Tjalling C. Koopmans Research Institute

paf o

Utrecht
Economics



Tjalling C. Koopmans Research I nstitute
Utrecht School of Economics
Utrecht University

Kriekenpitplein 21-22

3584 TC Utrecht

The Netherlands

telephone +31 30 253 9800

fax +31 30 253 7373

website www.koopmansinstitute.uu.nl

The Tjalling C. Koopmans Institute is the research institute
and research school of Utrecht School of Economics.

It was founded in 2003, and named after Professor Tjalling C.
Koopmans, Dutch-born Nobel Prize laureate in economics of
1975.

In the discussion papers series the Koopmans Institute
publishes results of ongoing research for early dissemination
of research results, and to enhance discussion with colleagues.

Please send any comments and suggestions on the Koopmans
institute, or this series to J.M.vanDort@uu.nl

ontwerp voorblad: WRIK Utrecht

How to reach the authors
Please direct all correspondence to the first author.

Marco P. Tucci

Dipartimento di Economia Politica
Universita di Siena

Piazza S. Francesco 7

53100 Siena, ltaly

E-mail: tucci@unisi.it

David A. Kendrick

Department of Economics
University of Texas

Austin, Texas 78712

USA

E-mail: kendrick@austin.utexas.edu

Hans M. Amman

Utrecht School of Economics
Utrecht University
Kriekenpitplein 21-22

3584 TC Utrecht
Netherlands

E-mail: h.m.amman@uu.nl

This paper can be downloaded at: http://
www.uu.nl/rebo/economie/discussionpapers




Utrecht School of Economics
Tjalling C. Koopmans Research Institute
Discussion Paper Series 11-18

Expected optimal feedback with
Time-Varying Parameters

Marco P. Tucci®
David A. Kendrick®
Hans M. Ammane

®Dipartimento di Economia Politica
Universita di Siena

®Department of Economics
University of Texas

‘Utrecht School of Economics
Utrecht University

October 2011

Abstract

In this paper we derive the closed loop form of the Expected Optimal Feedback rule,
sometimes called passive learning stochastic control, with time varying parameters.
As such this paper extends the work of Kendrick (1981,2002, Chapter 6) where
parameters are assumed to vary randomly around a known constant mean.
Furthermore, we show that the cautionary myopic rule in Beck and Wieland (2002)
model, a test bed for comparing various stochastic optimizations approaches, can be
cast into this framework and can be treated as a special case of this solution.
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1 Introduction

Most of the times, if not always, the use of optimal control in Economics is
associated to systems with unknown parameters. For this reason a lot of at-
tention has been paid to the appropriate use of their estimates in the design
of optimal policies since the early seventies (see, e.g., Chow (1973, 1975a),
Kendrick and Majors (1974), Turnovsky (1975, 1976, 1977)). In many cases,
for convenience sake, the economic systems are assumed linear, or linearized
versions of non-linear models, and the true unknown econometric parame-
ters constant through time. In order to find a control rule making an optimal
use of both the estimated parameters and the associated covariance matrix,
the system equations of the control model have been sometimes rewritten as
having random coefficients (see, e.g. Chow (1975b), Kendrick (1981, 2002,
Chapter 6)). Only in a few instances the true unkownon parameters of the
linear system have been assumed time-varying (see, e.g. Kendrick (1981,
2002, Chapter 10), Tucci (1989, 1997, 2004)).

A recent result in Granger (2008, page 4.) indeed may make the combi-
nation of linear systems and time-varying parameters even more promising.
As shown in his Whites Theorem any non-linear model can be approximated
by a time-varying parameter linear model. And, the goodness of approxi-
mation depends upon how smoothly parameters change over time (Granger
(2008, page 5.)). Then controlling a linear system where parameters are
allowed to vary, either in a parametric way or in a way based on Kalman
Filter, can be viewed as an approximation to controlling the associated non-
linear model.

The introduction of stochastic parameters in a control theory framework
frequently leads to the use of approximations of the dynamic programming
algorithm. For this reason researchers in the control field are often induced
to discuss in great details the approximation of their choice and treat im-
plicitly the alternative methods. For instance, Kendrick (1981, 2002) and
Tucci (1989, 1997, 2004) discuss at length the DUAL algorithm, but they fail
to spell out the effects of the introduction of system equations with time-
varying parameters on the computation of the familiar expected optimal
feedback control, i.e. the case where decision makers ignore future learning
about the unknown parameters in the design of the current policy. A rel-
evant exception is represented by Beck and Wieland (2002) that assume a
system with one unknown parameter following a random walk. This paper
aims to fill the gap for the general case of several time-varying parameters,
either stationary or non-stationary. It is therefore an extension of Kendrick
(1981, 2002, Chapter 6) which provides a similar derivation for models with



parameters assumed to vary randomly around a constant mean.!

In Section 2 of this paper the problem is stated in terms of a linear system
with time-varying parameters and a quadratic objective function. Then the
approximate optimal expected cost for periods N, N — 1 and a generic pe-
riod j are derived. The approximation is based on the information on the
time-varying parameters available at the beginning of the planning hori-
zon, that is time 0. This is similar, in spirit, to the assumption used
in Chow (1975a, Chapter 10) and boils down to ignoring possible revi-
sions of the density of the stochastic parameters by observations on the
states and controls in the planning horizon, i.e. periods 1 through N.
Then, as argued in Chow (1975a, page 223), if the information on the
parameters available at time 0 is large compared to the additional knowl-
edge that can be acquired during the planning horizon, as is usually the
case when an econometric model is used for policy analysis, the approxi-
mation of these pages is likely to be close to the true unknown optimal.
In any case, this approximation represents ”an upper bound to the loss
arising from uncertainty in the parameters.” 2

It is worthwhile to point out that the formulae associated with the time-
varying parameters problem look exactly the same as those in Kendrick
(1981, 2002, Chapter 6), except for the fact that now the expectation on the
stochastic parameters is conditional on the information available at time 0,
thus Ej. Section 6 shows that this minor notational difference has substan-
tial computational consequences. In section 7. the Beck and Wieland (2002)
model is cast in the framework of this paper.

It is observed that for the parameter set used in Amman et al. (2008)
and Beck and Wieland (2002) the approximated expected optimal feedback
control derived in these pages is indeed the expected optimal feedback con-
trol, because the associated feedback matrices are independent of the future
path of the time-varying parameters. This is the so-called myopic cautionary
rule in Beck and Wieland (2002, page 1365). The approximation presented
here can be viewed also as a generalization of the myopic cautionary rule.
Finally, it may prove very useful, as a benchmark, in assessing the ex-post
performance of more sophisticated methods involving active learning, such
as DUAL in Kendrick (1981, 2002) and Tucci (1997, 2004) or the dynami-
cally optimal control rule in Beck and Wieland (2002).

'In a discussion paper Amman and Kendrick (2001) consider the case where a subset
of parameters is stochastic and follows a first order Markov process with a time-varying
transition matrix, D, and covariance matrix. They suggest finding the FOF' control using
an augmented state vector including both the states and the stochastic parameters. This
paper suggests an alternative approach to solve the same problem.

2See Chow (1975a, page 223).



2 Statement of the Problem

A general quadratic linear control model can be stated as follows: select the

control vectors ug, ..., uy_j to minimize the criterion functional
N-1
J=E{Cx}=E{Ly(xn)+ Y Ly (xp,up) (1)
k=0

with E the expectation operator and with,

1
LN(XN) = §X/NWNXN + W;\TXN (2)

and

1 1
Ly (Xk, uk) = §X;€kak + W;Xk + X%Fkuk + §u§€Aku;€ + )\zuk (3)

subject to the system equations

Xp+1 = Apxp +Bgug +cp+ve k=0, 1,...,N—-1 (4)

where x;, is the n-dimensional vector of states, u; the m-dimensional vector
of controls, the Wy, Ay, wi and A, are penalty weights, Ag, By and cg
are arrays of parameters of appropriate dimension and vj an additive noise
term. 3

The expectation in (1) is taken over vy, Ay, By and ci. It is assumed that
these parameters follow a first-order Markov process of the form

01 =DO;, + 1, (5)

where D is a known matrix, 1 is a random vector and*

3 As discussed in Kendrick (1981, 2002, Chapter 2), the W}, and Ay may be interpreted
as penalty matrices on the deviations of the states and controls, respectively, from their
desired paths and the wj and Ar as some known functions of the desired paths of the
state and controls, respectively. The wy and A are zero when the desired paths of the
state and controls, respectively, are 0. In the engineering literature it is usually assumed
that the W, are positive semi-definite symmetric matrices and the Ay are positive definite
symmetric matrices. See Bertsekas (2005, Chapter 4).

4Tt should be noticed that in Kendrick (1981, 2002) only the unknown parameters,
either time-varying or constant, are included in 0. To go from the 6 as defined in the
paper to that used in Kendrick, say 0¥, it suffices to pre-multiply 8 by the matrix T of
dimension r x s where r is the number of unknown parameters and s is as in the text.
Each row in T has 1 in the position associated with a certain unknown parameter and
zero elsewhere. As an example consider a situation where s = 5 but only the second and
fourth parameter of vector 8 are unknown. Then the matrix T is 2x5 with 1’s in position
(1,2) and (2,4) and 0 elsewhere.



vec(Ay)
0, = | vec(Byg) (6)
vec(cy)

is of dimension (s x 1), with s=n xn+nxm+n.

This formulation is general enough to model both time-varying and con-
stant parameters. When a certain parameter, say the «th parameter in 6,
is assumed constant the corresponding row in D has 1 in the #th column
and zero elsewhere and the corresponding element in 7, is zero with zero
variance. A parameter following a random walk has 1 in the appropriate
position of the transition matrix and a positive variance.. Alternatively, if
it is assumed to follow a return to normality model around a constant mean
equation (5) describes the way its deviations change over time and the as-
sociated element in D is constrained to guarantee stationarity.

The noise vectors vy, and n;, are assumed independently distributed with?

vi ~ N (07 Q) (7)
N~ N (07 F)
Furthermore, they are independent of the initial condition xg, assumed
given, and®
00 ~ N (840, =00)- (8)
The s x s covariance matrix looks like

EAA zAB EAC

o T o
66 __ c
Sop=| ® o0 Zojo
cC

° ° 0jo

with”

SWhen some of the parameters in 0}, are assumed known the corresponding elements in
Mk are zero and the associated variances and covariances are zero. Therefore, in general,
the matrix I' is symmetric and positive semi-definite in (7).

SWhen a certain parameter is constant and known the relative row and column in
Egl‘% have zeroes. When it is constant but unknown the same row and column contain the
covariances of its estimate at time zero included in @¢j. Some authors, for instance Harvey
(1981, pages 104-106), prefer to use the notation (8o — @¢jo) ~ N (0, Eg‘%), in place of (8),
to indicate the distribution of a vector containing both fixed and random parameters. In
the presence of measurement error Xo is usually assumed normally distributed with mean
Xo|o and covariance EB“’(‘)‘ See, e.g., Kendrick (1981, 2002, Chapter 10).

"Equation (8) can be put in Kendrick’s (1981, 2002) notation and using the T matrix
defined in Footnote (4), that is 8 = T8, ~ N (TOx, TE%?OT/). In the example discussed

in that footnote the vector 8% is defined as



EOA|6A = the (n2 X n2) covariance matrix of the parameters in Ag;

26}33 = the (n2 X nm) matrix of covariances between the parameters in
AO and Bo;

20A|§ = the (n2 X n) matrix of covariances between the parameters in
AO and Co;

23(])3 = the (nm x nm) covariance matrix of the parameters in By;

2(1]3‘8 = the (nm x n) matrix of covariances between the parameters in
By and cy;

oo = the (nxn) covariance matrix of the parameters in cg

When the system parameters are jointly estimated this formulation guaran-
tees that all the available information about the states, controls and param-
eters estimates and covariances is used in determining the optimal policy. If
attention is focused only on a subsets of these parameters, for instance those
included in the matrix B because they are ” central to the trade-off between
current control and estimation” (Beck and Wieland, 2002), and the others
are treated as known then the computed control will be close to the optimal
one only when the relevant parameter covariance matrices are zero.®

In the following pages this problem is solved by using dynamic programming
methods and working backward in time following the procedures used in
Kendrick (1981, 2002, Chapter 6) but with time varying parameters. Given
k = 0, first the problem is solved for period N and then for period N — 1.
Having found the optimal policy at time N — 1 whatever the state will be in
that period we proceed backward. This leads to the solution for a generic
period 7 in the planning horizon. Then the optimal control for period zero
is determined and the system is moved forward.

01 0 0 O
T6x=109 00 1 0 fs
05
and it should be noticed that 8, = T'0X. Therefore the same matrix can be used to go
from the notation of this paper to Kendrick’s (1981, 2002) notation and in the opposite
direction. This is extremely convenient from a computational point of view.
8The situation is similar to that occurring in statistics when the joint confidence region
of two estimated parameters is constructed starting from the individual confidence inter-
vals instead of the associated F-statistic. The rectangular region derived with the former
approach will be close to the ellipse obtained from the latter one only when the covariance

between the two parameters is zero. See, e.g., Johnston (1984, figure 5.1).



3 Period N

Using the notation in Kendrick (1981, 2002, Chapter 6) the optimal expected
cost to go at period 0, with N periods remaining, is written as

Jiy =minEX{ .. min E{ min E{Cyn[PV 1} [PN25 ... | PO (9)
uo un-—1

Uun-2

where PJ, for j = 0, ..., N — 1, is defined as the means and covariances
of the unknown parameters at time j. Alternatively equation (9) can be

written as?

J}:[:mlnEo{ min EN_Q{min EN—l {CN}}} (10)
up uny-—2 UunN-1

where the subscript on the expectation operator indicates that the expecta-
tion on the parameters is conditional on the information on the parameters
available at that time, that is

En_1 {CN} =F {CN|73N_1}

From the nested expression (10) it follows that each control u; must be cho-
sen with the information on the parameters available at time j.

The typical situation when P7, for j =0, ..., N — 1, is known at time 0, is
when the parameters are identically and independently distributed.!® Then
the exact EOF, or cautionary myopic rule in Beck and Wieland (2002) ter-
minology, can be found. When the parameters are modeled as in equations
(5)-(6) this is clearly not true and an approximation to the dynamic pro-
gramming algorithm is needed. Following Chow (1973, 1975a, Chapter 10),
the approximation presented in these pages uses all the information avail-
able at time zero, namely the distribution associated with 6, and replaces
the expectations on the parameters conditional on the knowledge available
at the time the control is applied, say time j in the planning horizon, in
equation (10) with the corresponding conditional expectations at time zero.
As stated in the Introduction, this means to ignore possible revisions of the
density (of the parameters) by observations on the (states and controls) from

°In general at time j, with N — j periods remaining, the summation in equation (1)
goes from k = j to N — 1 and the associated cost is denoted by Cwn_;. Then equation
(10) looks like

J;]_]- = min Ej { -+ min ENfz { H[\l/in1 EN71 {Cij}} . }

unN-—2

10This is the case considered in Kendrick (1981, 2002, Chapter 6) and usually discussed
in the engineering literature. See Bertsekas (2005, Chapter 4).



... period 1 on (Chow 1975a, page 223). '

As discussed in Kendrick (1981, Chapter 2) in dynamic programming prob-
lems, for any arbitrary time period j, the optimal cost-to-go with N — j
periods remaining will equal the minimum over the choice of the control at
time j of the cost incurred during period j plus the optimal cost-to-go with
N —(j + 1) periods remaining. Therefore the approximate optimal feedback
rule for problem (1)-(8) is solved starting from the last period and working
backward toward the initial period.

In period N no control is chosen and from equation (2) it follows that the
optimal cost is

1
J5 = §XINWNXN + Wiyxn (11)

In general, see e.g. Kendrick (1981, 2002, Chapter 2), the optimal cost-to-go
for the quadratic linear problem, sometimes called the regulatory problem,
in a certain period is a quadratic function of the state of the system in that
period. So the expected cost-to-go with zero periods to go may be written
as

1
Jék = §XI]VKNXN + p'NxN + VN (12)

where the scalar vy, the vector py, and the matrix K are the parameters
of the quadratic function to be determined recursively in the optimization
procedure.!?

Then comparing equation (11) with equation (12) one obtains the terminal
conditions for the Riccati equations, namely

KN = WN, PN = WxN and VN = 0 (13)

4 Period N —1

The optimal cost-to-go in period N — 1 can be written as

Ji = lglvlg En_1{Jj +Ln-1(xy-1,un_1)} (14)

" Chow (1973, 1975a) uses a similar approximation when dealing with unknown con-
stant parameters. By the law of iterative predictions it follows, that the suggested linear
approximation is based on the minimum mean-square-error estimators of the future un-
known values of the stochastic parameters when disturbances are assumed gaussian. See,
e.g., Hamilton (1994, Section 4.5) and Anderson and Moore (1979, Theorem 3.1, page 26).

12The term v is sometimes omitted because “it does not affect the optimal control path
but only the optimal cost-to-go” (Kendrick (1981, page 48))



where Jj is the optimal cost-to-go with 0 periods remaining and Ly_; is
the cost incurred in period N — 1. Substituting equation (3) and equation
(12), with vy = 0, into equation (14) yields

: 1.7 / 1/ /
Ji = nin EN—l{QXNKNXN +PNXN + 5Xy_ WN_1XN-1 + Wiy XN-1
N—-1

+X/N_1FN—111N—1 + %u?v_lAN_luN_l + )‘EV—luN—l}
(15)
This expression gives the optimal cost-to-go in terms of (xy, Xy_1, Un—_1).
After replacing x y with the system equations given in equation (4), equation
(15) looks like

Ji = min EN—1{§(AN—1XN—1 +Bn_jun_1 +cn_1+vn_1)Kn

X (AN-1XN—1 +By_juny_1 +cn_1+VN_1)
+py (An_1xy—1 + By_juy_1 +ey_1 +vy_1) +

1

§XIN71WN_1XN_1 + W§V,1XN—1 + X§\771FN—1UN—1 +

1

§u§v,1AN—1uN_1 + A§v,1uN—1} (16)

which depends only on xy_1 and uy_1. Multiplying the various terms in
(16) and taking the parameter expectations conditional on the information
available at time N — 1, yields 3

13See, e.g., Kendrick (1981, page 46).

10



1
Jik = min {— [XQ\]71EN71 (A§V71KNAN,1)XN,1

UN-—1 2

+xy_1En-1 (Ay_1KnBy_1) uy—1

+xy_1En-1 (AIN—1KNCN—1)

+uy  Eno (BIN—1KNAN—1) XN-1

+u’N_1EN,1 (BSV—1KNBN—1) uny-—1

+uy_ BN (B,N—1KNCN71)

+En_1 (1 KNAN_1) xn_1+ En_1 (y_ KnBy_1) un—_1
+En-1 (y_1Knen—1) + En-1 (Viy_1Knvy-1)]

+pNENn_1 (ANn_1)XN_1+PNEN_1 (By_1)un_1

+pyEn—1 (cN-1)
1,

’ /
+§XN71WN—1XN—1 + wy_1Xnv-1 +xy_1Fno1un_

1
+§U§V_1AN—111N—1 + >\/N_111N—1}

(17)

with the expectations involving only vy_; and the covariances between
vy—1 and the time-varying parameters omitted because they are 0 by as-
sumption.

Minimizing equation (17) with respect to the vector of controls yields the
first order condition, namely

En-1(B'Nno1iKnAn_1)xn_1 + Env—1 (B'yvo1KyBy-1) ujy_,
+En_1 (B'no1Kyen—1) + En—1 (B'n_1) PN+ (18)
Fly_xy-1+An_1uly_; +An_1 =0,

which implies that the cost minimizing control, or feedback rule, for time
N —1is

u}k\/'_l = GN—IXNfl + ngl (19)
where
Gyn-1 = —[Ay_1+Enx_1(By_KyBy_1)]!
<[En-1(By_1KnANn-1) + Fy_4] (20)
gv.1 = —[An_1+En_1(By_KyBy_1)]™?

X[En_1(By_1Kncn-1) + En—1(By_1)pn + An-1] (21)

11



which resembles the standard stochastic case, that is the case where the
para-meter matrices are assumed either identically and independently dis-
tributed or unknown but constant, except for the fact that here the param-
eter expectations are conditional on the information available at time N — 1

The feedback rule (19), (20) and (21) provide the optimality condition
sought for period N — 1. However the optimal feedback control equation
(19) is not a linear function of xy_; because the feedback arrays in (20)
and (21) depend on conditional expectations that are clearly functions of
the observations on the states and controls from period 1 on. Equation (19)
can be treated as a linear function of current states when the needed expec-
tations are approximated by the corresponding conditional expectations at
time 0. The approximated optimal expected cost-to-g, denoted by ji“ from
now on to stress the fact that it is different from Ji, is obtained replacing
the approximated feedback rule in the cost functional, e.g.

R O S S
+xy_1Eo(Aly_ 1 KnBy_1)(Gy_1XN—1 + 8N-1)
+xy_1 Eo(Ay_1Knyen-1)
+(Gy_1xy—1+gn-1) Eo(By_ 1 KnAy_1)Xy_1
+(Gy_1xy—1+ 8gn-1) Eo(By_ 1 KnBy_1)(Gy_1Xn_1 + 8N-1)
+(Gn-1xN—1 + 8n-1) Eo(By_ Kncn_1)
+Eo(cy 1 KnAn_1)xy-1 + Eo(cy_ KyBy_1)(Gy_1Xn_1 + 8Nn-1)
+Eo(cy_1Knen_1) + Eo(viy_1Knvy_1)]
+pNEo(AN—1)xn-1 + PNEo(By-1)(GN-_1XNn-1 + 8Nn-1)
+pEolen-1) + %XIN71WN—IXN—1 + Wy_1XN-1

+xv_ 1 FN_1(GN_1Xv_1 + 8N-1)

1
+§(GN—1XN71 +gn-1)AN_1(GN_1XN_1 + EN-1)

+AN_1(Gn-1xn-1 + gNl)}
(22)

At this point, using equation (13) and simplifying and rearranging the terms
gives

12



. 1

Ji = §X9V—1{WN—1 + Eo(AN_1WNAN_1)
2[Eg(AN_1WxBy_1) + Fy_1]Gn_1
+Gly_1[Eo(By_1WxyBy_1) + AN—1]GN—1}XN—1

+xXy 4 { [Eo(AN_1WNBy_1) + Fy_1]gn—1

+Gy_1[Eo(By_1WyBy_1) + An_1]gn-1
+E0(A3V_1WNCN_1) + EO(A;V_l)WN

+Gy_1[Eo(By_1Wnen_1) + Eo(By_1)wy + An_1] + WNA}

1

+§{g§v_1[E0(B§v_1WNBN—1) +ANn_1lgN—1

+2gn_1[Eo(By_1Wnen-1) + Eo(By_1)Wn + Ay_1]

+2 W?VE()(CN_l) + E[)(CleleCN_l) + E()(V?VilWNVN_]_)}
(

23)

But using the approximations equations (20) and (21) it follows that

Glel [E() (BIN_leBN_l) + AN—l] GNfl =
— [Eo (B'N-1KnAN-1) +F/N_1]/GN71

G'n_1 [Eo (B'N-iWNBy_1) + An_1] gn—1 =
— [Ey (B'N1KnAn-1) +Fy_1] gn-1

G'n_1[Eo (B'N-1Wnen—1) + Eo (B'n_1) wy + An_1] =
[Eo (B'n_1KnANn_1) +Fy_1] gn_1

g'n_1[Eo (B N-1WNBy_1) + An_1]| gn-1 =
—g§v—1 [EO (B/N—IWNCN—I) + Ey (BQV—1) wy + )\N_l]

Therefore equation (23) can be rewritten as

|
Ji = §X/N—1KN—1XN—1 +x'No1pN—1 +UN—1 (24)

with

13



Ky 1 =Wx_1+ Ey(Ay_{KNAN_1)
~[Eo(AN_1KNBn_1) + Fn_1][An—1 + Eo(By_1KyBn_1)] "}

X[Eo(By_ 1 KnAn_1) + Fiy_4] (25)
pyv-1 = Eo(Ay_1Knen-_1) + Eo(Ay_1)PN + Wn_1
[EO(AN {KNBy_1) + Fyoi][Av—1 + Eo(By_ KyBy_1)]™!
x[Eo(By_1Knen-1+ Eo(By_1)pn + An—1] (26)
1
UN_1 = 5{ — [Eo(By_1Knen—1) + Eo(By_1)pn + An_1]

X[An_1+ Eo(By_1KnBy_1)] "
x[Eo(Bly_1Knen-1) + Eo(By_1)wWn + An_1]

+2 pEVEO(CN_ﬂ + EO(C§V_1KNCN—1) + EO(V§V_1KNVN—1)}
(27)

Then, as noticed in Chow (1975a, page 231), the approximated minimum
expected cost for period N —1 in equation (24) can be treated as a quadratic
function of state in that period. The approximated Riccati equations (25),
(26) and (27) look similar to those in the standard stochastic parameter case
except for the parameter expectation being conditional on the information
available at time 0.'* This process can be repeated backward for periods
N —1, N —2,... and so on and so forth.

5 Period j

For a generic period j in the planning horizon, from period 0 to IV — 1, the
optimal cost-to-go in dynamic programming problems can be written as

J]t/fj = Iﬁllianj {Jltff(jJrl) + Lj (x5, uj)} (28)

where Jy, (+1) is the optimal cost-to-go with N — (5 +1) periods remaining.
Proceeding as in the case j = N — 1 yields

1,1;(f = Gij +8; (29)
where
G, = —[Aj+E; (B jK;B))] " [E (B K;n1A)) +F;]  (30)
g = —[A;+E; (B jK;B))] "
x [Ej (B'jKjt1¢5) +Ej (B'j) wjt1 + Aj] (31)

14Gee, e.g., equation (6.29) in Kendrick (1981, 2002).

14



As in the previous section the optimal feedback control equation (29) is not
a linear function of z; because of the feedback arrays in (30) and (31). The
control is a linear function of current states when the needed expectations
are approximated by the corresponding conditional expectations at time 0.
Then the approximated optimal expected cost-to-go can be rewritten as

L1
Ji = 5% K% + X pj + v (32)

with

K; = W, +Ey(AJK;1A))
—[Eo(AjK; 11By) + Fj][A; + Eo(BjK;11B;)] !

x[EoBiK;+1A;) + F}] (33)
p; = Eo(AJKjiic) + Eo(A))pjt1 + w; — [Eo(AjK;11B;) + F]
x[A; + Eo(BjK;11B;)| ' [Eo(BiK 11¢;) + Eo(B))pj1 + Aj
(34)
vj = %{ — [Eo(BjKj11¢)) + Eo(B))pj+1 + Ajl'
x[Aj + Ey(BiK;11B;))] ' [Eo(BjK11¢5) + Eo(B))pjs1 + Aj] +
2p)1Eo(ci) + Eo(cjKjy1c)) + EO(V;'KjJerj)} (35)

As in the previous section, the only difference with respect to the standard
stochastic case is that the parameter expectations in the approximated Ric-
cati equations are conditional on the information available at the beginning
of the planning horizon.

In summary, similarly to the random parameter case where parameters vary
randomly around a constant mean considered in Kendrick (1981, page 43-
49), the problem at period zero is solved using the terminal conditions Ky
= Wy, py = wy and vy = 0 in equations (33), (34) and (35) to integrate
the Riccati equations backward in time. Then the approximated G and g
elements can be computed for all time periods. Using the initial conditions
for the state vector x¢ and the parameters, the approximated feedback rule
is applied to compute ug. As soon as the new observation on the state x;
becomes available the estimate of the parameter vector can be updated!®
and the exercise is repeated for period k£ = 1 with all the parameter expec-
tations conditional on the information available at time 1, then for period k
= 2 with the expectations conditional on the information available at time
2 and so on until k= N — 1.

5For comparison reasons, DUALPC uses the same procedure both in EOF and DUAL
to update the estimate and the covariance of the parameters. This procedure is based on
Kalman Filter. See, for instance Kendrick (1981, page 104), for details.
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6 Computing the conditional expectations

To compute the mean of the product of matrices appearing in the feedback
rule, in the Riccati equations and in the optimal cost-to-go it is customary to
exploit the fact that the Riccati matrices are not stochastic. When the pa-
rameters in A and B are assumed identically and independently distributed,
it is possible to show that the mean of each element of the resulting matrix,
say R with R = A’KB, takes the form'6

E(ri;) = E(ajKb;) = E(aj)KE(b;) + tr[KX?] (36)

where E(a) is the mean of the elements appearing in the ¢-th row of matrix
A’, or in the th column of matrix A, E(b;) the mean of the jth column of
B, XPs2i the covariance between the elements in b; and a; and tr[.] the trace
operator. On the other hand if the parameters in A and B are modeled as
in (5) and (6), the expectations needed to compute Kx_; at time 0 take the
form Ey(A’y_;KnyBny_1) and equation (36) is replaced by

Ey (rijn-1) = Eo(ajy_1Knbjn_1)
bja,
= Eo(a) y_1)KnEo(bjn-1) + tr[KySgy" ] (37)

where Ej (ag N—l) is the mean of the elements appearing in the #th row

of matrix A’y_;, or in the ith column of matrix A, conditional on the
information on the parameters available at time 0, Eg(b;n—1) the mean
of the j-th column of By_; similarly defined, Ky = Wy a deterministic
matrix by assumption and EObfﬁil is defined as

bja; __
20713—1 = EO{[bj,N—l - EO(bj,N—l)Ha;,N—l - EO(a;‘,N—M} (38)

The mean and variance of the rows and columns of A and B appearing in
equation (37) and (38) have not been explicitly defined so far. However it
is apparent that the #th column of matrix A can be written as S;0 with S;
a selecting matrix of dimension nxs defined as

Si =1[Si1 - Sin Sint1 - Sintm Sintm—+1] (39)

where the S; ; block of dimension nxn is equal to the identity matrix if i = j
and the null matrix O otherwise. Then for ¢ going from 1 to n, S; selects
the elements of 8 corresponding to the #th column of A, for i going from
n+ 1 to n + m it selects the (i — n)-th column of B and for i =n+m + 1
it selects the parameters in c.

63ee, e.g., pp. 49-50 and Appendix B in Kendrick (1981, 2002).
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Equations (5) and (6) describe the behavior of all the parameters and can
be used to compute the mean and variance of the parameters at time N — 1,
given the mean and variance of 6y at time 0, namely'”

Eo(On-1) = DV71E, (69) = DN_IHO\O (40)

Eo {[0n-1— Eo(On-1)][0n-1— Eo (On-1)]'} =
DV Izt (DY) + DY 72D (DV2) 4 4T (41)

Then using the S; matrix, the mean and variance of the individual columns
of A and B can be promptly isolated, that is

Eo (a;N_l) = SiDN_lEQ (00)
Eo (biy 1) = Sny;DY'E(60)

fori=1,... nand j=1, ..., m. Similarly equation (38) can be rewritten
as

b.a;

Son-1 = Eo{Sus; [On-1 —D¥ 7By (60)] [6n-1 — DV E (80)]'S] |

= Suiy [DYTIEGE (DY) 4 DV (DY) 44T 8
(42)

Again the role of the S matrix is to isolate, in this case from the sxs co-
variance matrix X9 associated with the whole parameter vector @, the nxn
matrix of covariances associated with the parameters in the é-th column of
A and the jth column of B.

At this point the Riccati matrix Ky_1, and py_1, can be computed. Both
Kx_1 and py_1 are deterministic because they are functions of the means
and variances of random variables.'®. Therefore the procedure sketched in
this section can be used to compute Ky_o, and py_s, and so on and so
forth until K;, and pi, needed to compute the feedback rule for the control
at time 0.

"Equation (40) and (41) follow directly from (5). In the special case N = 3, they look

like
Eo (83-1) = D (Dfg)o) = D*6q)0
Eo {[62 — Eo (82)][02 — Eo (02)]'} = D*%8f) (D)’ + DID’ +T.
18See, e.g., Hamilton 1994, Section 4.1, footnote 1)
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7 The Beck and Wieland model

In this section we will see that the Beck and Wieland (2002) model can be
cast into the above framework. Furthermore we will show that, when the
parameters are as in Beck and Wieland (2002) and Amman et al. (2008),
this model is a special case and the optimal control is identical to that ob-
tained following the presentation of Kendrick (1981, 2002, Chapter 6 and 7).

Following Beck and Wieland (2002) the decision maker is faced with a scalar
linear stochastic optimization problem of the form!?

Min FE [5N(xN—§cN)2+
] g

N—

—_

S (zr, — k) + wlug, — )} (z0,bo,vg) |  (43)
k=0

subject to the equations

Tpt1 = o+ Brup +yxp + € (44)
Brt1 = Br+ G (45)

where 0 is a discount factor, & and @ denote the desired value of the state
and control, respectively, ¢, ~ N(0,02) and (j, ~ N(O,Ug). It is assumed
that zq is given and the model contains one uncertain parameter 3, with an
initial estimate of its value at k = 0, Ey(8y) = b, and an initial estimate
of its variance at time k = 0, VARy(fy) = Ug. The parameters « and
are constant. Beck and Wieland assume in their paper that N — oco. In
contrast we will assume that the planning horizon is finite, hence N < oo.
Furthermore, we have adopted the timing convention from Kendrick (1981,
2002) where the control, uy, has a lagged response on the state, xp. More-
over the desired path for the state and the control, and the penalty weight
on the latter, is zero.

With this set of assumptions, the above model can be fitted with little
effort into the format of equations (2)-(8) when Ay =v, By = Gk, ¢k = «,
vi =€ and

ot 0
O,= |06k |, m=1| G (46)
o 0

Tn an earlier strand of literature, going back to the early Seventies, a similar model
and approach is discussed. See, MacRae (1972, 1975).
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2

and D is an identity matrix. In this case the covariance matrices are Q = o7

and

00 O
=10 0 0 (47)
00 0

Furthermore it is assumed that xg is given and

v 00 0
Ooo=| bo |, Z05=10 uf 0. (48)
o 00 0

In this case the only relevant S; is So = [0 1 0] and the optimal cost can be
expressed as
1

Jj* = §X;-Kij (49)

because the desired paths for the state and control are 0, a = 0,
w=A; =0 and F; = 0. The optimal control at time 0 is

118 = G()X() (50)

where

Gy = —[Eo (BYKiBo)] " Eo (ByKiAy)
AN o b\
= - [K1 (bo + Uo)} [K17vbo) = — (bo + Uo) Yo (51)

This means that the optimal expected feedback control, or myopic caution-
ary rule as in Beck and Wieland (2002), is solely a function of the current
information about the stochastic parameter. There is no need to compute
future expectations as the Riccati matrix does not enter the feedback ma-
trix. Hence, in the Beck and Wieland (2002) case, the time varying param-
eter solution can be obtained using the framework of Kendrick (1981, 2002,
Chapter 6 and 7) and equation (50) does not need to be approximated.

8 Summary

In this paper we derived the closed loop form of the Fxpected Optimal Feed-
back rule with time varying parameters. As such this paper extends the work
of Kendrick. Furthermore, we showed that the Beck and Wieland model can
be cast into this framework and basically can be treated as a special case of
this solution.
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