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ABSTRACT: The paper sets up a nesting spatial regression model incorpora ting 
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nested cases in a quasi-likelihood framework, suggesting directions for future re-
search effort.
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Una agenda de investigación sobre la búsqueda de modelos espaciales  
de lo general a lo particular

RESUMEN: El artículo propone un modelo de regresión espacial anidado en el 
cual se incorporan también shocks heteroscedásticos. Sobre este modelo se anali-
zan contrastes de hipótesis tanto en casos anidados como no anidados, utilizando 
métodos de cuasi-verosimilitud y proponiendo líneas futuras de investigación.
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1. Introduction

The paper is motivated by several recent research strands in which spatial econo-
metric models are studied formally from a statistical perspective. Such models are 
sometimes criticised for a lack of clear economic foundations, yet there are also 
examples of models in which the features of interest are developed from first prin-
ciples, such as the study of spillovers by Ertur and Koch (2007), and of trade flows 
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by Behrens, Ertur and Koch (2010). Although the economic and social origins of 
the spatially mediated interactions and structures that enter the formal models are 
important, the purpose of this paper is to suggest directions in which the more nar-
rowly formal analysis might go. In mainstream (predominantly time-series based) 
econometrics statistical techniques were developed through the latter half of the last 
century mostly by elaboration of relatively simple models that failed diagnostic tests 
- perhaps most notably in response to unfavourable outcomes of the Durbin-Watson 
test for serial correlation. However, it is now widely accepted that in a contemporary 
model-building exercise it is inefficient to imitate this historical sequence by starting 
with a simple model and elaborating it only when diagnostic tests are failed. Rather, 
a more effective strategy begins with a general model and seeks to reduce this by 
testing restrictions that lead to simpler models. The latter strategy has come to be 
associated with the LSE research agenda instigated by Sargan’s so-called COMFAC 
analysis, and carried forward on a wide front in particular by Hendry (for the current 
state of the art, see Hendry 2011). In the spatial model context, a reconsideration by 
Mur and Angulo (2009) of the modeling strategies investigated experimentally by 
Florax, Folmer and Rey (2003) suggests that the so-called general to specific (Gets) 

strategy is superior to the specific-to-general (Stge) strategy. This is important, since 
the prevailing custom of adopting a version of Stge will be inefficient in some impor-
tant cases, in line with the situation prevailing in time series modelling.

Within the model classes over which these searches are conducted, testing be-
tween non-nested models may be of interest, either for model selection or for speci-
fication checking, and here the improved J − type test of Kelejian and Piras (2011) is 
a useful advance. Furthermore, there is a general awareness that spatially structured 
data are likely to be heteroskedastic, and that ignoring this phenomenon may lead 
at best to inefficient estimation results. Indeed, one of the advantages of the Gets 
strategy identified by Mur and Angulo was that it was much more robust to hete-
roskedastic, skewed or heavy-tailed disturbances than the competitor Stge strategy. 
Among papers dealing formally with heteroskedasticity, Anselin (1988a) devises a 
Lagrange Multiplier specification test for a classical linear regression model against a 
heteroskedastic spatially dependent alternative, and recently a practical algorithm for 
estimating Anselin’s model by maximizing the Normal likelihood has been proposed 
by Yokoi (2010). IV/GMM-based estimators for Anselin’s model with unknown he-
teroskedasticity have also recently been published by Kelejian and Prucha (2010) and 
Lin and Lee (2010).

These strands taken together suggest a research agenda:

a) Set up a satisfyingly general spatial model class from which the Gets stra-
tegy could begin.

b) Investigate identification and estimation algorithms for the general model.
c) Investigate tests of non-nested models for this class.
d) Devise and / or investigate tests for (nested) model reduction where these are 

unavailable or their properties are not known.
e) Investigate the performance of the Gets and Stge strategies in this richer 

setting.
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The paper comments on some aspects of a) - d). A significant part of the discus-
sion is speculative. The proposed general model is introduced next, and is seen to nest 
the SARAR model and the Spatial Durbin Model (SDM), also described as the first 
order spatial Autoregressive Distributed Lag (ADL) model by Bivand (1984, eq. 4), 
the Spatial Durbin Error Model, the Spatial Lag Model and the Spatial Error Model, 
each of which is defined below.

2. A heteroskedastic general nesting model (HGNM) 

It would be natural to start a Gets - type analysis with a model in which popular 
simpler ones are nested. In principle, this is achieved by what Elhorst (2010) calls 
the Manski model, after Manski (1993), also mentioned as a possibility by LeSage 
and Pace (2009, p. 53), and which could form a starting point for a Gets procedure, 
or a possible endpoint for a Stge procedure. This paper prefers to call the model the 
HGNM because the identification problem discussed by Manski does not arise, in 
general, for this model, contrary to the impression given by some authors because of 
its formal similarity to Manski’s model. The nesting model is elaborated slightly here 
by the inclusion of heteroskedastic shocks and by relaxing the restriction that weight 
matrices are equal 1:
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The constant regressor, 1 = [1, 1, 1,..., 1]′ is separately treated in the notation to 
allow for weight matrices that are row-normalised, such that, for example, Q0 1 = 1. 
In a very simple case, the variance of the ith shock might be proportional to some 
measure of the «size» of region i. An alternative Bayesian approach to heteroske-
dasticity that does not depend on a prespecified h() function is described by LeSage 
and Pace (2009, Section 5.6.1). As is often remarked, a more local spatial averaging 
of shocks could be achieved by the use of a moving average specification, such as 
U0 = ε0 + ρ0 M0ε0 but this possibility is not taken up here.

As soon as the model (1) is contemplated, an obvious restriction that might need 
to be tested is that the weight matrices are the same: W = Q = M; indeed, only if 
W = Q does the possible existence of the common factor mentioned below arise. 
Also, there may be competing models within the same class, just as in the J − test 

set-up adopted by Kelejian (2008) and Kelejian and Piras (2011).

1 Anselin (1988b) attributes to Hordijk (1979) the introduction of a SARAR model with weights that 
are different for the spatial lag and spatial error.
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Before settling on (1) as the general model, however, we should consider whe-
ther or not a yet more general starting point is required. In the time series context, 
it is now usual to regard models with serially correlated disturbances as restricted 
forms of more general models with richer dynamics. Following Hendry and Mizon 
(1978) who implemented the COMFAC analysis being developed by Sargan in the 
mid 1970’s that was eventually published in Sargan (1980), we might consider (1) as 
itself a restricted form of the model,

Y W Y W Y X W X W X= + + + + + +λ λ δ β β β ε1 1 2 2 0 3 1 4 21 2. ( )

This possibility has been discussed by Blommestein (1983), and again recently 
by Mur and Angulo (2006). If we take (2) seriously, then a first model simplification 
step would seem to be to test the hypothesis,

H
w

: , , ; (W W W W W W2 1
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4 3
2

3 1 3= = = )

however, the essential difference between the time series and spatial cross-section 
cases then becomes apparent: while in time series the term, W2Y just represents a two-
period lag of Y which results from applying the lag operator twice, in the spatial set-
ting there is in general no obvious equivalent construction 2 . Thus if the analysis were 
to start from (2) the specification of the four weight matrices would be proble matic 
from the outset if it were desired to test for the possible simplification. Of course, a 
more feasible alternative starting point would be to impose Hw and test the implied 
common factor restriction that would then reduce (2), with Hw maintained, to (1).

In time series models, there is an obvious value in representations in which the 
unobserved shocks may be treated as innovations, that is, as independent of the pre-
vious history of the quantities under study, including previous innovations. How far 
it is appropriate to seek models in which shocks are independent over space has been, 
I think, much debated. The key may be in the conditioning information brought into 
the analysis at the outset. For example, as long argued in the literature, and described 
by LeSage and Pace (2009, pp. 27-28, 67-68) when spatially-patterned explanatory 
variables are omitted from the model’s mean function, they will enter the disturbance 
term, thus producing a spatially autocorrelated disturbance that could be eliminated 
by their inclusion in the mean. On the other hand, rather stronger grounds may be 
found for introducing spatially lagged dependent variables to the right-hand-side, 
such as when data are observed at a lower frequency (in time) than that at which 
agents take decisions that can be influenced by those of their neighbours, or in the 
group interaction models now gaining in popularity (see Lee, Liu and Lin (2010) for 
a recent example). Although a residual doubt over model specification is unavoid-
able, to make progress, we have to suppose that the investigator gets something right, 

2 Exceptions are the «two weight matrix» model of Lacombe (2004) discussed by Le Sage and Pace 
(2009, p. 52), and the model explored by Brandsma and Ketellapper (1979) in which Y = Xβ + U with 
(I − ρ1 W1 − ρ2 W2)U = ε, and a likelihood ratio test of the hypothesis that ρ1 = ρ2 = 0 is implemented.
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and so for this rather pragmatic reason, and because it has not received much atten-
tion, this paper treats (1) as the initial general model, supposing it to have passed such 
diagnostic checks as are available. If, in fact, a test of the hypothesis, ρ0 = 0, failed to 
reject, our confidence that no major systematic spatially patterned explanatory factor 
had been omitted would of course increase.

2.1. Nested Models

2.1.1. The SARAR model

Elhorst (2010) designates the model containing a spatially lagged dependent 
variable and a spatially autoregressive disturbance, the Kelejian-Prucha model - see 
Elhorst (2010, p. 13). LeSage and Pace (2009 p. 32) on the other hand designate 
this the SAC model; since Kelejian (2008) calls the model the SARAR model, that 
name seems a reasonable compromise, the repeated AR a reminder of its essential 
feature.

In Yokoi (2010) the MLE for the heteroskedastic SARAR model described by 
Anselin (1988a,b) is studied. The model is:
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As can be seen, it arises from the HGNM by the exclusion of the spatially lagged 
exogenous variables, Q0 X0 γ0. However, with a little care over the treatment of any 
accidental collinearity between X, WX and QX, it is easy to see that the definition 
of X0 β0 in (4) can be expanded to include Q0 X0 γ0 from (1). This is useful because 
it means that estimator properties derived for the SARAR model may, with a little 
care, apply readily to the more general model. The extra care involved is obvious in 
the case of IV based estimators that rely on use of instruments such as W0 X0, and so 
on, to take care of the correlation between the disturbances and the spatially lagged 
dependent variable: any spatially lagged exogenous variables that are already present 
on the right-hand side are not available as additional instruments.

2.1.2. The Spatial Durbin Model

Consider the so-called Spatial Durbin model (SDM), obtained from the HGNM 
when ρ0 = 0. This model has been widely promoted as a possible starting point be-
cause it nests two popular simpler models; LeSage and Pace (2009, pp. 67-68) also 
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argue that the model produces estimates with a degree of robustness to omitted varia-
bles not shared for example by the nested models. The SDM is

Y W Y X W X= + + + +λ δ β γ ε
ε

0 0 0 0 0 0 0 0 0
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The Spatial Error Model. To see how the SDM may be simplified under cer-
tain restrictions, suppose, for convenience, that the rows of W0 sum to 1 so that 
W0 1 = 1 and observe that (7) may be written equivalently, by taking out a factor of 
(I –λ0 W0) on the right-hand side, as
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where the remainder, W0 X0 (λ0 β0  + λ0) is now of interest. If the parameters satisfy 
the so-called common-factor restriction,

λ λ β0 0 0 8= ( )

the remainder vanishes, and the matrix, (I –λ0 W0), is seen to be a common factor in 
the model. If this matrix is invertible, as usually assumed, the model simplifies to the 
spatial error model 3.
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The Spatial Lag Model. More obviously perhaps, when λ0 = 0 the SDM re-
duces to the spatial lag model, studied in a Normal likelihood framework by Ord 
(1975). The SLM is:

Y W Y X= + + +λ δ β ε0 0 0 0 0 01 11( )

and is the generic model for spatially interacting responses to changes in conditio-
ning variables and shocks.

2.1.3. The Spatial Durbin Error model

Elhorst (2010) comments that the model that results from (1) when λ = 0, called 
the SDEM by LeSage and Pace (2009, p. 42) does not seem to have been used much. 

3 See also Burridge (1981), Bivand (1984), Anselin (1988b), Folmer Florax and Rey (2003), Elhorst 
(2001, 2010), LeSage and Pace (2009), and Mur and Angulo (2009) for more discussion.
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I don’t know why it should have been overlooked, however, though nesting it in the 
more general model being discussed here may lead to its more frequent use.

2.1.4. Preference for the SDM

Of course, neither the restriction that Q = W, nor the common-factor restriction 
(8), nor the zero restrictions for λ0 ρ0 or γ0 leading to the simpler models may be plau-
sible; besides the nesting of (9) and (11) the SDM has other merits, delivering unbia-
sed coefficient estimates, according to LeSage and Pace (2009, pp. 56-158) when the 
other models may fail to do so, a point echoed by Elhorst (2010, pp. 14-15).

3. The General-to-Specific Strategy in Outline 

With a single fixed weight matrix, treated as given, the first few steps, which ex-
pand the strategy investigated by Mur and Angulo (2009), could be as follows

1.  Estimate (1) with M = W = Q (it is assumed that any available diagnostic 
tests have been passed, see Section 4.1 below for more on this point).

2. Test for simplification to homoskedasticity Hα : α2 = α3 = ... = αm = 0.
3. Test for simplification to SDM/ADL Hρ : ρ = 0.
4.  If Hρ is not rejected test for simplification to SLM Hγ : γ = 0; if Hρ is re-

jected test for simplification to SARAR Hγ : γ = 0.
5.  If Hρ is not rejected at Step 3 but Hγ is rejected at Step 4, test for common 

factor and reduction to SEM; if Hρ is rejected at Step 3, and Hγ is rejected 
at Step 4, test Hλ : λ = 0 for simplification to the SDEM.

With different, but fixed, weight matrices, the first step could be to seek a simpli-
fication via a non-nested test, as described below.

4. Test procedures

4.1. Diagnostics for the HGNM?

A critical ingredient in the Gets strategy is the assumption that the general nesting 
model is itself an adequate description of the data generating process, the DGP. In the 
time series context, in which the detection and accommodation of serial correlation 
was the key problem, the leading requirement was for a test for serial correlation in 
the disturbances of a dynamic model that could be applied after, say, an ARMA(p,q) 
model had been fitted to the data. As is well known, the Durbin-Watson test could not 
be used in such a model as the sampling distribution of the statistic is shifted when 
lagged values of the dependent variable are present resulting in a bias towards ac-
ceptance of the null hypothesis. The critical advance here was the development of a 
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Lagrange multiplier test for serial correlation in dynamic models by Breusch (1978) 
and Godfrey (1978). In the spatial case the main diagnostic required will play a simi-
lar role, and is thus a test for neglected spatial correlation in the disturbance, ε0 of (1). 
Such a test has yet to be developed, apparently.

4.2. A general non-nested test procedure β
–

0

Consider the problem of testing a model of the form (1) against a non-nested 
alternative, of the same form, Model1, say. Broadly speaking, the J-test approach 
implemented for the SARAR model by Kelejian (2008), as modified by Kelejian 
and Piras (2011), would entail the construction of a prediction of (I − ρ0 M0)Y from 
Model1 which would be added as an explanatory variable to an equation predicting 
(I − ρ0 M0)Y using Model0 . Suppose the models satisfy relevant sets of sufficient con-
ditions for identification, and that Gaussian quasi-maximum likelihood 4 estimates of 
the parameters of the two models are available, and write these as d̃0, β

–
0, ..., d̃1, β

–
1, ..., 

and so on. Imitating the Kelejian and Piras approach but implementing QMLE for all 
but the final test regression leads to the following. Initially, ignoring the heteroske-
dasticity, using Model1 construct the predictor,

Y W Y X Q X1
1 1 1 1 1 1 1 11= + + + λ δ β γ .

From Model0 estimate λ̃0, d̃0, β
–

0, γ
–

0, ρ̃0. Using ρ~0 construct the «whitened» de-
pendent variable,

Y I M Y*( ) ( ) ( ρ ρ0 0 0 12= − )

 together with the transformed RHS variables,

Z I M X Q X W Y0 0 0 0 0 0 0 0 13* ( ) ( ) [ , , , ] ( ρ ρ= − )

and the transformed predictor,

Y I M Y1
0 0 0

1 14( ) ( ) . ( ρ ρ= − )

The idea behind the test is now to add Y
– 1 (ρ̃0) to the right-hand side of the equa-

tion,

Y Z Y e* * * * *( ) ( ) ˆ ( ) ˆ ,  ρ ρ φ ρ ψ0 0 0 0
1

0 01 0= + + say, ((15)

4 Kelejian and Piras do not employ quasi-maximum likelihood estimators, but they are preferred 
here for use in modestly-sized samples because they satisfy the determinantal conditions on λ and ρ.
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and test the hypothesis that u| *01 = 0. To extend the procedure to the heteroskedastic 
case it would seem natural to premultiply (15) by 

~Ω0
–1/2 which is the estimate of the 

diagonal variance matrix of the disturbance that corresponds to the residual, e*0 un-
der the null hypothesis. The specification of the test based on (15) differs from the 
Kele jian and Piras test for the SARAR model in two respects. Evidently, the model 
has been expanded by the introduction of the spatially lagged exogenous regressors, 
Qi Xi (i = 0, 1); however, their presence introduces nothing of great significance 
since the various conditions imposed by Kelejian and Piras should require only a 
very minor expansion to accommodate this change - conditions on the matrix, X 
must now be applied to the matrix, [X, QX] and in their approach instruments would 
need to be chosen with care to avoid rank deficiency. Secondly, except for the final 
equation which is estimated using instrumental variables, the parameters are esti-
mated by Gaussian QML to guarantee that they satisfy the determinantal conditions, 
|(I − ρM0)| > 0, |(I − λW0)| > 0 and similarly for Model1 . To the best of the author’s 
knowledge, a J-type test adapted to accommodate heteroskedasticity has not yet been 
implemented, and so its development along the lines above seems warranted. The 
tasks involved include establishing the asymptotic sampling distribution of such a 
statistic, checking its small sample performance and devising any correction that may 
be necessary to control significance levels.

4.3. Information Criteria and the Likelihood

In a time series modelling exercise it is usual to examine a so-called «information 
criterion» such as AIC, or BIC, to select model order. For example, when fitting an 
AR(p) model to a single time series, such as

y y
t j t j t

j

j p

= +−
=

=

∑φ ε
1

0

16( )

under the maintained assumption that εt is while noise, the order of the autoregres-
sive operator could be chosen to minimise the BIC, ln σ̂ 2

p + p ln n/n, in which σ̂ 2
p is 

the quasi maximum likelihood estimate of the innovation variance from the model 
with j = p, and is proportional to the negative of the log conditional likelihood. 
That the choice, p̃n say, which minimises this criterion, is consistent in the sense 
that limn→∞ Pr[p̃n = p0] = 1 has been demonstrated under very general conditions, 
reviewed and extended in a recent contribution by Burridge and Hristova (2008). 
However, although the parallel with time series modelling is appealing, and model 
selection via an information criterion was suggested as a simpler alternative to use of 
a J − type test 25 years ago by Haining (1986), there does not appear to have been a 
systematic investigation of its properties in the spatial case; it should be noted that a 
treatment of consistency would require explicit conditions relating to the evolution 
of the weights matrices as sample size increased, moment conditions on regressors, 
and the like, similar in nature to those introduced by Lee (2004), but also that a 
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fundamental problem remains to be addressed. The difficulty arises from the fact 
that the competing models are not nested; because of this, the fact that Model A deli-
vers a higher value of its maximised likelihood than Model B does of its likelihood 
is not sufficient for Model A to be preferred, and introduction of a «penalty» for 
additional parameters, as in the BIC, has no bearing on this fundamental problem. 
Nevertheless, as suggested by a referee, a comparison between such model selection 
and use of the J − test in finite samples could be interesting. Closely related is the 
Bayesian approach described by Le Sage and Pace (2009, Section 6.3) and applied 
by Pijnenburg and Kholodilin (2011) who consider 43 different weight matrices in 
their study of entrepreneurial spillovers, choosing the one that delivers the highest 
posterior model probability. In this framework, there are three components to the 
model posterior probability, a prior over the various weight matrices, π(W), a prior 
over the parameters for each W, π(θ |W), and the likelihood of the data given W and 
θ , p(D|θ , W). In effect, if π(W) is chosen to be uninformative, choosing the model 
with the highest posterior probability amounts to choosing the model for which the 
smoothed ([i.e. integrated over π(θ |W)] likelihood is highest. The problem of com-
paring likelihoods from different|probability models remains, therefore, within the 
Bayesian for malism.

4.4. Tests of nested models

With the rather general starting point, (1), natural hypotheses to test are parame-
tric restrictions that simplify the model. These could be of various kinds, of which 
several are described below.

4.4.1. Tests on weight matrices

Hypotheses that might be tested include, as an example, H01 : Q = W = W0 say, 
with M = M0 maintained vs H11 : Q = Q1 and W = W0 with M = M0 maintained. 
The point here is to seek model simplification, since the common factor reduction 
only arises as a possibility if Q = W. At the current state of development of the field 
(in which results for structures within which W and so on may be estimated from 
the sample, are not yet available) such hypotheses should probably be approached 
via methods developed for testing non-nested models. Thus H01 would correspond to 
Model0 and H11 to Model1 and a test could be based on (15).

4.4.2. A test for heteroskedasticity 

To test parametric restrictions that simplify the model, the usual likelihood ra-
tio machinery could be used, or LM-type tests be developed for cases in which the 
restricted model was significantly simpler to estimate than the unrestricted one. A 
case in point could be, given a parametric model (or a linear approximation to such 
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a model) for the covariance matrix, Ω, a test of the homoskedastic null hypothesis, 
h(α′zi) = h([α1, 0, ..., 0]′zi) = σ 2 = a constant, say. To see the form such a test could 
take 5, consider the first-order condition, (27)
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Stacking the first derivatives for α2, ..., αm into the vector, d, and writing Iαα for 
the corresponding part of the information matrix, the usual form for the LM statistic 
(in the block diagonal case) would be

LM = −d I d′ αα
1

in which both d and Iαα are evaluated at the null hypothesis. Now, observe, as in 
Breusch and Pagan (1979) and Anselin (1988), that
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5 Ignoring the off-diagonal blocks involving ρ and λ.



82 Burridge, P.

Similarly,
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Putting these objects together the test statistic,

LM = =− −d I d f Z Z Z Z f′ ′ ′ ′αα
1 11

2
19( ) ( )

is obtained, where Z = [z1, ..., zn]′ and f = g − 1. As in Breusch and Pagan (1979, 
p. 1290) it is found that (19) is one half the explained sum of squares from regres-
sion of gi on zi. Notice that the test for heteroskedasticity in the presence of spatial-
ly lagged dependent variables devised by Anselin (1988a) maintains (λ, ρ) = (0, 0) 
which is quite restrictive. Whether or not information about (ρ, λ) can be exploited to 
improve the test at (19) is a question that should be investigated.

Kelejian and Robinson (1998) present a test they designate, KR-SPHET, that has 
the absence of both spatial correlation and heteroskedasticity as its null hypothesis, 
mentioning in a remark (Remark 5, p. 395) a possible modification that could be used 
to test for heteroskedasticity with spatial correlation maintained. Their test is similar 
in spirit to the Breusch-Pagan test in that it employs a regression of squares and cross-
products of residuals on regressors supposed related to the heteroskedasticity under 
the alternative.

4.4.3. A better approach to tests on the weights matrices?

While the non-nested testing procedure could be used to test hypotheses about 
the weights, a more natural and flexible approach would be to have a parametric mo-
del for the weights matrices derived from economic theory, and to construct tests in a 
nesting model. Suppose W has elements wij = f (dij,τw), M has elements mij = f (dij,τm) 
and Q has elements qij = f (dij,τq) in which the dij are observed (distances or adjacency 
measures, or other indices of interactivity) and the τ are parameters to be estimated. 
In this framework, likelihood ratio tests of restrictions on the τ parameters can easi-
ly be formulated. To begin the development of such tests, a simpler homoskedastic 
nesting model could be studied. Consider the following model, in which ε = η ·σ with 
η ∼ N(0, I). The log-likelihood can be written

l
n n

( , , , , , , , , , , ) ln ln lnY X W Q M δ β γ λ ρ σ π σ2 2

2
2

2
= − − + II W

I M

−

+ − −

λ

ρ η ηln
1

2
′
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where as above, the sum of squares term is

η η ε ε σ

ε ρ λ δ β γ

ρ

′ ′=

= − − − − −

= −

/

( )([ ] )

(

2

1I M I W Y X QX

I M)) .U

The matrices M, W and Q are defined by

mij = f (dij,τm)

wij = f (dij,τw)

qij = f (dij,τq)

For compactness, as before, write B = (I − ρM) and A = (I − λW), with A being 
non-singular for (λ, τw) in a neighbourhood of (λ0,τw,0) and similarly B being non-
singular for (ρ, τm) in a neighbourhood of (ρ0, τm,0). Evidently, provided the model is 
identified, LR tests could be constructed numerically. Whether convenient alternative 
tests can be devised is another open question. A precedent for estimating the weights 
does exist, in the work of Bodson and Peeters (1975, p.467), though no systematic 
treatment appears to be available in the literature.

4.5. Approximate sampling distributions and the bootstrap 

In the model class under discussion here, neither least squares regression esti-
mates nor likelihood ratio statistics will have exactly known sampling distributions 
except possibly in very special cases. There are at least two responses to this. First, 
it is possible to search for meaningful conditions under which the sampling distri-
butions of estimators and test statistics converge to known standard distributions as 
the sample size increases. If such conditions turn out to be difficult to obtain, or at 
odds with the way in which empirical models are usually specified, then due cau-
tion needs to be exercised. However, even if the conditions under which the relevant 
convergence in distribution can be established are empirically reasonable, there re-
mains the problem of controlling significance levels in finite samples. This motivates 
the second response, namely the use of resampling to obtain approximate sampling 
distributions. The properties of bootstrap-based approximations to sampling distribu-
tions have yet to be investigated in the context of this model.

5. Final comments

The formal statistical analysis of regression models that embody spatial interac-
tions is enjoying a resurgence of interest, and some of the important properties of 
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estimators and test statistics have been established with the help of equipment de-
veloped over the past decade and a half in numerous papers by Kelejian and Prucha, 
and Lee, their collaborators, and others. These authors’ work provides a rigorous 
account of the large sample behaviour of various tests and estimators in which, as 
the sample size grows, so the elements of the spatial weight matrix, W, evolve in a 
specific way, and in which the regressors obey some quite natural restrictions. These 
are real advances. However, in spite of all this progress, we are still unable to provide 
satisfactory answers to some seemingly obvious questions about the structure of the 
models themselves. These questions are the subject of the present paper, and of other 
recent contributions that focus on model selection. In writing rather speculatively 
about a model that nests many of those currently in favour for handling data derived 
from a single crosssection, my purpose has been to suggest avenues that merit further 
exploration and formal study.

6. Appendix: The likelihood for the general nesting model

For convenience, write ε = Ω1/2η where η ∼ N(0, I). The heteroskedastic nesting 
model with Normal shocks has log-likelihood that can be written

l
n
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For compactness, write B = (I − ρM) and A = (I − λW), both matrices being 
non-singular by assumption. The first partial derivatives of the log-likelihood are (cf. 
Anselin (1988a) where the roles of λ and ρ are reversed, and our W, M are his W1 , 
W2 but the lagged exogenous variables, QX do not appear in his model):
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where Hp = diag{∂ωii /∂αp}. The second partial derivatives are
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The information matrix is of the form
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in which the dimensions of the blocks appear in the margins. As can be seen, this 
matrix is not block-diagonal between the mean and variance-covariance parameters 
of the model; this is because the spatial lag parameter, λ, enters both mean and cova-
riance structure in this formulation.
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