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This paper presents a simple kinetic equation for the analysis of the runaway electron distribution 

function (EDF) during a dense gas breakdown in high electric fields. Characteristic scales (in 

energy and space) are obtained from a formal solution of the kinetic equation, and an analytical 

solution for the EDF is derived in the plasma region where the EDF does not depend on spatial 

coordinates and depends on electron velocity and time via a combination /t v aξ = − , where a  

is the net electron acceleration. Kinetic analysis of the cathode sheath dynamics confirms the 

absence of the cathode directed ionisation wave in the absence of electron emission from the 

cathode. 

 

 

1. Introduction 

Breakdown of dense gases by high voltage pulses 

with sharp fronts is currently being investigated for a 

variety of applications [1].  The theory of pulsed 

breakdown in dense gases under different conditions 

is at early stages of development. The peculiarities 

of pulsed gas breakdown and basic scaling laws are 

discussed in [2]. The appearance of runaway 

electrons during pulsed breakdown is rather 

beneficial for the production of uniform plasma at 

high pressures.  

We have previously developed an analytic theory 

of pulsed breakdown at low E/N, under conditions 

where no runaway electrons appear in the gap [3]. It 

was possible to better understand the physics of the 

breakdown process using the assumption of a sharp 

front separating a cathode sheath and a plasma 

region. It was shown that during the breakdown the 

sheath expands a distance comparable to the gap 

length. In the presence of electron emission from the 

cathode, the sheath collapses at a later stage of the 

breakdown development. With no electron emission, 

the sheath remains thick. 

Comparison with numerical experiments has 

shown that it is extremely difficult to reproduce the 

analytical results under conditions with no electron 

emission at the cathode. The computational fluid 

models of different levels of sophistication show the 

sheath collapse due to numerical diffusion. 

The goals of this paper are to obtain analytical 

solutions of a simplified kinetic equation for 

runaway electrons in high electric fields and to 

confirm the main conclusions of the pulsed 

breakdown theory [3] at the kinetic level, for higher 

electric fields. 

 

2. Kinetic Equation for Runaway Electrons 

Electron collision cross-sections with neutral 

atoms fall with energy at energies exceeding 100 eV. 

That is why strong electric fields can continuously 

accelerate electrons to high energies leading to 

electron runaway. In spatially non-uniform fields, 

the runaway electrons can produce an intense non-

local ionization and luminosity in the areas with no 

electric field. Understanding of these phenomena is 

far from complete because simultaneous account of 

electron scattering and deceleration in collisions is a 

very challenging task. Additional difficulties appear 

due to lack of reliably cross-section data for the 

description of electrons with energies 10-100 eV, 

especially on angular dependences of inelastic cross-

sections.  Simple approximations of weak EDF 

anisotropy and diffusion, both in space and energy, 

are violated in high electric fields and/or for the 

energetic electrons [4]. 

State-of-the-art models for simulations of 

runaway electrons in weakly ionised plasmas can be 

found in [5,6]. A simplified kinetic equation for fast 

electrons was proposed in [7] in the form: 

[ ]v
F F

aF S
t x v

∂ ∂ ∂
+ + =

∂ ∂ ∂
   .          (1) 

Here ( )( )a eE NL w m= −  is the net electron 

acceleration due to energy gain in the electric field 

and continuous energy loss in collisions with atoms. 

This equation neglects electron scattering (see 

Figure 1) and describes the energy loss as dynamic 

friction with an energy-loss function ( )L w , where 

w is the electron kinetic energy. 



 

28th ICPIG, July 15-20, 2007, Prague, Czech Republi  

 

 

atom sketch

“slow” electron

runaway electron

nucleus

=eEdv
dt

E=E
x

E=E
x x

 

Fig. 1 Electron scattering is neglected thanks to the 

continued net acceleration. 

 

This function has a smooth maximum at energies 
210w ∼  eV and corresponds to the Bethe-Bloch law 

at higher electron energies [7]. The source of newly 

born electrons is approximated in the form: 

( ) ( )
0

' , , ' 'S c v v F t x v dvδ
∞

= ∫      ,         (2) 

where 0/c NL ε= . 0ε  is the energy loss per 

creation of ion-electron pair, and N  is the neutral 

particle density. It is assumed that new electrons are 

born with low energy and described by the ( )vδ  - 

Dirac delta function. 

 

For the analysis of gas breakdown, we assume the 

initial distribution function in the form: 

( ) ( ) ( ) ( )0 00 ,F t F x v n v xδ η= = =    ,       (3) 

where 
0n  is the initial electron density, η  is the step 

function. In this paper, we assume that no electrons 

are emitted at the cathode (located at 0x ≤ ). 
 

2.1. The EDF formation during breakdown 

The general solution of (1, 2) can be obtained by the 

method of characteristics. The characteristics are 

defined as a solution of the system: 

( ) 0, 0
dx

v x t x
dt

= = = , (4) 

( ) ( ) 0, , , 0
dv

a t x v v t v
dt

= = = . (5) 

Along the characteristics the EDF obeys the 

equation: 

( )0 0, ,
dF

S t x v
dt

=  . (6) 

The general solution of (2, 4-6) can be written in the 

form: 

0 0 0

0 0 0

( , , ) ( , ) ' '
( , , )

c
F t x v F x v v Fdv

a t x v

∞

= + ∫  , (7) 

where t  is defined as a solution of 0 0( , , ) 0v t x v = . 

We assume that the electric field increases 

instantaneously to a high value corresponding to 

0a > . 

 

2.2. The case of constant electric field 

During the first breakdown stage, the density of 

electrons and ions is low and the electric field is 

unperturbed by the space charge. In this case, the 

characteristics have the simplest form 
2

0 0 0, / 2v at v x at v t x= + = + +  . (8) 

We can distinguish two types of characteristics. The 

first type corresponds to initial electrons starting 

with zero velocity at 0t =  (see Figure 2). For them, 

0 0v = . Thus, all primary electrons are located at 

2 / 2x at> . 

 

Secondary electrons can appear at any point in the 

( 0, 0x t≥ ≥ ) spatial domain. A typical 

characteristic of secondary electrons shown in 

Figure 3 represents the electrons born at zero 

velocity at a time set  in a point sex . However, the 

probability of secondary electron generation 

decreases sharply at
2 / 2x at<  (see Eq. (2)). 
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Fig. 2 Characteristics of primary electrons 
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Fig. 3 A typical characteristic of secondary electrons 

 

For constant fields, the integral equation (7) has the 

form: 

( ) ( )
2

2

0

/ 2
/

( , , ) / 2

x x v a
t t v a

F t x v n v at x at

c
v

a

δ η

= −
= −

= − − +

+
    ,  (9) 

where the first term corresponds to the initial 

electrons, and the second term corresponds to the 

secondary electrons. The symbol 

( )
0

, ,v v F t x v dv
∞
′ ′ ′= ∫  denotes the mean electron 

velocity (flux density), which is a function of x  and 

t . In the integral equation (9) the mean velocity is 

taken at a previous time /t v a−  in a shifted point 
2 / 2x v a− . 

 

At 
2 2x at> , the distribution does not depend on 

x , and its dependence on t  and v  is via the 

combination /t v aξ = − : 

( )0( )
n c

F v
a a ξ

ξ δ ξ= +  . (10) 

This equation corresponds to the integral equation: 

( ) ( )0

0

( ) ( )
n

F ac F d
a

ξ

ξ δ ξ ξ ζ ζ ζ= + −∫   , (11) 

whose solution (at 0ξ ≥ ) is 

     ( )0
0( )

n c
F n sh ac

a a
ξ δ ξ ξ⎡ ⎤= + ⎣ ⎦   . (12) 

Figure 4 shows the velocity distribution function of 

electrons at different times. It is seen that the main 

part of the distribution contains electrons with 

velocities 0 /v a c< < . At ( ) 1/ 2
t ac

−
 the 

number of electrons with /v a c>  is 

exponentially small. 
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Fig. 4 Electron distribution function at different times 

 

2.3. Dynamics of the cathode sheath 

It was shown in [3] that in the absence of electron 

emission from the cathode, the cathode sheath 

expands to a maximum length and the field in 

plasma decays with time. When electrons are 

emitted from the cathode, the sheath collapses 

towards the cathode after an initial expansion. 

 

According to the fluid model [3], a sharp boundary 

( )X t  separates the region with no electrons and the 

region where the electron density is constant. In the 

kinetic theory, the characteristic 
2 2x at=  plays 

the role of the sharp boundary of the fluid model. 

Contrary to the fluid model, there are electrons at 
20 2x at< < , but the number of these electrons 

decreases rapidly towards the cathode. 

 

The kinetic theory confirms the absence of the 

sheath collapse if no electrons are emitted from the 

cathode. Indeed, according to Eq. (9), the EDF at 

time t  in point x  and velocity v  is proportional to 

the mean electron velocity in the point 
2 / 2x v a−  at 

the time /t v a− . It is seen at Figure 5a that for any 

moment 0t >  at 0x >  there are always low 

velocities v  such that 
2 / 2 0x v a− > . If 0v ≠  in 

this point at the time /t v a− , then ( ), , 0F t x v ≠ . 

Similar arguments can be proposed for the EDF at a 

time /t v a−  in the point 
2 / 2 0x v a− > . By 

continuing this process, we will arrive at a time 

0t =  and 0x > , where 0v ≠  according to the 

initial condition. So, ( )0 0F x > ≠  at any time 

0t > . 
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It is also seen in Fig 5b that at any time 0t >  for 

0x < , there is no v  such that 
2 / 2 0x v a− > . By 

continuing to 0t = , we conclude that the area 

0x <  remains electron-free. 
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Fig. 5 Electron distribution function in the (t,x) plane. 

a) the domain 0x <  remains electron-free 

while ( )0 0F x > ≠  at any time. b) the domain 0x >  is 

subdivided by the boundary characteristics. 

 

It remains to be seen that this conclusion is valid 

also in the general case ( ), 0a x t >  when the 

electric field changes in time and space due to field 

perturbation by the space charge. 

 

 

3. Conclusion 

A simple kinetic equation was suggested for the 

analysis of runaway electrons during pulsed gas 

breakdown in high electric fields. Characteristic 

scales (in energy and space) are obtained from a 

formal solution of this kinetic equation. An 

analytical solution for the distribution function was 

obtained in the plasma region where the EDF does 

not depend on spatial coordinate and depends on 

energy and time in the form /t v aξ = − . Kinetic 

analysis confirms the absence of the cathode 

directed ionisation wave in the absence of electron 

emission from the cathode. 
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