

## **Undergraduate Mathematics Exam**

## STUDENT NAME:

## EXAM DATE AND DURATION:

| Date and Time of Exam: | Sample Test           |
|------------------------|-----------------------|
| Exam Duration:         | 1.5 hours             |
| Examiner:              | Kosmas O. Kosmopoulos |

### **INSTRUCTIONS TO CANDIDATES:**

- Use a black ball-point pen. Do **NOT** use pencil.
- Answer **ALL** questions
- Follow the instructions carefully and write your answers clearly in the space provided in **THIS** booklet.
- You can **ONLY** use a pre-approved calculator.
- Answers should normally be given to THREE SIGNIFICANT FIGURES

### EXAM STRUCTURE:

| Sections:          | 3                    |
|--------------------|----------------------|
| Exam Score & Pages | 90 marks in 15 pages |

| For office use only: |      |  |  |  |  |  |
|----------------------|------|--|--|--|--|--|
| Section:             | Mark |  |  |  |  |  |
| 1: Exercises         | /41  |  |  |  |  |  |
| 2: Data              | /38  |  |  |  |  |  |
| 3: Cases             | /11  |  |  |  |  |  |
| Total:               | /90  |  |  |  |  |  |

Final Score (%):

Grade: PASS / FAIL

Marked by:

© Hult International Business School, 2013 All rights reserved Page 1 of 15 This is page intentionally blank

© Hult International Business School, 2013 All rights reserved Page 2 of 15

## Section 1: Basic Exercises

## <u>Arithmetic, Numbers & Algebra:</u> Questions 1- 4: Write the final answers clearly on the line (1/2 mark each = 2 marks)

| 1.  | Write the prime factorization of 96.                                             | The prime factors of 96 are 2, 2,<br>2, 2, 2, and 3 | 1 |  |  |  |  |
|-----|----------------------------------------------------------------------------------|-----------------------------------------------------|---|--|--|--|--|
| Cal | culate the following:                                                            |                                                     |   |  |  |  |  |
| 2.  | (5/8) - (2/3)                                                                    | (In fraction form)1/24                              | 1 |  |  |  |  |
| 3.  | Evaluate: $-x   3x - 4y^2  $ when $x = -2$ and $y = -3$ .                        | 84                                                  | 1 |  |  |  |  |
| 4.  | Convert 4.4% to fraction and decimal notation.                                   | 44/1000 or 11/250 and 0.044                         | 1 |  |  |  |  |
| Col | mplete the following:                                                            |                                                     |   |  |  |  |  |
| 5.  | $6y^2 - y - 1 = (3y + 1)($ )                                                     | (2y-1)                                              | 2 |  |  |  |  |
| 6.  | $4y^2 - 8y - 5 = (2y - 5)()$                                                     | (2y+1)                                              | 2 |  |  |  |  |
| Sin | nplify the following:                                                            |                                                     |   |  |  |  |  |
| 7.  | $\sqrt[3]{n^2}$                                                                  | n <sup>2/3</sup>                                    | 1 |  |  |  |  |
| 8.  | $(n^3)^4$                                                                        | n <sup>12</sup>                                     | 1 |  |  |  |  |
| Fac | Factor the following trinomials completely. Write "prime" if they do not factor. |                                                     |   |  |  |  |  |
| 9.  | $x^{2} + 3x - 10$                                                                | (x+5)(x-2)                                          | 2 |  |  |  |  |
| 10. | $6x^2 + 11x - 10$                                                                | (3x-2)(2x+5)                                        | 2 |  |  |  |  |

Marks

**11.**  $6x^2 + 5xy - 21y^2$  (2x-3y)(3x+7y) **2** 

## Show the working out and write the final answer clearly in the space provided.

2

Represent the following equation on the **17.** provided graph:

-3y+4x= 3x-y



Show the working out and write the final answer clearly in the space provided.

## **18.** $x^2 - 4x - 3 = 0$

Answer:

\_\_x=4.65 and x=-0.65\_\_\_\_\_ 4

**19.**  $2x^2 - x = 0.5$ 

Answer:

\_\_\_no roots\_\_\_\_\_

4

5

## Show the working out and write the final answer clearly in the space provided.

**20.**  $[1/2\text{Log } x^2 + 2\log(x^{-2})] / [\log \sqrt{x} - 1/3 \log x]$ 

Answer:

\_\_\_\_-18\_\_\_\_\_\_

Total Marks for Section 1 41

# Section 2: Statistics and Probability

## Introduction to Data Analysis and Descriptive Statistics:

| Ch | oose the                                            | e correct answer:                                                                                                                                                        |                | Marks |
|----|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| 1. | Which<br>measu                                      | of the following statistics is not a re of central tendency?                                                                                                             |                |       |
|    | a)                                                  | Arithmetic mean.                                                                                                                                                         |                |       |
|    | b)                                                  | Median.                                                                                                                                                                  |                |       |
|    | c)                                                  | Mode.                                                                                                                                                                    | Answer D       | 1     |
|    | d)                                                  | Standard Deviation.                                                                                                                                                      | Anower :B      |       |
| 2. | Which<br>mediar                                     | of the following statements about the n is not true?                                                                                                                     |                |       |
|    | a)                                                  | It is more affected by extreme values than the arithmetic mean.                                                                                                          |                |       |
|    | b)                                                  | It is a measure of central tendency.                                                                                                                                     |                |       |
|    | c)                                                  | It is equal to Q2.                                                                                                                                                       |                |       |
|    | d)                                                  | It is equal to the mode in bell-shaped "normal" distributions.                                                                                                           | Answer:A       | _ 1   |
| 3. | In a pe<br>distribu                                 | rfectly symmetrical bell-shaped "normal"<br>ition                                                                                                                        |                |       |
|    | a)                                                  | the arithmetic mean equals the median.                                                                                                                                   |                |       |
|    | b)                                                  | the median equals the mode.                                                                                                                                              |                |       |
|    | c)                                                  | the arithmetic mean equals the mode.                                                                                                                                     | Answer: D      | 1     |
|    | d)                                                  | All the above.                                                                                                                                                           | / lio lio li B |       |
| 4. | Accord<br>a "bell-<br>percen<br>within 2<br>arithme | ing to the empirical rule, if the data form<br>shaped" normal distribution,<br>t of the observations will be contained<br>2 standard deviations around the<br>etic mean. |                |       |
|    | a)                                                  | 68.26                                                                                                                                                                    |                |       |
|    | b)                                                  | 88.89                                                                                                                                                                    |                |       |
|    | c)                                                  | 93.75                                                                                                                                                                    | Answer: D      | 1     |
|    | d)                                                  | 95.44                                                                                                                                                                    |                |       |

### <u>TABLE 1:</u>

The data below represent the amount of grams of carbohydrates in a serving of breakfast cereal in a sample of 11 different servings.

| <ul> <li>5. Referring to Table 1, the arithmetic mean carbohydrates in this sample is19.73 grams.</li> <li>6. Referring to Table 1, the median carbohydrate amount in the cereal is20 grams</li> <li>7. Referring to Table 1, the first quartile of the carbohydrate amounts is17 grams.</li> <li>8. Referring to Table 1, the range in the carbohydrate amounts is18 grams.</li> <li>9. Referring to Table 1, the inter-quartile range in the carbohydrate amounts is18 grams.</li> <li>10. Referring to Table 1, the standard deviation of the carbohydrate amounts is5.1 grams.</li> </ul> | 11  | 15                  | 23                   | 29        | 19         | 22         | 21        | 20         | 15       | 25       | 17      |   |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|----------------------|-----------|------------|------------|-----------|------------|----------|----------|---------|---|---|
| <ul> <li>6. Referring to Table 1, the median carbohydrate amount in the cereal is20 grams</li> <li>7. Referring to Table 1, the first quartile of the carbohydrate amounts is17 grams.</li> <li>8. Referring to Table 1, the range in the carbohydrate amounts is18 grams.</li> <li>9. Referring to Table 1, the inter-quartile range in the carbohydrate amounts is6 grams.</li> <li>10. Referring to Table 1, the standard deviation of the carbohydrate amounts is5.1 grams.</li> </ul>                                                                                                    | 5.  | Referring to grams. | Table 1              | , the ari | ithmetic r | nean ca    | rbohydr   | ates in tl | his samp | ole is   | 19.73_  | _ | 2 |
| <ul> <li>7. Referring to Table 1, the first quartile of the carbohydrate amounts is17 grams.</li> <li>8. Referring to Table 1, the range in the carbohydrate amounts is18 grams.</li> <li>9. Referring to Table 1, the inter-quartile range in the carbohydrate amounts is6 grams.</li> <li>10. Referring to Table 1, the standard deviation of the carbohydrate amounts is5.1 grams</li> </ul>                                                                                                                                                                                               | 6.  | Referring to grams  | o Table              | 1, the r  | nedian c   | arbohyd    | rate am   | iount in   | the cere | eal is _ | _20     | _ | 2 |
| <ul> <li>8. Referring to Table 1, the range in the carbohydrate amounts is18 grams.</li> <li>9. Referring to Table 1, the inter-quartile range in the carbohydrate amounts is6 grams.</li> <li>10. Referring to Table 1, the standard deviation of the carbohydrate amounts is5.1 grams</li> </ul>                                                                                                                                                                                                                                                                                            | 7.  | Referring to grams. | o Table <sup>-</sup> | 1, the fi | rst quarti | le of the  | e carboł  | nydrate a  | amounts  | is17     | 7       | _ | 2 |
| <ul> <li>9. Referring to Table 1, the inter-quartile range in the carbohydrate amounts is6 grams.</li> <li>10. Referring to Table 1, the standard deviation of the carbohydrate amounts is5.1 grams</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                | 8.  | Referring to        | o Table 1            | , the rai | nge in the | e carboł   | nydrate a | amounts    | is18     | gram     | IS.     |   | 2 |
| <b>10.</b> Referring to Table 1, the standard deviation of the carbohydrate amounts is5.1 grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.  | Referring t<br>6    | o Table<br>grams.    | 1, the    | inter-qu   | uartile ra | ange in   | the ca     | rbohydra | ate amo  | ounts i | S | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10. | Referring t<br>5.1  | o Table<br>_grams    | 1, the    | e standa   | rd devia   | ation of  | the ca     | rbohydra | ate amo  | ounts i | S | 3 |

**11.** Below is a box-plot (also known as: Box-and-whisker Plot) for the carbohydrate amounts.



What type of shape does the distribution of the sample appear to have? Why? Answer: slightly Left -skewed

### TABLE 2:

In the 2002–2003 academic year, many public universities in the United States raised tuition and fees due to a decrease in state subsidies. The change in the cost of tuition, a shared dormitory room, and the most popular meal plan from the 2001–02 academic year for a sample of 10 public universities were as follows:

**\$1589 \$593 \$1223 \$869 \$423 \$1720 \$708 \$1425 \$922 \$308** 

**12.** Referring to Table 2, what is the variance (V) in the change in the cost? What does it mean?

Answer:

Two commonly used measures of variation that take into account how all the data values are distributed are the variance and the standard deviation. These statistics measure the "average" scatter around the mean—how larger values fluctuate above it and how smaller values fluctuate below it.

The average of the squared differences from the Mean.

V=241865.11

13. Referring to Table 2, are the data skewed? If so, how?

Answer:

Data are skewed right because the mean is greater than the median

## **Basic Probability:**

|     |                                                                                                                                                                                                                                                                                                                                                       |            | Marks |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| 14. | The closing price of a company's stock<br>tomorrow can be lower, higher or the same as<br>today's closed. Without any prior information<br>that may affect the price of the stock tomorrow,<br>the probability that it will close higher than<br>today's close is 1/3. This is an example of<br>using which of the following probability<br>approach? |            |       |
|     | a) A priori classical probability                                                                                                                                                                                                                                                                                                                     |            |       |
|     | b) Empirical classical probability                                                                                                                                                                                                                                                                                                                    |            |       |
|     | c) Subjective probability                                                                                                                                                                                                                                                                                                                             | Answer : A | 1     |
|     | d) Conditional probability                                                                                                                                                                                                                                                                                                                            |            |       |
| 15. | If the outcome of event <i>A</i> is not affected by event <i>B</i> , then events <i>A</i> and <i>B</i> are said to be                                                                                                                                                                                                                                 | ,          |       |
|     | a) mutually exclusive.                                                                                                                                                                                                                                                                                                                                |            |       |
|     | b) statistically independent.                                                                                                                                                                                                                                                                                                                         |            |       |
|     | c) collectively exhaustive.                                                                                                                                                                                                                                                                                                                           | Answer : B | 1     |
|     | d) None of the above.                                                                                                                                                                                                                                                                                                                                 |            |       |
| 16. | The collection of all possible events is called                                                                                                                                                                                                                                                                                                       |            |       |
|     | a) a simple probability.                                                                                                                                                                                                                                                                                                                              |            |       |
|     | b) a sample space.                                                                                                                                                                                                                                                                                                                                    |            |       |
|     | c) a joint probability.                                                                                                                                                                                                                                                                                                                               | Answer :B  | 1     |
|     | d) the null set.                                                                                                                                                                                                                                                                                                                                      |            |       |
| 17. | When using the general multiplication rule, $P(A and B)$ is equal to                                                                                                                                                                                                                                                                                  |            |       |
|     | a) $P(A B)P(B)$ .                                                                                                                                                                                                                                                                                                                                     |            |       |
|     | b) <i>P</i> ( <i>A</i> ) <i>P</i> ( <i>B</i> ).                                                                                                                                                                                                                                                                                                       |            |       |
|     | c) $P(B)/P(A)$ .                                                                                                                                                                                                                                                                                                                                      | Answer :A  | 1     |
|     | d) $P(A)/P(B)$ .                                                                                                                                                                                                                                                                                                                                      |            |       |
| Wri | ite your answer in the space provided:                                                                                                                                                                                                                                                                                                                |            |       |
| 18. | Suppose that patrons of a restaurant were asked whether they preferred beer or whether they preferred wine. 70% said that they preferred beer. 60% of the patrons were male. 80% of the males preferred beer.                                                                                                                                         |            |       |
|     | What is the probability a randomly selected patron prefers wine?                                                                                                                                                                                                                                                                                      | 30%        | 2     |

- **19.** The employees of a company were surveyed on questions regarding their educational background and marital status. Of the 600 employees, 400 had college degrees, 100 were single, and 60 were single college graduates. What is the probability that an employee of the company is single or has a college degree?
- **20.** A survey is taken among customers of a fastfood restaurant to determine preference for hamburger or chicken. Of 200 respondents selected, 75 were children and 125 were adults. 120 preferred hamburger and 80 preferred chicken. 55 of the children preferred hamburger.

What is the probability that a randomly selected individual is a child and prefers chicken?

\_440/600=73.3%\_\_\_\_\_3

\_\_\_20/200=10%\_\_\_\_\_

3

Total Marks for Section 2 38

## Section 3: Cases and Stories – Mathematical Thinking

#### Marks

Show all the working out and write the final answer (with the correct unit) in the space provided:

**1.** A truck has 5600 pounds of apples to deliver to distribution centre. The truck can haul 350 pounds each trip. How many trips does it take?

Answer:

\_\_\_\_\_16\_\_\_\_\_**2** 

**2.** Eleven freshmen are to be assigned to eleven empty rooms in a student dormitory. Each room is considered unique so that it matters who is being assigned to which room. How many different ways can those eleven freshmen be allocated?

Answer:

\_\_\_\_n!-11!=39916800\_\_\_\_\_

**3.** There are 47 contestants at a national dog show. How many different ways can contestants fill the first place, second place, and third place positions?

Answer:

\_\_\_<sub>47</sub>C<sub>3</sub>=47!/3!(47-3)!=45\*46\*47/6=97290/6=16215\_\_\_\_\_

© Hult International Business School, 2013 All rights reserved Page 12 of 15

3

3

**4.** According to the International Federation of the Phonographic Industry the global sales of music CDs and DVDs was worth £7.6 billion in the first six months of 2004 whilst in 2005 sales were worth £7.5 billion.

Calculate the percentage change in sales from 2004 to 2005 and give your answer to two decimal places.

Answer:

\_\_\_-1.32%\_\_\_\_\_\_

3

Total Marks for Section 3 11

This page is a designated worksheet. *Use if needed* 

© Hult International Business School, 2013 All rights reserved Page 14 of 15 This page is a designated worksheet. *Use if needed* 

© Hult International Business School, 2013 All rights reserved Page 15 of 15