus on the impact of clustering in Table 3, where the inflation of mean squared error 

(MSE) arising from the incorporation of cluster effects in the data generation process is considered, 

in the case when 100=sim
n  and the errors are t distributed. There are no major differences between 

the estimation methods in terms of the MSE inflation, although the impact appears to be least for 

the  GLS-L method.   

Overall, these simulation results produced for the ADF method GLS-L generally agree with the 

covariance structure modelling literature (e.g. Bollen, 1989, p. 432; Satorra, 1992), where it is 

recommended that those methods should be adopted only in situations with large sample sizes 

(1000 or more), for dealing with situations where departures from normality conditions are evident. 

We may emphasize that ADF methods have in several situations had good general performance, 

even though these methods have not shown ‘good’ levels of bias. PML point estimators have in 

general produced very good performance in terms of bias and variance, particularly the former. The 

good performance of PML is particularly marked for the relative bias of  2
vσ̂ . 

 

6.2 Variance estimators  

We now consider the properties of the linearization variance estimators denoted vL in section 4.  We 

restrict attention to their use in the estimation of the variance of the two point estimators: 1
ˆ

NORMGLS −θ  

and PMLθ̂ . To provide benchmarks for comparison, we also consider the variance estimator, nvar (.) , 

which is based upon the assumption of both normality and independent and identically distributed 
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observations, and the estimator dfvar (.)  which allows for non-normality but still assumes 

independent and identically distributed observations. The subscript n denotes naïve. In the case of 

1
ˆ

NORMGLS −θ , nvar (.)  and dfvar (.)  are obtained from (22) and (21) respectively, with U given by (10) 

and 
w

W S= . In the case of PMLθ̂ , nvar (.)  is given by ( )[ ] 1−
θI . 

To evaluate the properties of these variance estimators, the replicate samples were obtained 

from two-stage sampling, as described earlier. The number of sampled PSUs, sim
m , was set to be 

15, 20 or 47. The number of individuals sampled in the jth selected PSU is denoted sim

jn .  The UCM-

C model was used to generate the values of 
ijt

y  now using 000,10=D  replicates. The parameters 

of the UCM-C model were the same as in the simulations in section 5.1. , except that there were 

some different choices for 2
ησ : 15.0C,  2 ≅sim

ησ , 45.0C,  2 ≅sim

ησ , and 75.0C,  2 ≅sim

ησ ; to enable the 

evaluation of effects of different impacts of clustering on the variance estimation procedures. The 

fitted model was taken as the UCM model. 

Table 4 displays results produced when considering 47=simm  and 15=sim

jn . The first three 

variance estimators do not take the clustering into account and, as anticipated, clearly underestimate 

the variance. The degree of underestimation increases with 2
ησ , i.e. the more clustering the more 

downward relative bias.  

Both methods that allow for clustering have improved properties in terms of relative bias, 

compared to the first three methods in Table 4. They still tend to be biased downwards, however, 

corresponding to other findings for linearization variance estimation (Wolter, 2007, Chapter 8; Kott, 

1991). Furthermore, these two methods had larger variances than the first three methods, as 

expected  as a result of the reduced degrees of freedom for variance estimation.  

Table 5 includes results that were produced when considering 20=simm  and 15=sim

jn , i.e. 300 

cases. Under this situation, the linearization variance estimators which allow for the complex 

sampling again led to noticeable improvements in terms of relative bias when compared to methods 

that ignored the sampling scheme. The smaller number of sample clusters does, however, seem to 
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have led to some increases in relative bias, although these are still smaller than the cvs. Neither the 

relative bias nor the cv were found to vary greatly with 2
ησ .  

Table 6 includes results that were produced when 15=simm  and 10=sim

jn , i.e the number of 

SSUs selected per cluster was further reduced, and the sample size was diminished to 150. Further 

increases in relative bias were observed although again the relative biases were smaller than the cvs. 

As in Table 5 there was no strong relationship between either the relative bias or the cv with 2
ησ .   

In summary, the linearization method which allows for clustering appears to perform reasonably 

well for both the PML and the GLS-NORM1 point estimators for a range of possible clustering 

effects, although there is a tendency for the variance to be seriously underestimated if the number of 

sampled clusters is small, say twenty or below. 

 

7. Conclusion 

This paper has proposed some methods for making inference about parameters in panel data 

models, allowing for complex sampling schemes. Methods have been evaluated using a simulation 

study based upon data from the British Household Panel Survey. The study indicated that: (i) 

overall, most of the proposed point estimation methods perform satisfactorily; (ii) the 

asymptotically distribution free point estimator performed reasonably but did not show significant 

improvements on the other methods and did occasionally suffer from lack of convergence (iii) 

pseudo maximum likelihood (PML) estimators produced satisfactory performance in terms of bias 

and variance, even when the normality assumption was violated.  

Linearization methods for variance estimation for GLS and PML point estimators were 

considered. The results of the simulation study suggested that: (iv) methods that do not take the 

sampling scheme into account underestimate the variance, in some situations very gravely; (v) 

underestimation tends to increase rapidly with inflation in the impacts of clustering; (vi) the 

linearization estimator of the variance of the PML point estimator has an evidently better 

performance in terms of bias than the linearization estimator of the variance of the GLS estimator.   
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Overall, the most satisfactory results in the simulation study were obtained from the 

combination of the PML point estimator (defined via expression (15)) and the associated 

linearization variance estimator (defined below expression (23)). The advantages of this combined 

approach were that: computation did not lead to problems of convergence; the point estimator had 

good relative performance in terms of both bias and variance, particularly the former; the bias 

performance of this variance estimator was more favourable than that for the GLS estimator.   
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Estimator 
100=n  200=n  500=n  1340=n  

rel bias cv  rel bias cv  rel bias cv  rel bias cv  

1
ˆ
GLS NORM

θ −  

2ˆ
uσ  -16.76% 17.77% -9.21% 12.14% -3.40% 7.16% -1.42% 4.29% 

2ˆ
vσ  -9.70% 8.41% -4.68% 5.56% -1.74% 3.39% -0.74% 1.90% 

2
ˆ
GLS NORM

θ −  

2ˆ
uσ  -6.43% 17.69% -3.77% 11.77% -1.18% 7.12% -0.60% 4.27% 

2ˆ
vσ  6.41% 7.19% 3.51% 5.20% 1.59% 3.27% 0.47% 1.88% 

ˆ
GLS L

θ −  

2ˆ
uσ  -15.79% 19.44% -9.23% 12.76% -3.41% 7.19% -1.46% 4.33% 

2ˆ
vσ  -9.89% 9.04% -4.60% 5.83% -1.72% 3.44% -0.74% 1.93% 

ˆ
PMLθ  

2ˆ
uσ  -9.94% 17.18% -5.61% 11.68% -1.92% 7.08% -0.88% 4.26% 

2ˆ
vσ  0.89% 6.84% 0.74% 5.09% 0.47% 3.25% 0.06% 1.87% 

 
Table 1 – Properties of point estimators when both fitted model and true model are UCM. 

 

 

Estimator 
100=n  200=n  500=n  1340=n  

rel bias cv  rel bias cv  rel bias cv  rel bias cv  

1
ˆ
GLS NORM

θ −  

2ˆ
uσ  -16.73% 29.27% -8.75% 22.07% -4.05% 12.10% -1.63% 7.54% 

2ˆ
vσ  -12.30% 10.98% -7.13% 8.08% -2.65% 5.23% -1.02% 3.28% 

2
ˆ
GLS NORM

θ −  

2ˆ
uσ  -7.11% 29.26% -3.32% 22.28% -1.78% 12.17% -0.76% 7.53% 

2ˆ
vσ  9.45% 14.00% 4.83% 9.92% 2.18% 6.08% 0.92% 3.66% 

ˆ
GLS L

θ −  

2ˆ
uσ  -21.82% 29.11% -13.00% 18.55% -6.16% 11.72% -2.56% 7.44% 

2ˆ
vσ  -17.18% 11.74% -11.54% 8.23% -5.58% 5.16% -2.75% 3.21% 

ˆ
PMLθ  

2ˆ
uσ  -10.33% 28.91% -5.16% 22.00% -2.54% 12.10% -1.05% 7.53% 

2ˆ
vσ  1.56% 10.84% 0.62% 8.62% 0.51% 5.55% 0.26% 3.47% 

 
Table 2 – Properties of point estimators when fitted model is UCM and true model is UCM-C with t distributed errors 
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Estimator UCM model AR1 model 

ˆ
ULSθ  

2ˆ
uσ  1.44 1.46 

2ˆ
vσ  0.89 0.93 

γ̂  - 1.01 

1
ˆ
GLS NORM

θ −  

2ˆ
uσ  1.27 1.27 

2ˆ
vσ  0.93 0.92 

γ̂  - 1.01 

2
ˆ
GLS NORM

θ −  

2ˆ
uσ  1.52 1.53 

2ˆ
vσ  0.95 1.06 

γ̂  - 1.10 

ˆ
GLS L

θ −  

2ˆ
uσ  1.22 1.23 

2ˆ
vσ  0.86 0.89 

γ̂  - 0.82 

ˆ
PMLθ  

2ˆ
uσ  1.44 1.45 

2ˆ
vσ  0.89 0.99 

γ̂  - 1.04 

  

 
Table 3 – Ratios of MSEs of estimators with data generated from UCM-C model (numerator) and from UCM model 
(denominator) (n=100 and t-distributed errors).  

 

 

Variance Estimator 
rel bias ( )( )θ̂varcv  

15.02 =ησ  45.02 =ησ  75.02 =ησ  15.02 =ησ  45.02 =ησ  75.02 =ησ  

( )ˆvar
n PML

θ  
)ˆvar( 2

uσ  -0.39% -7.75% -11.43% 14.07% 14.27% 14.54% 

)ˆvar( 2
vσ 1.78% -2.44% -0.30% 8.54% 8.54% 8.59% 

( )1
ˆvar

n GLS NORM
θ −

 
)ˆvar( 2

uσ  -1.54% -8.96% -12.47% 10.71% 11.14% 11.37% 

)ˆvar( 2
vσ -5.18% -10.25% -7.14% 5.39% 5.54% 5.47% 

( )1
ˆvardf GLS NORMθ −

 
)ˆvar( 2

uσ  -1.51% -9.07% -12.60% 14.13% 14.34% 14.61% 

)ˆvar( 2
vσ -4.14% -9.20% -6.01% 8.62% 8.70% 8.69% 

( )ˆ
L PML

v θ  
)ˆvar( 2

uσ  0.27% -4.58% -3.55% 24.65% 25.41% 26.85% 

)ˆvar( 2
vσ 2.53% -2.35% 0.99% 22.01% 21.86% 21.98% 

( )1
ˆv

L GLS NORM
θ −

 
)ˆvar( 2

uσ  -0.85% -6.02% -4.91% 24.78% 25.51% 27.00% 

)ˆvar( 2
vσ -3.48% -9.13% -4.80% 22.33% 22.24% 22.43% 

  

 

Table 4 – Properties of variance estimators, when UCM is fitted model, UCM-C is true model, 47=simm  and 

15=sim

jn . 
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Variance Estimator 
rel bias ( )( )ˆvarcv θ  

15.02 =ησ  45.02 =ησ  75.02 =ησ  15.02 =ησ  45.02 =ησ  75.02 =ησ  

( )ˆv
L PML

θ  
)ˆvar( 2

uσ  -5.17% -5.25% -4.69% 38.07% 39.03% 40.75% 

)ˆvar( 2
vσ  -1.54% -0.69% -0.49% 33.55% 33.79% 34.44% 

( )1
ˆv

L GLS NORM
θ −

 
)ˆvar( 2

uσ  -7.31% -7.60% -6.55% 38.42% 39.17% 40.83% 

)ˆvar( 2
vσ  -14.17% -12.87% -12.23% 34.26% 34.39% 35.00% 

  

 

Table 5 – Properties of variance estimators, when UCM is fitted model, UCM-C is true model, 20=simm  and 

15=sim

jn . 

 

 

Variance Estimator 
rel bias ( )( )ˆvarcv θ  

15.02 =ησ  45.02 =ησ  75.02 =ησ  15.02 =ησ  45.02 =ησ  75.02 =ησ  

( )ˆv
L PML

θ  
)ˆvar( 2

uσ  -5.48%  -6.11%  -4.87%  47.86% 47.80% 50.19% 

)ˆvar( 2
vσ  -3.41%  -2.68% -1.38% 41.05% 40.43% 40.87% 

( )1
ˆv

L GLS NORM
θ −

 
)ˆvar( 2

uσ  -9.26%  -9.63%  -8.64%  48.57% 48.09% 50.85% 

)ˆvar( 2
vσ  -23.34%  -24.21%  -21.92%  42.07% 41.22% 41.86% 

  

 

Table 6 – Properties of variance estimators, when UCM is fitted model, UCM-C is true model, 15=simm  and 

10=sim

jn . 

 

 

 
 

 

 

 

 


