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______________________________________________________________________ 

Abstract: Process variations are classified into common cause and assignable cause variations in the 

manufacturing and services industries. Common cause variations are inherent in a process and can be 

described implicitly or explicitly by stochastic methods. Assignable cause variations are unexpected and 

unpredictable and can occur before the commencement of any special events. Reducing process variations 

are critical for industries with a low tolerance for variability such as semiconductor manufacturing. While 

engineering process control (EPC) methods such as feedback/ feedforward controllers are widely 

employed in continuous process industry to reduce common cause variations, statistical process control 

(SPC) methods have been successfully utilized in discrete parts industry through identification and 

elimination of the assignable cause of variations. Recently, integration of EPC and SPC methods has 

emerged in the semiconductor manufacturing industry and has resulted reducing manufacturing waste 

and improving process efficiency. This paper provides a review of various control techniques and develops 

a unified framework to model the relationships among these well-known methods in EPC, SPC, and 

integrated EPC/ SPC. A case study centered on chemical mechanical planarization process demonstrates 

the utility of this framework. 

Keywords: Automatic process control, chemical mechanical planarization, control charts, run-to-run 

control, semiconductor manufacturing. 

______________________________________________________________________ 

1. Introduction 

wo categories of research and applications have been developed independently to 

achieve process control. Engineering process control (EPC) uses measurements to 

prescribe changes and adjust the process inputs intended to bring the process outputs closer 

to targets. By using feedback/ feedforward controllers for process regulation, EPC has 

gained a lot of popularity in continuous process industries. Statistical process control (SPC), 

on the other hand, uses measurements to monitor a process and look for major changes in 

order to eliminate the root causes of the changes. Statistical process control has found 

widespread applications in the manufacturing of discrete parts industries for process 

improvement, process parameter estimation, and process capability determination.  

Industries such as hospital service, business marketing and financial management have also 

embraced SPC for detecting important process changes to support decision making and 

improving quality. 

Practitioners of SPC argue that because of the complexity of most manufacturing 

processes, EPC methods can over-control a process and increase process variability before 

decreasing it as demonstrated by Deming’s funnel experiment (Deming [24]). Moreover, 

important quality events may be masked by frequent adjustments and become difficult to be 

detected and removed. Conversely, practitioners of EPC criticize SPC methods as being 
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exclusive of the opportunities for reducing the variability in the process output. Due to the 

stochastic nature of manufacturing processes, traditional SPC methods generate many false 

alarms and fail to discriminate quality deterioration from the in-control state defined by 

SPC rules. Recently EPC and SPC has been integrated in the semiconductor manufacturing 

and resulted in a tremendous improvement of industrial efficiency (Sachs et al. [49]). 

The integration of EPC and SPC techniques employs an EPC control rule to regulate 

the system and superimposes SPC charts on the EPC controlled system to detect process 

departures from the system model. Both academic research and industrial practice have 

shown the effectiveness of the EPC/ SPC integration model when the process is subjected 

to both systematic variations and special cause variations (Montgomery et al. [39]; Capilla 

et al. [16]; Jiang and Tsui [27]). To avoid confusion, Box and Luceno [13] refer to EPC 

activities as process adjustment and SPC activities as process monitoring. While the two 

approaches have been applied independently in different areas for decades, the relationship 

between them has not been clearly explored yet. 

Section 2 of this paper reviews various SPC and EPC techniques for industrial process 

control. Section 3 presents the integrated model of EPC/ SPC. Section 4 reviews several 

cutting-edge statistical process control methods for monitoring autocorrelated and EPC 

processes. Section 5 presents a case study of a chemical mechanical planarization (CMP) 

process to demonstrate the utility of the EPC/ SPC method. Section 6 discusses design 

issues for EPC/ SPC systems. Section 7 presents some concluding remarks. 

2. Two Process Control Approaches 

2.1. Engineering Process Control 

Engineering process control is a popular strategy for process optimization and 

improvement. It describes the manufacturing or information manipulation process as an 

input-output system where the input variables (recipes) can be manipulated (or adjusted) to 

counteract the uncontrollable disturbances to maintain the process target. The output of the 

process can be measurements of the final product or critical in-process variables that need 

to be controlled. In general, without any control actions (adjustment of inputs), the output 

may shift or drift away from the desired quality target due to disturbances (Box and Luceno 

[13]). These disturbances are usually not white noise but usually exhibit a dependence on 

past values. Thus, it is possible to anticipate the process behavior based on past 

observations and to control the process and outputs by adjusting the input variables. 

As the name implies, EPC requires a process model. A simple but useful process 

model that describes a linear relationship between process inputs and outputs is (Vander 

Wiel et al. [58]), 

 −= +1t t te gX D  (1) 

where et and X t represent the process output and input (control) deviations from target, Dt 

represents the process disturbances which pass through part of the system and continue to 

affect the output, and g is the process gain that measures the impact of input control to 

process outputs. To simplify our discussion, we assume that the process gain is unity, i.e., 

= −1g . When no process control is involved, the process output is simply the disturbance, 

and the variance of the output is obtained asσ 2
D . The objective of process control is to 

reduce process variations by adjusting inputs at the beginning of each run, i.e, σ σ<2 2
e D , 

where σ 2
e is the variance of the controlled output. 

Feedforward control uses prediction of the disturbance to adjust the process, 
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i.e., − =1
ˆ

t tX D , where ˆ
tD  is the prediction of disturbance at time t given process 

information up to 1t − . It strongly relies on an accurate sensor and measurement system 

to capture the process disturbance. Another process control strategy widely adopted in 

industry is feedback control, which uses deviations of the output from the target (set-point) 

to indicate that a disturbance has upset the process and calculate the amount of adjustment. 

Figure 1 presents a typical process with a feedback control scheme. Since deviations or 

errors are used to compensate for the disturbance, the compensation scheme is essentially 

two-fold. It is not perfect in maintaining the process on target since any corrective action is 

taken only when the process deviates from its target first. On the other hand, as soon as the 

process output deviates from the target, corrective action is initiated regardless of the 

source and type of disturbances. It is important to note that feedback scheme is beneficial 

only if there is autocorrelations among the outputs. 

 

 

Figure 1. A feedback controlled process. 

There is a rich body of research on feedback controllers (Astrom and Wittenmark [8]). 

To minimize the variance of the output deviations from the quality target, two types of 

controllers are popularly used. 

•  Minimum Mean Square Error (MMSE) Control. From the time series transfer 

function model that represents the relationship between the input X t and output et, Box 

et al. [11] develop the MMSE controller 

= − 1 3

2 4

( ) ( )

( ) ( )
t t

L B L B
X e

L B L B
 

where B is backshift operator, L1(B), L2(B), L3(B) and L4(B) are polynomials in B which 

are relevant to the process parameters. Theoretically, if the process can be accurately 

estimated, the output can be reduced to a white noise by the MMSE controller. 

•  Proportional Integral Derivative (PID) Control. It is a special class of the 

Autoregressive Integrated Moving Average (ARIMA) control model. The three mode 
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PID controller equation is formed by summing three methods of control, proportional 

(P), integral (I), and derivative (D). The discrete version of the PID controller is  

 
∞

− −
=

= + + + −∑0 1
0

( )t P t I t i D t t
i

X k k e k e k e e  (2) 

where k0 is always set to zero. The proportional control action is intuitive but is not 

able to eliminate steady-state errors, i.e., an offset will exist after a set-point change or 

a sustained load disturbance. The integral control action is often used because it can 

eliminate offset through continuously adjusting the controller output until the error 

reaches zero. The function of the derivative control action is to anticipate the future 

behavior of the error signal by considering its rate of change (Seborg et al. [50]). Tsung 

et al. [56] discuss design of PID controllers when the disturbance follows an 

ARIMA(1,1,1) model. Generally, other rules of thumb have to be used for designing a 

PID controller (Ziegler and Nichols [67]; Astrom and Hagglund [7]). 

The MMSE control is optimal in terms of minimizing mean squared residual errors. 

However, this is only true for the idealized situation in which the model and model 

parameters are known exactly. Because the process model is not known precisely, it has a 

serious robustness problem when the model is close to nonstationarity. As shown in Tsung 

et al. [56] and Luceno [35], the PID controller is very efficient and also robust against 

nonstationarity due to the fact that it can continuously adjust the process whenever there is 

an offset.  

Theoretically, only predictable deviations can be quantified by EPC methods. 

Modeling errors due to process changes are generally hard to be captured in real-time and 

compensated for by EPC schemes. Various adaptive EPC schemes which dynamically 

adjusted control parameters have been investigated. Recently, an adaptive framework is 

proposed in semiconductor manufacturing by superimposing an SPC scheme to monitor 

modeling errors and revise the process models (Sachs et al. [49]). 

2.2. Statistical Process Control 

The basic idea in SPC is a binary view of the state of a process, i.e., either it is running 

satisfactorily or not. As developed by Shewhart [51], the two states are classified as 

common cause of variations and assignable/ special cause of variations, respectively. 

•  Common Cause Variations. Common cause of variations is the basic assumption 

on which the SPC methods are based. It assumes that the sample comes from a known 

probability distribution, and the process is classified as “statistically” in-control. In 

other words, “the future behavior can be predicted within probability limits determined 

by the common-cause system” (Box and Kramer [12]). This kind of variations, from a 

management point of view, is inherent in the process, and is impossible or hard to be 

eliminated. 

•  Special Cause Variations. Based on Shewhart's classification, Deming [23] argues 

the special cause of variations as “something special, not part of the system of 

common causes”, should be identified and removed from the root. That is, the process 

output should be consistent with the postulated stable behavior or the common-cause 

model when the process is statistically in-control, and whenever any deviation occurs 

from the common cause model, one should look for and try to eliminate it. 
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Statistical control charts essentially mimic a sequential hypothesis test to discriminate 

special cause of variations from the common-cause variation model. For example, a basic 

mathematical model behind monitoring process mean changes is 

 η= +t t te X  (3) 

where et is the measurement of the process variable at time t, and ηt is the process mean at 

that time. Here, X t represents variations from the common cause system and is inherent in 

the process. In some applications, X t is or can be treated as an independently and 

identically distributed (i.i.d.) process. 

In many industrial applications, the process mean is often subject to occasional abrupt 

changes, i.e. 

 η η µ= +t t  (4) 

where η is the mean target, and µt is zero for < 0t t  and has nonzero values for ≥ 0t t . For 

example, if the special cause is a step-like change, µt is a constant µ after t0. When a drift is 

present, the process mean may follow a linear trend. The goal of SPC charts is to detect the 

change point t0 as quickly as possible so that corrective actions can be taken before quality 

deteriorates and defective units are produced. Among many others, the Shewhart chart, the 

exponentially weighted moving average (EWMA) chart, and the cumulative sum (CUSUM) 

chart are three important and widely used control charts. 

•  Shewhart Chart. Process observations are tested against control limits σ> ⋅t ee L , 

where σ e  is the standard deviation of the chart statistic estimated by moving range 

and sample standard deviation. L is pre-specified to maintain particular probability 

properties. 

•  EWMA Chart. Roberts [47] proposes to monitor the EWMA statistic of the 

process observations, ∞
= −= ∑ 0it i t iZ w e , where λ λ= −(1 )i

iw  ( λ< ≤0 1 ). The EWMA 

statistic utilizes past information with the discount factor (1−λ) and includes the 

Shewhart chart as a special case when λ=1. It has a recursive form 

 λ λ−= − +1(1 )t t tZ Z e  (5) 

where 0Z  is zero or the process mean. The stopping rule of the EWMA chart is 

σ> ⋅t ZZ L . 

•  CUSUM Chart. Page [41] introduces the Cumulative Sum (CUSUM) chart as a 

sequential probability test, which can also be obtained by letting λ approach 0 in 

equation (5), i.e., the CUSUM algorithm assigns equal weights to past observations. 

The tabular form of a CUSUM chart consists of two quantities, 

    + + − −
− −= + − = − + −1 1max[0, ], min[0, ]t t t t t tZ e Z K Z e Z K  (6) 

where + −= =0 0 0Z Z . 

Although the purpose of these procedures is to detect process changes, we know that 

they may signal problems even when the process remains on target due to the randomness 

of observations. The expected length of period between two successive false alarms is 

called in-control average run length 0ARL . When a special cause presents, the expected 

period before a signal is triggered is called out-of-control average run length 1ARL . A control 

chart is desired with a shorter 1ARL  but longer 0ARL . In practice, the Shewhart chart is 
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sensitive in detecting large shifts while the EWMA and CUSUM charts are sensitive to 

small shifts (Lucas and Saccucci [34]). 

In typical applications of SPC charts, a fundamental assumption is that the common 

cause variation is free of serial correlation. Unfortunately, the assumption of independence 

is often invalid in many manufacturing processes. For example, in discrete parts industry, 

the development of sensing and measurement technology has made it possible to measure 

critical dimensions on every unit produced, and in continuous process industry, the 

presence of inertial elements, such as tanks, reactors, and recycle streams, results in 

significant serial correlation in measurement variables. Serial correlations call for EPC 

techniques to reduce variations and put forward new challenges and opportunities to SPC 

for quality improvement. 

3. Integration of EPS/ SPC Run-to-Run (R2R) Control 

EPC and SPC are two complementary strategies developed that are often practiced in 

different industries for quality assurance. There is an implicit relationship between them 

through prediction. For example, consider a pure-gain dynamic feedback-controlled process 

described by 

 −= +1t t te X D . (7) 

Suppose +1
ˆ

tD  is an estimator (i.e., prediction) of Dt+1 at time t, a realizable form of 

control could be obtained by setting += − 1
ˆ

t tX D  and the output error at time t+1 becomes 

+ + += −1 1 1
ˆ

t t te D D , which equals the “prediction error”. For example, when the process can 

be described using an ARIMA model, the MMSE control has an identical form as the 

MMSE predictor (Box et al. [11]). Similarly, as discussed in Section 4, forecast-based special 

cause chart (SCC) essentially monitors the MMSE prediction errors of an autocorrelated 

process. 

As an alternative, the exponentially weighted moving average (EWMA) predictor, 

which corresponds to the integral (I) control, is one of the most frequently used prediction 

methods in business and industry mainly due to its simplicity and efficiency. Box et al. [11] 

and others have studied its optimality in terms of minimizing mean squared prediction 

errors for IMA(1) models; Cox [21] shows that it is effective for AR(1) models when 

parameter φ is larger than 1/ 3. In SPC the EWMA statistic is also an effective control chart 

for detecting small and medium mean shifts for both independently and identically 

distributed (i.i.d.) and autocorrelated processes (Lucas and Saccucci [34]; Montgomery and 

Mastrangelo [38]; Zhang [66]). 

The relationship between EPC and SPC through prediction has been recently explored 

in many industrial applications. To make an appropriate selection between the two 

approaches in practice, it is important to identify disturbance structures and strengths of the 

two control methods to influence the process. Here we present four categories of on-going 

research and application of the two quality control approaches. 

•  If a process is not correlated, there is no need to employ EPC schemes and 

traditional SPC control charts should be used for identifying assignable cause 

variations; 

•  When data are correlated, the possibility of employing EPC techniques should be 

examined and SPC control charts are called for to monitor autocorrelated processes if 

no feasible EPC controller exists; 
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•  If appropriate controllers are available, EPC control schemes can be employed to 

compensate for the autocorrelated disturbance. However, no single EPC controller 

system can compensate for all kinds of potential variations; and 

•  To identify and understand the cause of process changes, a unified control 

framework should be applied to regulate a process using feedback control while using 

the diagnostic capability of SPC to detect unexpected disturbances to the process. 

The integration of EPC/ SPC looks for ultimate opportunities of quality improvement 

by integrating and combining the strengths of EPC and SPC among various levels of 

control that may be incorporated into a manufacturing system. Run-to-run (R2R) or 

sequential optimization and control is a typical realization of EPC/ SPC integration in 

semiconductor manufacturing (Moyne et al. [40]; Rashap et al. [45]; Ruegsegger et al. [48]). 

The R2R controller is a model-based process control system in which the controller 

provides recipes (inputs) based on post-process measurements at the beginning of each run, 

updates the process model according to the measurements at the end of the run, and 

provides new recipes for the next run of the process. It generally does not modify recipes 

during a run because obtaining real-time information is usually very expensive in a 

semiconductor process and frequent changes of inputs to the process may increase the 

variability of the process's outputs and even make the process unstable. A block diagram of 

such a R2R controller is shown in Figure 2. 
 

     

 
Figure 2. Structure of run-to-run controller. 

A good R2R controller should be able to compensate for various disturbances, such as 

process drifts, process shifts due to maintenance or other factors, model or sensor errors, etc. 

Moreover, it should be able to deal with limitations, bounds, cost requirement, multiple 

targets and time delays that are often encountered in real processes. The initial R2R process 

control model can be derived from former experiments using statistical methods such as the 
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response surface model (RSM). When the controller is employed online, the model within 

the controller is updated according to the new measurements from run to run. A typical 

R2R system consists of three components: diagnosis module, gradual module, and rapid 

module (Sachs et al. [49]). 

•  Diagnosis module. It is a generalized SPC to distinguish between slow drifts and 

rapid shifts and decide if the process is running in accordance with the current process 

model. Since the inputs experience small changes, it is generally impossible to apply 

standard control charts to monitor the outputs. Mandel [37] suggests monitoring the 

prediction errors; Zhang [65] proposes cause-selecting control charts to determine 

which of the input or output is responsible for the out-of-control situation. In 

consequence, this module determines which of the following gradual or rapid modes is 

engaged. 

•  G radual module. This module uses historical data to linearly update process 

models by giving less weight to old data. A pure I control is typically employed when 

the process can be well approximated by linear models. Assume Dt is an IMA(1) 

process, ε θε− −= + −1 1t t t tD D  where ε t is a white noise, equation (1) can be generally 

rewritten as,  

 α ε−= + +1t t t te gX   (8) 

 where α α θ ε− −= + −1 1(1 )t t t  is the mean level of the disturbance. The optimal 

predictor αt is the EWMA statistic ω ω− −= − + −1 1( ) (1 )t t t ta e gX a  where ω≤ ≤0 1  is 

the fixed discount factor and ω θ= −1  if θ is known (Box, Jenkins, and Reinsel, 1994). 

The recipe is set at τ= −( )/t tX a g . 

•  Rapid module. This module quickly updates the process model based on changes 

detected by the diagnosis module. It must accomplish tasks such as estimating the 

magnitude and location of the disturbance, assessing sequentially the probability that a 

change actually took place given new available data, and using estimations of the 

disturbance to prescribe control actions (Sachs et al. [49]). 

Significant research on the design of adaptive and robust controllers for the gradual 

control module exists. Double exponential forecasting method (Bulter and Stefani [15]; 

Castillo [17]) has been proposed using a Predictor Corrector Controller (PCC) to eliminate 

the impact of machine and process drift. Other control methods include Optimized 

Adaptive Quality Control (Castillo and Yeh [18]), Kalman filter (Palmer et al. [42]), 

set-value methods (Baras and Patel [10]), and machine learning methods such as Artificial 

Neural Network (Smith and Boning [52]). To facilitate the rapid module, Chen and Elsayed 

[19] provide a Bayesian estimation method for detecting the shift size and estimating the 

time of the shift; Yashchin [63] proposes an adaptive EWMA estimator of the process 

mean; Pan and Castillo [43] investigate using CUSUM charts in conjunction with 

sequential adjustments to improve the average squared deviations. However, the residuals 

from the gradual module are generally autocorrelated due to modeling errors and process 

drifts. The following section provides a review of SPC methods for monitoring 

autocorrelated processes and EPC systems. 

4. SPC Methods for EPC/ SPC Systems 

To develop efficient tools for monitoring EPC/ SPC systems, it is important to 

understand the impact of autocorrelation on the performance of control charts. Many 

authors have found that the presence of autocorrelation has a substantial and detrimental 
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effect on the statistical properties of control charts developed under the i.i.d. assumption. 

First, the standard deviation of the underlying process is often under-estimated when it is 

estimated from moving range and the first-lag autocorrelation is positive because 

 σ σ ρ= = −2 1
ˆ( ) ( / ) 1MRE E MR d  (9) 

where ρ1 is the first-lag correlation coefficient of the underlying process (Cryer and Ryan 

[22]). Second, because of the systematic nonrandom patterns of the autocorrelated data, it 

becomes difficult either to recognize a state of statistical control or to identify departures 

from the in-control state. Alwan and Robert [2] point out that the individual X  chart based 

on the assumption of i.i.d. observations can be misleading if they are actually 

autocorrelated. Maragah and Woodall [36] quantify the effect of autocorrelation on the 

retrospective X-chart with and without supplementary rules. Therefore, to accommodate 

autocorrelations among observations, development of new control charts has received 

considerable attentions in the last decade. 

One common SPC strategy for monitoring autocorrelated processes is to modify the 

control limits of traditional charts and then to apply the modified charts to the original 

autocorrelated data. Vasilopoulos and Stamboulis [59] provide an adjustment of control 

limits for Shewhart charts when monitoring autocorrelated processes. Johnson and 

Bagshaw [32] and Bagshaw and Johnson [9] provide the factor to adjust the critical 

boundary of CUSUM charts to correct the test procedure in the presence of correlation. 

The out-of-control performance of these adjustments has been investigated recently. 

Yashchin [62] shows that the CUSUM chart after adjustments can be seriously affected by 

mild autocorrelations. Zhang [66] studies the EWMA chart for stationary processes. Jiang 

et al. [30] extend the EWMA chart to a general class of control charts based on the 

autoregressive moving average transformation, the ARMA charts. The monitoring statistic 

of an ARMA chart is defined to be the result of a generalized ARMA(1,1) process applied to 

the underlying process {X t}, i.e., 

 θ θ φ
−

− − −
=

= − + = ∑
1

0 1 1
0

t

t t t t i t i
i

Z X X Z w X  (10) 

where θ=0 0w , θ φ β φ −= − 1
0 ( ) i

iw θ0 ( ≥1i ) and β θ θ= 0/ . θ0 is chosen so that the sum of 

all coefficients iw  is unity when →∞t , i.e., θ θ φ= + −0 1 . The authors show that these 

charts could have good performance when certain chart parameters are chosen 

appropriately. Jiang and Tsui [28] extend it to higher-order ARMA charts which comprise a 

general class of control charts including SCC, EWMA, and PID charts as special cases. 

4.1. Forecast-Based Monitoring Methods 

A natural idea of monitoring an autocorrelated sequence is to transform the sequence 

into an i.i.d. or near i.i.d. sequence so that the “innovations” can be monitored by the 

traditional control charts developed for i.i.d. observations. This family of control chart is 

called the forecast-based residual chart. Alwan and Roberts [2] first propose to use Special 

Cause Chart (SCC) to monitor MMSE prediction errors. For simplicity, assume the 

underlying process {X t} follows an ARMA(1,1) process, i.e., 

 ε ε− −− = −1 1t t t tX uX v  (11) 

where u and v are scalar constants and εt is white noise. The residuals can be obtained as 

= − ˆ
t t te X X  where ˆ

tX  is the prediction of X t given all information up to t−1. The MMSE 
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predictor can be written as − −= + −1 1
ˆ ( )t t tX vX u v X . If the model is accurate, the prediction 

errors are approximately uncorrelated and then any conventional control charts can be 

utilized for monitoring the near i.i.d. prediction errors.  

The SCC method has attracted considerable attention and has been further studied by 

many authors. Wardell et al. [60], [61] derive the run length distribution of the Shewhart 

chart applied to the residuals of an ARMA process; Vander Wiel [57] studies the 

performance of SCC's for integrated moving average IMA(0,1,1) models. In general, 

monitoring the i.i.d. residuals gives SCC charts the advantage that the control limits can be 

easily determined by means of traditional control charts such as the Shewhart chart, the 

EWMA chart, and the CUSUM chart. Another advantage of the SCC chart is that its 

performance can be analytically approximated. 

The EWMA predictor is another alternative proposed by Montgomery and 

Mastrangelo [38] (M-M chart). Jiang et al. [29] further generalize the use of 

proportional-integrated-derivative (PID) predictors with subsequent monitoring of the 

prediction errors, i.e, 

 λ λ λ+ − −= + + +1 1 2 1 3 2
ˆ

t t t t tX X e e e  (12) 

where = − ˆ
t t te X X , λ = + +1 P I Dk k k , λ = − +2 ( 2 )P Dk k , and λ =3 Dk . The PID-based 

charts monitor et and include the SCC, EWMA, and M-M charts as special cases. Jiang et al. 

[31] show that the predictors of the EWMA chart and M-M chart may sometimes be 

inefficient and the SCC may be too sensitive to model deviation. On the other hand, the 

performance of the PID-based chart can be predicted via chart parameters through 

measures of two “capability indices”. As a result, for any given underlying process, one can 

tune the parameters of the PID-based chart to optimize its performance. 

4.2. Generalized Likelihood Ratio Test (GLRT) Methods 

Forecast-based residual methods involve only a single testing statistic and often suffers 

from the problem of a narrow “window of opportunity” when the underlying process is 

positively correlated (Vander Wiel [57]). For example, for monitoring an AR(1) process 

with ρ 1=0.9, a shift with size =1 will reduce to 0.1 from the second run after the shift δ
occurrence due to forecast recovery. If an SCC missed the detection in the first place, it will 

become very difficult to signal since the mean deviation shrinks to only 10% of the original 

size. If the shift occurrence time was known, the “window of opportunity” problem is 

expected to be alleviated by including more historical observations/ residuals in the 

statistical hypothesis test. For the above AR(1) example, if a mean shift is suspected to take 

place at t−1, then residuals at both time t and t−1 can be used to obtain a likelihood ratio  

(LR) test for the hypothesis instead of et only, i.e., the test statistic is −+ 1(0.1 ) 1.01t te e .  

If the hypothesis is true, this LR test has a signal-to-noise (SN) ratio of ≈1.1/ 1.01 1.09  

and consequently is more powerful than et whose SN ratio is 1. 

A GLRT procedure can be obtained to test multiple shift locations (Vander Wiel [57]; 

Apley and Shi [5]). Assume the residual signature is {δi } ( ≥ 0t ) when a shift occurs, a 

GLRT based on residuals with window p is 

 λ δ δ− +
≤ ≤ − = =

= ∑ ∑ 2

0 1 0 0
max

k k

R i t k i i
k p i i

e  (13) 

This GLRT statistic, called residual GLRT, has been shown to be very effective to 

detect mean shifts if p is sufficiently large. However, Apley and Shi [5] indicate that it 
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strongly depends on the accuracy of signature. If a shift is not detected in the window, the 

signature applied in λR might no longer be valid and the test statistic is not efficient any 

more. Consequently, this GLRT procedure is insensitive to detect small shifts since they are 

very likely to be missed in the window.  

Jiang [25] derives a generalized likelihood ratio test based on the original observations 

for different change point locations. Consider a p-variate random vector transformed from 

the univariate autocorrelated observations, − + − += …1 2( , , , ) 't t p t p tY X X X , a step shift 

occurred at time t-k+1 has a signature, 

=

����

… …(0, , 0, 1, , 1) '

k

kd  ( ≤ ≤1 k p ) 

and = …(1, 1, , 1) 'kd  (k>p). The GLRT procedure (called observational GLRT) for testing 

these signatures is 

 λ − −

≤ ≤
= Σ Σ' 1 ' 1

1

maxO k t k k
k p

d Y d d  (14) 

where Σ  is the covariance matrix of Y t. It is important to note that, unlike the residual 

GLRT chart, one of dk’s always matches the true signature of Y t regardless of the change 

point time. This grants a higher efficiency of the observational GLRT chart than the 

residual GLRT chart no matter how wide the window is. More importantly, the 

observational GLRT chart is essentially model-free while the residual GLRT chart is 

model-based. When other shift patterns present, a multivariate T 2 chart can be developed 

based on −= Σ2 ' 1
t t tT Y Y , which is essentially a GLRT test assuming no shift information 

(Apley and Tsung [6], Anderson [3]). 

4.3. Monitoring EPC/ SPC Systems 

Control charts developed for monitoring autocorrelated observations shed lights to 

monitoring integrated EPC/ SPC control systems. For example, the essential idea behind 

the forecast-based residual charts is mathematically similar to the pure EPC control 

strategy when the same forecasting scheme is used. In particular, monitoring the output of 

a MMSE controlled process has the same performance as the corresponding SCC charts. 

Similarly, the residual chart is equivalent to the associated monitoring component of the 

EPC/ SPC system. 

Similar to the forecast-based methods, assignable causes have an effect that is always 
contaminated by the EPC control action and result in a small “window of opportunity” for 
detection (Vander Wiel [57]). As an alternative, some authors suggest that monitoring the 
EPC control action may improve the chance of detection (Box and Kramer [12]; Capilla et 
al. [16]). Kourti et al. [33] propose a method of monitoring process outputs conditional on 
the inputs or other changing process parameters. Jiang and Tsui [29] and Tsung and Tsui 
[55] demonstrate that monitoring the control action may be more efficient than monitoring 
the output of the EPC/ SPC system for some autocorrelated processes and vice versa for 
others. To integrate the information provided by process inputs and outputs, Tsung et al. [54] 
develop multivariate techniques based on Hotelling’s T 2 chart and Bonferroni approach. 
Denote the multivariate vector by −= 1( , ) 't t tZ e X  which has covariance matrix Σ Z, the T 2 
chart monitors statistic 

 −= Σ2 ' 1
t t Z tT Z Z  (15) 

When mean shift patterns are known, similar to the GLRT procedures for monitoring 
autocorrelated processes, more efficient monitoring statistics can be developed following 
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the available signatures (Jiang [26]). For illustration purposes, the following section 
presents a Chemical-Mechanical Planarization (CMP) process to demonstrate the 
effectiveness of SPC methods in R2R control systems. 

5. A Chemical-Mechanical Planarization Example 

Chemical-Mechanical Planarization (CMP) of dielectric films is basically a surface 

planarization method in which a wafer is affixed to a carrier and pressed face-down on a 

rotating platen holding a polishing pad as shown in Figure 3 (Zantye et al. [64]). This 

enabling technology is used for the manufacturing of integrated circuits with interconnect 

geometries of less than 0.18 micron. Silica-based alkaline slurry is applied during polishing 

thus providing a chemical and mechanical component to the polishing process. The 

primary function of CMP is to smooth a nominally macroscopically flat wafer at the 

feature (or micro-level), i.e., planarize features. The post-polish nonuniformity (NU), 

measured by the ratio of the standard deviation of the post-polish wafer thickness to the 

average post-polish wafer thickness, is usually required to be less than 5% variation in film 

thickness across wafer. Therefore, to evenly planarize features across the whole wafer it is 

crucial to have a uniform material removal rate (RR) across the wafer. This removal rate 

uniformity, measured by the within wafer non uniformity, ensures that the entire wafer is 

uniformly reduced in height. 

 

Figure 3. Schematic of a CMP system. 

It is well known that CMP is governed by the Preston equation, which describes an 

empirical approximation of polishing rate in terms of applied pressure and relative velocity 

between polishing pad and wafer, i.e., = ⋅ ⋅pRR K P S  for removal rate, where Kp is Preston 

coefficient inversely proportional to elastic modulus of material being polished, P is down 

pressure, and S is pad-wafer relative speed (Preston [44]). The Preston's coefficient Kp 

depends on process variables such as slurry composition, pad properties, mechanical 

abrasion and chemical effects during polishing process. The Preston’s equation is rather 

rough and many authors have developed modifications considering the mechanical and 
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chemical properties of wafer, polishing pad and slurry (see e.g., Cook [20], Tseng and 

Wang [53], Runnels et al. [46]). In order to control uniformity, one alternative is to reduce 

the non-uniformity of the pressure and velocity distribution. However, as pads wear, RR 

usually decreases and coincides with increasing NU over time, even with conditioning. This 

requires a substantial use of SPC monitoring to check the performance of the R2R 

controller. For illustration, we consider adjusting pressure ratio to compensate for pad wear.  

Figure 4 presents an experiment of material removal rate under a R2R control system. 

Due to the nonuniformity of incoming dielectric, the output wafer nonuniformity may drift 

away from target if without EPC/ SPC control. In addition, a wear problem starts from the 

51st
 run on the polish pad. Now a EWMA (I) controller is employed to adjust the polish 

rate and the CMP nonuniformity of material removal rate is found closer to target, 1.5%, 

before the wear problem occurs but more than 2% afterwards. 
 

     

 

Figure 4. Output removal rate. 

Note that, although the EWMA controller is designed to reduce incoming dielectric 

variations, the severity of the polish pad deterioration is also weakened (the drift has been 

reduced to a step shift). If a Shewhart chart is applied to monitor the EPC-CMP process, a 

signal will be triggered at the 54th run and the polish rate model can be updated to take into 

consideration the polish pad deterioration. The nonuniformity can be always maintained at 

1.5% whatever the pad wear problem happens or not, showing the effectiveness of SPC 

methods in improving product quality. 

6. Design of EPC/ SPC Systems: Efficiency versus Robustness 

Although EPC and SPC techniques share the same objective of reducing process 

variations and many similarities in implementation, the criterion for selecting SPC 

monitoring charts is fundamentally different from corresponding EPC controllers. For 

example, instead of minimizing the mean squared error/ prediction error of a PID 
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controller, maximization of the chance of detecting shifts is always desired when designing 

a PID chart. Alternatively, signal-to-noise (SN) ratios developed in Jiang et al. [30] can be 

used and an ad hoc procedure is proposed for designing appropriate charts. 

Taking PID chart as an example shown in Figure 5, two signal-to-noise ratios are 

crucial to the statistical performance of a PID chart.  Denote σ Z  the standard deviation 

of charting statistic Zt, µT  (µS ) the shift levels of Zt at the first step (long enough) after the 

shift happens. The transient state ratio is defined by µ σ= /T T ZC  which measures 

capability of the control chart to detect a shift in its first few steps. The steady state ratio is 

defined by µ σ= /S S ZC  which measures capability of the control chart to detect a shift in 

its steady state. By selecting control chart parameters, these two ratios can be manipulated 

in the desired way so that the chance of detection is maximized.  

In general, if the transient ratio can be tuned to a value high enough (say 4 to 5) by 

choosing appropriate PID parameters, the corresponding PID chart will be able to detect 

the shift quickly. On the other hand, if this ratio is smaller than 3, the shift will likely be 

missed at the transient state and needs to be detected in the later runs. In this case, the 

steady state ratio becomes more important for detecting the shift efficiently at the steady 

state. Although a high steady state ratio is helpful in detecting the shift in steady state, it 

may result in an extremely small transient ratio and make the transition of the shifts from 

the transient state to the steady state very slow. To make the chart detect the shift efficiently 

in the steady state, a balance is needed to make a tradeoff between the transient ratio and 

the steady state ratio when choosing the charting parameters. Generally, Jiang et al. [30] 

recommend the appropriate selection of chart parameters value to achieve CS around 3 for 

balancing the values of CT and CS. This heuristic algorithm is also helpful in designing other 

types of SPC charts for autocorrelated or EPC process, e.g., the EWMA and ARMA 

charts.  

One of the obstacles that prohibit the usage of SPC methods in monitoring 

autocorrelated or EPC processes is the robustness of a control chart. It is defined by how its 

run length distribution changes when the process model is mis-specified. Since residuals are 

no longer i.i.d., reliable estimates of process variations should be used (Boyles [14]; 

Alexopoulos et al. [1]). Moreover, even though a robust estimator of standard deviations 

can be obtained, a more sensitive control chart such as PID charts could still be less robust 

comparing to less sensitive control charts such as MMSE-based SCC charts. For example, 

Tsung et al. [56] and Luceno [35] conclude that PID controllers are generally more robust 

than MMSE controllers against model specification errors. However, Jiang et al. [29] show 

that, PID charts tends to have a shorter “in-control” ARL when the process model is 

mis-specified since model errors can be viewed as a kind of “shift/ deviation” from the 

“true” process model. 

The non-robustness of sensitive control charts seems discourage development of more 

efficient control charts and a trade-off is necessary between sensitivity and robustness when 

selecting control charts for monitoring autocorrelated processes. Apley and Lee [4] 

recommend use a conservative control limit for EWMA charts for monitoring MMSE 

residuals. By using worst-case estimation of residual variance, the EWMA chart can be 

designed to be robust in the in-control state with a slight loss of efficiency in the 

out-of-control state. This design strategy is very helpful and can be generalized to other 

SPC methods for monitoring autocorrelated or EPC processes. 
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Figure 5. Design of PID charts. 

7. Concluding Remarks 

This paper provides a review of current EPC and SPC techniques and their 

applications in parts and process industries for quality improvement. The two classes of 

methods can be linked and integrated in a unified quality control framework. While much 

attention has been focused on developing various efficient and robust EPC controllers in 

literature, we emphasize the crucial task of monitoring autocorrelated processes and EPC 

systems. The case study demonstrates the effectiveness of the EPC/ SPC integration. 
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