Introduction to Game Theory Lecture Note 1: Strategic-Form Games and Nash Equilibrium (1)

HUANG Haifeng University of California, Merced

Rational choice and preference relations

- Game theory studies rational players' behavior when they engage in strategic interactions.
- Rational choice: the action chosen by a decision maker is better or at least as good as every other available action, according to her preferences.
- Preferences (偏好) are rational if they satisfy
 - ▷ **Completeness** (完备性): between any x and y in a set, $x \succ y$ (x is preferred to y), $y \succ x$, or $x \sim y$ (indifferent)
 - ▷ Transitivity (传递性): x ≽ y and y ≥ z ⇒ x ≥ z (≥ means > or ~)
 - $\Rightarrow~$ Say apple $\succ~$ banana, and banana $\succ~$ orange, then apple $\succ~$ orange

Preferences and payoff functions (utility functions)

- No other restrictions on preferences. Preferences can be altruistic.
 - But individual rationality does not necessarily mean collective rationality.
- Payoff function/utility function (支付函数/效用函数):
 u(x) ≥ u(y) iff x ≽ y
- For now we only deal with ordinal (as opposed to cardinal) preferences, so you can use many different utility functions to represent the same preference relation.
 - Any strictly increasing transformation of the same utility function will do.
 - ▷ Say $x \succ y \succ z$. Then u(x) = 3, u(y) = 2, u(z) = 1 represents the same preferences as u(x) = 100, u(y) = 10, u(z) = 2.

Types of games

- Games with complete information
 - ▷ Static games
 - Dynamic games
- Games with incomplete information
 - Static games (Bayesian games)
 - Dynamic games (dynamic Bayesian games)

Static games of complete information

- Static games: simultaneous-move, single-shot games
- Complete information (完全信息): a player knows other players' utility functions (and other characteristics that affect their decision making)
- We use the strategic form/normal form (策略型/正规型) to represent a static game of complete information.
- Definition: A strategic-form game consists of
 - 1 a set of players
 - 2 for each player, a set of actions (i.e., strategies)
 - 3 for each player, preferences over the set of action/strategy profiles

Static games of complete information

- Strategy profile (策略组合): a list of all the player's strategies
 - ▷ E.g, my strategies: left or right; your strategies: up or down
 - ▷ Strategy/action profiles: (left, up), (left, down), any other?
- Preferences are over strategy profiles rather than one's own actions/strategies.
- In single-shot games, actions are equivalent to strategies.

Illustration: Prisoner's dilemma (囚徒困境)

- Players: two suspects, 1 and 2
- Actions: {stay silent, confess}
- Preferences:
 - \triangleright $u_1(\text{confess, silent}) > u_1(\text{silent, silent}) > u_1(\text{confess, confess})$ > $u_1(\text{silent, confess})$
 - □ u₂(silent, confess) > u₂(silent, silent) > u₂(confess, confess)
 > u₂(confess, silent)
- Game representation

	Suspeer 2		
		silent	confess
Suspect 1	silent	0, 0	-2, 1
	confess	1, -2	-1, -1

Suspect 2

Nash equilibrium

- Definition: A strategy profile a* is a Nash equilibrium (纳什 均衡) if, for every player i and every strategy a_i of player i, a* is at least as good for player i as the strategy profile (a_i, a*_{-i}) in which player i chooses a_i while every other player j chooses a^{*}_j.
- In other words: u_i(a^{*}) ≥ u_i(a_i, a^{*}_{-i}) for every strategy a_i of every player i.
- In plain English: no one can do better by unilaterally deviating from the strategy profile.
- A Nash equilibrium is a steady state. It embodies a stable "social norm": if everyone else sticks to it, no one has incentive to deviate from it.

Prisoner's dilemma (囚徒困境)

• What's the Nash equilibrium in PD?

	Suspeet 2		
		silent	confess
Suspect 1	silent	0, 0	-2, 1
	confess	1, -2	-1, -1

Suspect 2

- Only the strategy profile (confess, confess) is a NE.
- In PD each player has an dominant strategy (恒优策略): a strategy that is better for a player regardless of what other players do.

Prisoner's dilemma cont.

- Tragedy of the PD game: there is an outcome that is better for <u>both</u> players, but they just cannot achieve it.
- Would communication between the two players help them?
 > Watch a real game: http://www.youtube.com/watch?v= p3Uos2fzIJ0&feature=player_embedded
- Applications: tragedy of commons; arms race

Battle of sexes (两性之战)

He wants to watch soccer, she wants to watch ballet, but they would rather be together than separate.

	She		
		soccer	ballet
He	soccer	2,1	0, 0
	ballet	0, 0	1,2

 \sim

- What are the Nash equilibria?
- 2 Nash equilibria: (soccer, soccer); (ballet, ballet)
- BoS models situations in which two parties want to cooperate but differ on which point to cooperate.

Matching pennies (翻硬币)

A purely conflictual game (PD and BoS have elements of cooperation)

	Player 2		
		head	tail
Player 1	head	1, -1	-1, 1
	tail	-1, 1	1, -1

~

- Player 1 wants to take the same action as player 2, but player 2 wants to take the opposite action.
- Any (pure-strategy) Nash equilibrium?

 \Rightarrow No.

Stag hunt (猎鹿博弈)

• Two hunters can succeed in catching a stag if they all exert efforts, but each can catch a hare alone.

		stag	hare
Hunter 1	stag	2, 2	0,1
	hare	1, 0	1, 1

Hunter 2

• What are the Nash equilibria?

 \Rightarrow (stag, stag) and (hare, hare)

Application: cooperative project; security dilemma

The chicken game (hawk-dove) (斗鸡博弈)

 Two drivers drive towards each other on a single lane. If neither swerves, they crash and may die; if one swerves while the other does not, the one who swerves loses face while the other gains respect.

Driver 2

		straight	swerve
Driver 1	straight	-10, -10	1, -1
	swerve	-1, 1	0, 0

- Application: brinkmanship
- Reducing options in a chicken game: throwing away the steering wheel? Burning the bridge after crossing the river?

Coordination and the focal point

A coordination game: choosing a restaurant

	She		
		Italian	Japanese
He	Italian	1, 1	0, 0
	Japanese	0, 0	1, 1

- NE: (Italian, Italian); (Japanese, Japanese)
- Focal point: in some real-life situations players may be able to coordinate on a particular equilibrium in a multiple equilibria game, by using information that is abstracted away from the strategic form.
 - Schelling's experiment about meeting in New York

Public good provision

Osborne (2004) exercise 33.1: Each of *n* people chooses whether to contribute a fixed amount toward the provision of a public good. The good is provided iff at least k people contribute, where $2 \le k \le n$; if it is not provided, contribution are not refunded. Each person ranks outcomes from best to worst as follows: (a) any outcome in which the good is provided and she does not contribute; (b) any outcome in which the good is provided and she contributes; (c) any outcome in which the good is not provided and she does not contribute; (d) any outcome in which the good is not provided and she contributes. Formulate this situation as a strategic game and find the NE.

Public good provision: strategic form

- Players: the *n* people
- Actions: each player's set of action is contribute, not contribute
- Preferences: $U_i(a) > U_i(b) > U_i(c) > U_i(d)$

Public good provision: NE

- Is there a NE in which more than k people contribute? One in which k people contribute? One in which fewer than k contribute?
- NE: k people contribute; none contributes

Strict and non-strict equilibria

- If an action profile a^{*} is a NE, then u_i(a^{*}) ≥ u_i(a_i, a^{*}_{-i}) for every action a_i of every player i.
- An equilibrium is strict if each player's equilibrium action is better than all her other actions. Or, u_i(a^{*}) > u_i(a_i, a^{*}_{-i}) for every action a_i ≠ a^{*}_i of player *i*.
- A variant of the prisoner's dilemma game

		split	steal
Player 1	split	5, 5	0, 10
	steal	10, 0	0, 0

Player 2

How many Nash equilibria? Any strict NE?

 \Rightarrow 3 and 0.