Name
Student Number
Recitation Instructor
Chemistry 483
Practice examination 2
Fall 2008

1. (40 points) Define and/or characterize
a. Secular Determinant
b. Spin Angular Momentum
c. Term Symbol
d. Hund's Rules

Name
Student Number
e Hartree-Fock Method
f. Electron configuration for the Oxygen atom
g. Energy levels for $B e^{+2}$
h. Spin-Orbit interaction

Name \qquad
Student Number \qquad
2. (10 points) A trial function for the He atom has the form

$$
\Phi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\psi_{1 s}\left(\vec{r}_{1}\right) \psi_{1 s}\left(\vec{r}_{2}\right) \text { where } \psi_{1 s}(\vec{r})=\left(\alpha^{3} / \pi\right)^{1 / 2} e^{-\alpha r}
$$

and results in the average value of the Hamiltonian

$$
E(\alpha)=\alpha^{2}-\frac{27}{8} \alpha
$$

Determine the optimal value of α and the predicted energy for this system.

Name
Student Number
3. (15 points) Show that the most probable value of r in the 1 s state of H is a_{0}

Name
Student Number
4. (5 points) Normalize the spin wavefunction. Show all steps.
$\Psi(1,2)=\alpha(1) \beta(2)-\beta(1) \alpha(2)$

Name
Student Number
5. (10 points) The term symbols for an $\boldsymbol{n} \boldsymbol{p}^{3}$ electron configuration are ${ }^{2} \mathrm{P},{ }^{2} \mathrm{D}$, and ${ }^{4} \mathrm{~S}$. Calculate the values of J associated with each of these term symbols. Which term represents the ground state? Whys?

Name
Student Number
6. (10 points) Sketch the behaviour as a function of r of the $3 \mathrm{~s}, 3 \mathrm{p}$, and 3d radial distribution functions for the Hydrogen atom. Label the sketches carefully.

Name
Student Number
7. (10 points) Suppose we were to use a trial function of the form

$$
\phi=c_{1} e^{-\alpha r}+c_{2} e^{-\beta r^{2}}
$$

to carry out a variational calculation for the ground state energy of the hydrogen atom. Can you guess without doing any calculations what c_{1}, c_{2}, α, and $E_{\text {min }}$ will be?

