Name	
	_

Student Number

Recitation Instructor

Chemistry 483 Practice examination 2 Fall 2008

- 1. (40 points) Define and/or characterize
 - a. Secular Determinant

b. Spin Angular Momentum

c. Term Symbol

d. Hund's Rules

Name	
Student Number	

e Hartree-Fock Method

f. Electron configuration for the Oxygen atom

g. Energy levels for Be^{+2}

h. Spin-Orbit interaction

 Name

 Student Number

2. (10 points) A trial function for the He atom has the form

$$\Phi(\vec{r}_1, \vec{r}_2) = \psi_{1s}(\vec{r}_1)\psi_{1s}(\vec{r}_2) \text{ where } \psi_{1s}(\vec{r}) = \left(\frac{\alpha^3}{\pi}\right)^{1/2} e^{-\alpha r}$$

and results in the average value of the Hamiltonian

$$E(\alpha) = \alpha^2 - \frac{27}{8}\alpha$$

Determine the optimal value of α and the predicted energy for this system.

Name	
Student Number	

3. (15 points) Show that the most probable value of r in the 1s state of H is a_0

Name	
Student Number	

4. (5 points) Normalize the spin wavefunction. Show all steps.

 $\Psi(1,2) = \alpha(1)\beta(2) - \beta(1)\alpha(2)$

Na	ame	_			
~			,	*	

Student Number _____

5. (10 points) The term symbols for an np^3 electron configuration are ²P, ²D, and ⁴S. Calculate the values of J associated with each of these term symbols. Which term represents the ground state? Whys?

Name	
Student Number	

6. (10 points) Sketch the behaviour as a function of r of the 3s,3p, and 3d radial distribution functions for the Hydrogen atom. Label the sketches carefully.

Name	
Student Number	

7. (10 points) Suppose we were to use a trial function of the form

$$\phi = c_1 e^{-\alpha r} + c_2 e^{-\beta r^2}$$

to carry out a variational calculation for the ground state energy of the hydrogen atom. Can you guess without doing any calculations what c_1, c_2, α , and E_{\min} will be?