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Abstract: Multivariate statistical process control deserves particular attention in the recent scenario. 

Though, Hotelling control chart is quite popular and widely used technique in this field but its 

performance is deteriorated when the underlying distribution of  the quality characteristics is not following 

multivariate normal distribution. Hence the need of  developing a non-parametric multivariate control 

chart arises which does not require any underlying distribution. In this work a multivariate non- 

parametric control chart based on bivariate sign test is proposed. Its performance in both in control and 

out of  control state was evaluated by simulating data from multivariate normal and multivariate t

distribution and compared with those of  existing multivariate parametric control chart. 
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1. Introduction

ultivariate statistical process control (MSPC) is particularly important in

contemporary industries where data are collected on more than one variable. Most 

quality characteristics to be controlled and monitored are not independent. One of  the 

main reasons for this correlation is that most manufacturing systems are composed of  

many subsystems, which are highly interconnected. The excess of  subsystems gives rise to 

the difficulties in monitoring the multiple variables since it is often misleading for the 

operators to monitor those correlated variables individually. Under such situations, how to 

monitor the variables and simultaneously to integrate them is crucial to success of  MSPC. 

The situations demanding such analysis ranges from a rather simple plastic processing to 

more complex engine manufacturing processes. The use of  multiple univariate control 

charts does not deliver a useful solution in this situation. The problems are that, the overall 

probability of  signaling a false ‘out-of-control’ situation is not controlled and more seriously 

the correlation among the variables are ignored. 

M

Extensive research has been performed in the field of  multivariate control charts since 

the 1940’s when Hotelling first recognized that the quality of  product may depend on several 

correlated characteristics. One type of  MSPC is a multivariate chart extended from 

univariate SPC methods, including Hotelling’s chart, multivariate EWMA and

multivariate CUSUM charts (Montgomery [13]). Another type of  MSPC is based on the 

latent variable projection, such as Principal Component Analysis (PCA) and Partial Least

Squares (PLS) (Lowry and Montgomery [11], MacGregor and Kourti [12], Raich and Cinar 

[17]). 

2T

The most familiar multivariate process monitoring and control procedure is the 

Hotelling control chart for monitoring the mean vector of  the process. This control chart 2T
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is based on the assumption that the multiple quality characteristics have a joint probability 

density function, which is multivariate normal. 

In real-life problems, the actual distribution is usually unknown and is also not easy to 

estimate accurately, especially when the number of samples is not large enough to

approximate the asymptotic distribution (Polansky [15]). In such cases, the control charts 

may not perform as well as expected. Schilling and Nelson [19] and many other researchers 

have investigated the effects of non-normality on the control limits and charting performance. 

To alleviate such effects, some distribution-free or non-parametric control charts have been 

proposed. 

The main advantages of  the non-parametric control charts is the flexibility derived 

from not needing to assume any parametric probability distribution for the underlying 

process, at least as far as establishing and implementing control charts are concerned. 

Obviously, this is very beneficial in the field of  process control, particularly in start-up 

situation where not much data is available to use a parametric procedure. Also the 

nonparametric charts are likely to share the robustness properties of  nonparametric tests 

and confidence intervals and are, therefore far more likely to be less impacted by outliers. It 

should be noted that nonparametric methods can be somewhat less efficient than their 

parametric counterparts, provided of  course that one has the complete knowledge of  the 

underlying stochastic process for which the particular parametric method is specifically 

designed; however, the reality is that such information is seldom, if  ever, available to the 

quality practitioner. Moreover, in today’s computer based process monitoring and control, 

“less efficiency” can often be compensated for by more observations. Another perceived 

disadvantage of  nonparametric charts is that for small sample sizes one needs special tables. 

Again, this should not be a problem given the ubiquitous presence of  computers today.  

Recent literature reveals the development of  substantial number of  non-parametric 

control charts where no underlying distribution is assumed on the process output. Woodall 

and Montgomery [20] foresaw an increasing role for non-parametric methods in control 

charting application. Chakraborti et al. [2] gave an overview and discussed the advantages 

of  several non-parametric control charts over their normal theory counterparts. Bakir [1] 

complied and classified several non-parametric control charts according to the driving non- 

parametric idea behind each one of  them. In last two decades a number of  non-parametric 

control charts have been reported in several literature. But most of  them concentrate on 

univariate non-parametric control chart. 

The present study attempts to summarize different multivariate non-parametric control 

chart available in the existing literature and proposed a new multivariate non-parametric 

control chart for controlling location parameters based on bivariate sign test. Its performance 

with respect to in-control ARL and power to detect shift in location parameter has been 

evaluated and compared them with that of  the most widely used multivariate parametric 

Hotelling or2T 2� control chart. 

2. Literature Survey 

Very few multivariate nonparametric control charts (MNCC) exist in the literature. 

Hayter and Tsui [6] proposed a Shewhart type MNCC for individual to monitor process 

location parameter. The chart is based on the M statistic, which is the maximum of  

deviation of  the observations from their sample means. The calculation of  control limits is 

based on the empirical distribution of  an initial reference sample. Kapatou Reynolds [8, 9] 

proposed an EWMA type multivariate CCs for groups based on the signed rank statistics. 
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They are not truly non-parametric since some elements of  covariance need to be estimated. 

Liu [10] combined the idea of  reference sample with the concept of  data depth and 

proposed a new type of  MNCC. Sun and Tsung [18] proposed a multivariate control chart 

based on the kernel distance, which is a measure of  the distance between the ‘kernel centre’ 

and the incoming new sample to be monitored. The kernel distance can be calculated using 

support vector methods. This chart makes use of  information extracted from in-control 

preliminary samples. Hamurkarouglu et al. [5] proposed a nonparametric control chart based

on Mahalanobis depth. The chart was constructed with respect to the rank of  Mahalanobis 

depth. Hur [7] developed a wavelet-based Control Charts for general multivariate processes. 

Hotelling control chart:  2T

This control chart is based on the assumption that the multiple quality characteristics 

have a joint probability density function, which is multivariate normal, which is of  the 

following form: 

/2 1/2 1( ) (2 ) exp{ (1/ 2)( ) ( )pf � � � ��� � �� �X X � �

��p � ��number of  variables, mean vector, variance-covariance matrix. 

Suppose that two quality characteristics  and  are jointly distributed according to 

the bivariate normal distribution. Let
1x 2x

1� 2�and be the mean values of the quality 

characteristics and let 1� 2�and be the standard deviations of  and  respectively. 

The covariance between  and  is
1x 2x

12.� We assume that they are known. 1x 2x

If is the sample mean vector and1 2(x x ��x �) is the variance-covariance matrix, 

then the statistic, 

1( ) (n ��� �x x );�� � n � where sample size, 

follows Chi-square distribution with 2 degrees of  freedom. This equation can be used as the 

basis of  a control chart for the process means 1� 2.�and If  the process means remain at 

the values 1� 2 ,�and the values of  the statistic should be less than the upper control limit 

where2
, 2UCL ,	��

2
, 2	� 	is the upper percentage point of  the chi-square distribution 

with 2 degrees of  freedom. If  at least one of  the means shift to some new value, the 

probability of  the statistic exceeding upper control limit increases. 

� �In practice, however, it is necessary to estimate and from the analysis of  the 

preliminary samples taken when the process is assumed to be in control. Suppose, X and

are the unbiased estimates of  the population mean ( )� ( )�and covariance matrixS
respectively. Then the test statistic becomes 

2 1( ) ( )T n ��� � � ,x X S x X

which follows Hotelling distribution. For phase 1 (when the objective is to establish the 

control limits by obtaining the in-control set of  observations), the upper control limit is 

2T

, , 1UCL { ( 1)( 1) / ( 1)} ,p mn m pp m n mn m p F	 � � 
� � � � � 


where number of  initial samples. m �

In Phase 2, when the chart is in use, the control limit is  

, , 1UCL { ( 1)( 1) / ( 1)} .p mn m pp m n mn m p F	 � � 
� � � � � 
           

� and are estimated from a large number of  preliminary samples (�20), it is �If
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2
, 2UCL 	��customary to use as the upper control limit in both phase 1 and phase 2. 

3. Proposed Method 

Theory: A bivariate sign test for location 

In this section the basic theory of  bivariate sign test is described. In this context see 

Puri and Sen [16]. 

Let be independent stochastic vectors having 

continuous cumulative distribution functions respectively. The 

problem is to test whether have  specified pairs of (marginal) medians (assumed 

to be uniquely defined). By suitably choosing the origins, we may assume that the pair of  

hypothetical medians for each

1 2( ) , 1,....., ,j n�T
j j jX X X� n

2
1( ),....., ( ), ,nF x F x x R�

1,..., nF F n

is Then the null hypothesis is 0 (0 0) , 1,....., .T j� �jX n

0

1
: (0, ) ( , 0) ,

2
j jH F F � � �  for all 1,....., ;j n�               (1)

when are otherwise arbitrary. For each1,....., nF F ,jX the events and

are called concordance of first and second kind, and the events 

and as discordance of the first and second kinds 

respectively, Also, let

1 2( 0,j jX X� � 0)

0)

0) 0)

n

1 2( 0,j jX X� �

1 2( 0,j jX X� � 1 2( 0,j jX X� �
1,....., .j � j� be the probability of concordance of 1 2( , ),j jX X and 

assume that  

0 j 1�� �  for all 1,..., ;j n�                         (2) 

Finally, let us denote for jX the conditional probability of a concordance (discordance) 

of  the first kind given concordance (discordance) by ( )j j� � for 1,..., .j n� Then, (1) can 

be written as 

0

1
:

2
j jH � �� �  for all 1,..., ;j n�                      (3) 

The sign test to be considered below is based on the following principle. Among the

observations

n

1,..., ,j n�,jX let  be the number of  concordances (discordances) of  

the  kind,  Also, let 1 2 and 1 2

( )i iC D
thi .C D n
 �1, 2.i � C C C� 
 .D D D� 
 Then Under (3), 

1 and 2 (as well as 1 and 2 ) should be stochastically equal, whereas if  (1) does not 

hold (3) can not hold, and hence, 1 2

C C D D

C C� or 1 2D D� will be stochastically different from 

zero. So, it is suggested that the test may be based on 21C C� 1 2.D D�and However, even 

when (3) holds the joint distribution of depends on through 

the unknown values of Therefore, the following conditional probability 

law is used to construct a test which is conditionally distribution-free. We consider the 

conditional distribution of 1 2 1 2 given which pairs among 1 2 are 

concordant and which one is discordant. Let

1,...,jF j n�1 2 1 2( , , , )C C D D

(0, 0), 1,..., .jF j � n

( , )T
j jX X, , ,C C D D

(0 )c c n� � be any integer. We consider any 

partition 

1 1( ,......., ), ( ,......., )c c ni i i 
 i i1 1.... , .... ,c c ni i i 
� � � � where          (4) 

of  the set of  numbers  into two disjoint subsets containing  and  numbers 

respectively. (If  or  then the first or second subset is of course empty.). Let 

1 ic

n c�c1,...., n

0c � ,n

,....,i� � ibe the event that among the pairs are concordant and 

the rest are discordant. Then 
1 ,.......,th th

ci1,..., ,nX X

1 1 1{ ,...., } .... (1 ).... (1 ).i ic i ic i c inP � � � � � �
� � �                 (5) 



A New Multivariate Non-Parametric Control Chart Based on Sign Test 159 

1...i ic�The probability that will occur and there will be just  concordances of  the 

first kind and just  discordances of  the first kind
1c

1 1(0 , 0 )c c d n c� � � � �1d is 

1 1 1

1 1 1 2 2

.... (1 )....(1 ) {(1 )...(1 )

[ / (1 )]} {(1 )...(1 ) [ / (1 )]},

i ic i c in i ic

ij ij i c in ij ij

� � � � � �

� � � � � �







� � � � �

� � � � �� �� �
         (6) 

1�where  denotes the product over a subset of  of  the values of1� 1, 2,..., c and1c j

denotes the sum over all the  such subsets; similarly,1( )Tc c 2� denotes the product over 

a subset of  of  the values1d 1,...,c n
 and so on. From (5) and (6) the required 

conditional distribution of  and  is given by 1C 1D

1 1 1 1 1,..., 1

1 1 1 2 2

1 1

{ , } {(1 )...(1 )

[ / (1 )]} {(1 )...(1 ) [ / (1 )]};

(0 , 0 ).

i ic i ic

ij ij i c in ij ij

P C c D d

c c d n c

� � �

� � � � � �


� � � � �

� � � � �� �� �

� � � � �

         (7) 

Under given by (3), whatever be (7) gives 1( ,..., ),nF F0H

1 1 1 1 1,..., 0 1 1 1 1 0 1 1

1 1

{ , , } { , , } 2

(0 , 0 ).

c n c n
i ic c dP C c D d H P C c D d C c H C C

c c d n c

� � �� � � � � � �

� � � � �

;
    (8) 

Thus, under 0,H given and 1 are independently distributed as binomial 

random variables with parameters and
1,C c C� D

( , 1/ 2)c ( , 1/ 2n c )� respectively. Hence for testing 

0 ,H it seems reasonable to use the statistic 

2 2
1 1(4 / )( / 2) [4 / ( )][ ( ) / 2] .T C C C n C D n C� � 
 � � �               (9)

For  or  one of the terms in  is absent. Given0C � ,C c�,n T the conditional 

distribution of  under 0 ( )nF t cwould be clearly distribution-free. LetT H denote the c. d. 

f  of  this distribution as obtained by summing (8) over those combinations 1 1 for 

which the value of  does not exceed  For any

( , )c d

(0 1)	 	� �.tT let , be the value of  

for which

( )nt c	

1 ( ) 1 ( 0n nF t c F t c	� � � � �t ). When we define a critical function

which assumes the value 0 for

( , )t c�

, ( )nt t c	� and 1 for For we take 

where is chosen such that 
, ( ).nt t c	� , ( )nt t c	�

,( , ) ( )nt c a c	� � ,0 ( )na c	� 1�

0{ ( , ) , } .E T C C c H 	� � �                         (10) 

	( , )t c�It follows that is a strictly size test for 0H in (3). This is a conditional test 

and is randomized in nature. A non-randomized test may be as follows: 

 if   otherwise accept 	� , ( ),nT t c 0 ,H              (11) reject 0H

	� .whatever be the size of  the test1,..., ,nF F

� 2( )nF t c by the c. d. f
�

for the2 ( )F tFor large  we may approximate,n distribution 

with 2 degrees of  freedom and use the upper 	� 2
2,	 point of  the latter from 	, ( ).nt c

Therefore for large  the randomized as well as non-randomized test reduces to the 

test: 

,n

	�� 2
2, ,T 0.H0H  if   otherwise accept               (12) reject
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The test is shown to be consistent and unbiased against certain alternatives by Chatterjee 

[3].

4. Steps for the Proposed Multivariate Non-Parametric Control Chart 

1. Collect at least 20 samples of  size n (preferably�10).  

2. Calculate statistic T  as described in previous section for each sample. 

3. Choose an 	  and set up upper control limit as 	� 2
2, .

4. Plot T  in the chart. 

5. If  any point goes beyond the limit take control action. 

5. Performance Comparison of the Proposed Method with the Existing One 

A popular measure of  chart performance is the expected value of  the run length (the 

number of  samples or subgroups that need to be collected, before the first out of  control 

signal is given by a chart, is a random variable called the run length.) distribution, called 

the average run length (ARL). It is desirable (often stipulated) that the ARL of  a chart be 

large when the process is in control. Larger the value of  the in-control ARL better the 

performance of  the chart with respect to false alarm. 

By definition, the run length is a positive integer valued random variable, so the ARL

looses much of  its attractiveness as a typical summary if  the distribution is skewed (as is 

often the case). As a result misleading conclusions can be drawn based on ARL. Hence, the 

use of  ARL has been criticized, owing to the skewness of  the run length distribution in the 

out-of-control case and its non-normality. In such cases it is recommended to characterize 

run length distribution by Median run length (MRL) and standard deviation of  run length 

(sdRL). Since, it becomes inconvenient to compare different situations with three measures 

(viz, ARL, MRL, sdRL) it has been decided to compare different methods vis-à-vis to their 

powers in terms of  fraction of  correct classification.

The main task of  a control chart is to detect the change in the process as quickly as 

possible and give an out-of-control signal. Clearly the quicker the detection and the signal, 

the more efficient the chart is. A second measure as fraction of  correct classification to 

detect different shifts in location may serve the above purpose. Larger the value of  the 

fraction correct classification for a particular shift greater the efficiency of  the chart to 

detect the shift. Some of  researchers used this measure to evaluate the performance of  a 

control chart. In this context see Niaki and Abbasi [14] and Das and Prakash [4]. This 

measure is related to probability of  type-II error �( ) ��(1 ).or power of  a test The

type-II error is the error that occurs when the chart does not give out of  control signal when 

actually the process is out of  control. From the established theory of  test of  hypothesis it is 

known that both the errors (Type-I and Type-II) can not be reduced simultaneously for a 

particular test. Hence test of  hypothesis is designed by keeping one error in a small value 

thereby reducing the other error. Since Control chart is nothing but test of  hypothesis the 

same theory will be applicable. The relationship between Power of  a control chart and ARL

is as follows. 

� �

�

�

 Probability of type II error.

 (A point lies within thecontrol limits but assignable cause has occurred)

(control chart fails to detect the shift)

P

P
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Power of a chart (A point lies beyond the control limits when assignable cause

                                      has occurred)

(control chart succeeds todetect the shift)

1

P

P

�

�

�

� �

Out of control   1/ (1 ).ARL b� �

Power can be expressed in terms of  probability also. This probability value represents 

the fraction of  cases in which the chart is able to detect a shift considering. This is called 

fraction correct classification. The performance of  the proposed bivariate nonparametric 

control chart was evaluated by simulating data from both Multivariate Normal and 

multivariate  distribution. t

First, consider multivariate normal case. In-control state was assumed to be

characterized by �2 (0, 0, 1, 1, ).N �( )The value of  correlation coefficient was assumed 

as 0.5. In-control state performance was measured by estimating in-control ARL. Samples 

of size were simulated fromn �2 (0, 0, 1, 1, ).N Both Hotelling statistic and

nonparametric statistic were calculated and plotted in the respective control charts. This 

exercise was carried out till the value exceeded the UCL fixing a value for

2T

	. The number 

of  samples needed to exceed the limit was counted which was nothing but run length. 

10000 such run length were estimated for both the chart and then its average was calculated 

and reported in Table 1 as in control ARL. The value of  was taken as 10, 15 and 20. The 

value of

n

	 was taken as 0.05, 0.01 and 0.001. 

Table 1. In-Control ARL performance of  existing Hotelling
control Chart & proposed nonparametric control chart when 

data simulated from bivariate normal. 

2T

Sample Size 	
In control ARL

(Hotelling )
2T

In control ARL

(Nonparametric) 

0.050 17.56 23.5700 

0.010 107.06 258.2300 10

0.001 1102 >10000

0.050 19.65 28.2900 

0.010 107.44 286.7800 15

0.001 934 >10000

0.050 18.3 26.6500 

0.010 89.35 141.9100 20

0.001 1126.7 >10000

The out of  control performance of  the proposed control chart was compared with that 

of  the existing Hotelling chart by estimating its power to detect the shift in location 

parameters in terms of fraction correct classification. 10000 samples of size  were 

simulated from bivariate normal population with shift in mean vector and number of  cases 

where a particular chart was able to detect the shift was noted. From this number an 

estimate of  power in terms of  fraction correct classification was obtained and reported in 

Table 2. The shift was taken in two variables as �0.25, �0.5, �1.0, �1.5, �2.0, �2.5, and �3.0. 

The value of  was taken as 10, 15, and 20. The value of

2T

n

n 	 was taken as 0.05. 
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Table 2. Out of  Control performance in terms of  fraction correct classification for 
existing Hotelling control Chart & proposed nonparametric control chart for 
different shifts in location parameter when data simulated from bivariate normal

2T

	 �( 0.05).

n = 20 n = 15 n =10 Shift in 

First

variable

mean 

Shift in 

Second

variable

mean 

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric 

0.25 0.165 0.110 0.164 0.098 0.118 0.087

0.50 0.508 0.324 0.378 0.230 0.278 0.188

1.00 0.990 0.861 0.959 0.679 0.844 0.543

1.50 1 0.992 1 0.953 0.995 0.858

2.00 1 1 1 0.996 1 0.978

2.50 1 1 1 1 1 0.998

3.00 1 1 1 1 1 1

-0.25 0.489 0.216 0.397 0.128 0.274 0.106

-0.50 0.866 0.428 0.780 0.338 0.570 0.182

-1.00 1 0.921 1 0.815 0.968 0.552

-1.50 1 0.999 1 0.980 1 0.888

-2.00 1 1 1 1 1 0.987

-2.50 1 1 1 1 1 0.999

0.25

-3.00 1 1 1 1 1 1

0.50 0.632 0.404 0.498 0.336 0.359 0.262

1.00 0.988 0.851 0.943 0.679 0.804 0.573

1.50 1 0.995 1 0.952 0.999 0.887

2.00 1 1 1 0.998 1 0.977

2.50 1 1 1 1 1 1

3.00 1 1 1 1 1 1

 -0.25 0.867 0.464 0.764 0.344 0.602 0.203

-0.50 0.985 0.698 0.931 0.521 0.828 0.317

-1.00 1 0.970 1 0.901 0.995 0.650

-1.50 1 1 1 0.990 1 0.919

-2.00 1 1 1 1 1 0.981

-2.50 1 1 1 1 1 1

0.50

-3.00 1 1 1 1 1 1

1.00 0.996 0.965 0.992 0.867 0.928 0.764

1.50 1 0.996 1 0.974 0.992 0.929

2.00 1 1 1 1 1 0.983

2.50 1 1 1 1 1 0.998

3.00 1 1 1 1 1 1

-0.25 1 0.925 0.998 0.816 0.968 0.593

-0.50 1 0.968 1 0.897 0.995 0.652

-1.00 1 0.999 1 0.993 1 0.865

-1.50 1 1 1 1 1 0.976

-2.00 1 1 1 1 1 0.997

-2.50 1 1 1 1 1 1

1.00

-3.00 1 1 1 1 1 1
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Table 2. (Continued). 

n = 20 n = 15 n =10 Shift in 

First

variable

mean 

Shift in 

Second

variable

mean 

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric 

1.50 1 1 1 0.995 1 0.962

2.00 1 1 1 0.999 1 0.992

2.50 1 1 1 1 1 0.999

3.00 1 1 1 1 1 1

 -0.25 1 0.999 1 0.987 1 0.885

-0.50 1 1 1 0.992 1 0.911 

-1.00 1 1 1 1 1 0.970

-1.50 1 1 1 1 1 0.998

-2.00 1 1 1 1 1 1

-2.50 1 1 1 1 1 1

1.5

-3.00 1 1 1 1 1 1

2.00 1 1 1 1 1 0.999

2.50 1 1 1 1 1 1

3.00 1 1 1 1 1 1

 -0.25 1 1 1 1 1 0.980

-0.50 1 1 1 0.999 1 0.984

-1.00 1 1 1 1 1 0.998

-1.50 1 1 1 1 1 1

-2.00 1 1 1 1 1 1

-2.50 1 1 1 1 1 1

2.0

-3.00 1 1 1 1 1 1

2.50 1 1 1 1 1 1

3.00 1 1 1 1 1 1

 -0.25 1 1 1 1 1 0.999

-0.50 1 1 1 1 1 1

-1.00 1 1 1 1 1 0.998

-1.50 1 1 1 1 1 1

-2.00 1 1 1 1 1 1

-2.50 1 1 1 1 1 1

2.5

-3.00 1 1 1 1 1 1

3.00 1 1 1 1 1 1

 -0.25 1 1 1 1 1 1

-0.50 1 1 1 1 1 1

-1.00 1 1 1 1 1 1

-1.50 1 1 1 1 1 1

-2.00 1 1 1 1 1 1

-2.50 1 1 1 1 1 1

3.0

-3.00 1 1 1 1 1 1

 -0.25 0.205 0.134 0.156 0.105 0.118 0.090

-0.50 0.496 0.302 0.391 0.222 0.257 0.170

-1.00 0.993 0.838 0.959 0.671 0.853 0.510

-1.50 1 0.997 1 0.960 0.999 0.874

-2.00 1 1 1 0.999 1 0.985 

-2.50 1 1 1 1 1 1

-0.25

-3.00 1 1 1 1 1 1
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       Table 2. (Continued). 

n = 20 n = 15 n =10 Shift in 

First

variable

mean 

Shift in 

Second

variable

mean 

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric 

-0.50 0.611 0.399 0.486 0.285 0.367 0.248

-1.00 0.986 0.831 0.947 0.703 0.817 0.581

-1.50 1 0.990 1 0.964 0.995 0.870

-2.00 1 1 1 0.994 1 0.977

-2.50 1 1 1 1 1 0.998 

-0.50

-3.00 1 1 1 1 1 1

-1.00 1 0.997 1 0.978 0.996 0.900

-1.50 1 1 1 0.994 0.998 0.969

-2.00 1 1 1 1 1 0.990

-2.50 1 1 1 1 1 0.997 
-1.00

-3.00 1 1 1 1 1 1

-1.50 1 1 1 0.999 1 0.991

-2.00 1 1 1 1 1 1

-2.50 1 1 1 1 1 1
-1.50

-3.00 1 1 1 1 1 1

-1.50 1 1 1 1 1 1

-2.00 1 1 1 1 1 1

-2.50 1 1 1 1 1 1
-2.00

-3.00 1 1 1 1 1 1

-2.50 1 1 1 1 1 1

-2.50 -3.00 1 1 1 1 1 1

-3.00 -3.00 1 1 1 1 1 1

The above exercise was repeated by simulating data from a non-normal distribution i.e.

multivariate  distribution where in control state was characterized by mean vector 

matrix with diagonal elements as 1 and off-diagonal elements as

t

� �( 0.5)�(0, 0), and 

degree of  freedom as 3. The corresponding in control ARL was reported in Table 3 and out 

of  control performance in terms of  fraction correct classification was reported in Table 4. 

Programs were written using MATLAB 7.0.1 to prepare the results presented in the these 

tables. 

Table 3. In-Control ARL performance of  existing Hotelling
control Chart & proposed nonparametric control chart when 

data simulated from bivariate  distribution. 

2T
t

Sample Size 	
In control ARL

(Hotelling )
2T

In control ARL

(Nonparametric)

0.050 3.46 23.44

0.010 6.19 258.1810

0.001 11.45 7845

0.050 3.19 23.9

0.010 5.46 314.6115

0.001 11.07 8736

0.050 3.47 30.71

0.010 5.84 150.8120

0.001 11.03 6149
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Table 4. Out of  Control performance in terms of  fraction correct classification for 
existing Hotelling control Chart & proposed nonparametric control chart for 
different shifts in location parameter when data simulated from bivariate t distribution

2T

	 �( 0.05).

n = 20 n = 15 n =10 Shift in 

First

variable

mean 

Shift in 

Second

variable

mean 

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric 

0.25 0.414 0.114 0.386 0.102 0.344 0.085

0.50 0.589 0.238 0.525 0.175 0.480 0.168

1.00 0.953 0.722 0.894 0.540 0.817 0.408

1.50 0.997 0.948 0.986 0.846 0.977 0.689

2.00 0.999 0.997 1 0.947 0.993 0.864

2.50 1 0.998 1 0.984 1 0.939

3.00 1 1 1 0.995 0.999 0.957

-0.25 0.593 0.158 0.523 0.134 0.455 0.105

-0.50 0.808 0.368 0.740 0.267 0.640 0.151

-1.00 0.986 0.802 0.976 0.629 0.906 0.414

-1.50 1 0.960 0.995 0.904 0.995 0.718

-2.00 1 0.992 1 0.968 0.998 0.873

-2.50 0.999 1 1 0.993 1 0.947

0.25

-3.00 1 1 1 0.996 1 0.978

0.50 0.666 0.349 0.588 0.236 0.445 0.203

1.00 0.938 0.722 0.890 0.548 0.778 0.447

1.50 0.998 0.948 0.985 0.834 0.957 0.682

2.00 1 0.993 0.999 0.957 0.996 0.891

2.50 1 1 1 0.988 0.998 0.924

3.00 1 0.999 1 0.992 1 0.967

 -0.25 0.828 0.407 0.748 0.288 0.645 0.156

-0.50 0.944 0.573 0.885 0.451 0.785 0.225

-1.00 0.995 0.895 0.989 0.759 0.949 0.530

-1.50 1 0.987 0.999 0.932 0.994 0.774

-2.00 1 0.998 1 0.974 0.999 0.883

-2.50 1 0.999 1 0.988 1 0.951

0.50

-3.00 1 1 1 0.996 1 0.983

1.00 0.972 0.890 0.943 0.720 0.867 0.590

1.50 0.996 0.970 0.991 0.870 0.964 0.760

2.00 0.998 0.990 0.998 0.960 0.994 0.890

2.50 1 1 1 0.990 1 0.940

3.00 1 1 1 1 0.998 0.970 

-0.25 0.984 0.790 0.975 0.700 0.918 0.440 

-0.50 0.995 0.900 0.995 0.750 0.964 0.510 

-1.00 1 0.980 0.998 0.940 0.993 0.720 

-1.50 1 1 1 0.980 0.999 0.880 

-2.00 1 1 1 0.990 0.999 0.950 

-2.50 1 1 1 1 0.999 0.980 

1.00

-3.00 1 1 1 1 0.999 0.990 
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       Table 4. (Continued). 

n = 20 n = 15 n =10 Shift in 

First

variable

mean 

Shift in 

Second

variable

mean 

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric

Hotelling
2T

Non-

Parametric 

1.50 0.999 0.987 0.998 0.939 0.979 0.843

2.00 0.999 0.995 0.998 0.974 0.993 0.900

2.50 1 1 1 0.991 1 0.965

3.00 0.999 1 1 0.998 1 0.979

 -0.25 1 0.975 0.998 0.898 0.995 0.760

-0.50 0.999 0.984 0.999 0.921 0.994 0.783 

-1.00 1 0.998 1 0.987 0.998 0.885 

-1.50 1 1 1 0.994 1 0.950

-2.00 1 1 1 0.999 1 0.974

-2.50 1 1 1 1 1 0.991

1.5

-3.00 1 1 1 1 1 0.997 

2.00 1 1 1 0.990 0.997 0.940

2.50 1 1 1 1 0.997 0.960

3.00 1 1 1 1 1 0.990

 -0.25 1 0.990 1 0.980 1 0.870

-0.50 1 1 1 0.990 1 0.920

-1.00 1 1 1 1 1 0.950

-1.50 1 1 1 1 1 0.980

-2.00 1 1 1 1 1 0.980

-2.50 1 1 1 1 1 1

2.0

-3.00 1 1 1 1 1 1

2.50 1 1 1 0.998 1 0.978

3.00 1 1 1 1 1 0.985

 -0.25 1 1 1 0.994 1 0.936

-0.50 1 1 1 0.994 1 0.960

-1.00 0.999 1 1 0.999 1 0.971

-1.50 1 1 1 1 1 0.988

-2.00 1 1 1 1 1 0.997

2.5

-2.50 1 1 1 1 1 0.998

3.00 1 1 1 1 1 0.992

 -0.25 1 0.999 1 0.996 0.999 0.976

-0.50 1 1 1 0.996 1 0.986

-1.00 1 1 1 1 1 0.991

-1.50 1 1 1 1 1 0.994

-2.00 1 1 1 1 1 0.995

-2.50 1 1 1 1 1 0.998

3.0

-3.00 1 1 1 1 1 0.999

 -0.25 0.413 0.108 0.364 0.098 0.333 0.088 

-0.50 0.608 0.253 0.527 0.171 0.447 0.185 

-1.00 0.947 0.704 0.905 0.535 0.821 0.415 

-1.50 0.995 0.933 0.991 0.833 0.971 0.678 

-2.00 0.999 0.994 0.999 0.968 0.998 0.858 

-2.50 0.999 1 1 0.983 0.999 0.947

-0.25

-3.00 1 0.999 1 0.997 1 0.973 
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                        Table 4. (Continued). 

n = 20 n = 15 n =10 Shift in 

First

variable

mean 

Shift in 

Second

variable

mean 

Hotelling
2T 2T 2T

Non-

Parametric

Hotelling Non-

Parametric

Hotelling Non-

Parametric 

-0.50 0.669 0.365 0.614 0.262 0.520 0.237

-1.00 0.944 0.731 0.911 0.555 0.802 0.464

-1.50 0.997 0.954 0.984 0.817 0.966 0.685

-2.00 1 0.994 0.998 0.949 0.994 0.859

-2.50 1 0.999 0.999 0.985 0.999 0.935

-0.50

-3.00 1 1 1 0.995 1 0.976

-1.00 0.962 0.854 0.959 0.730 0.850 0.585

-1.50 0.995 0.968 0.988 0.879 0.958 0.755

-2.00 1 0.995 1 0.962 0.993 0.884

-2.50 1 1 1 0.981 0.999 0.931
-1.00

-3.00 1 1 1 1 0.999 0.974

-1.50 0.999 0.993 0.996 0.948 0.987 0.845

-2.00 1 0.995 0.997 0.977 0.998 0.911 

-2.50 1 1 1 0.995 1 0.957
-1.50

-3.00 1 1 1 0.997 1 0.976

-2.00 1 0.999 1 0.988 0.990 0.955 

-2.50 1 1 1 0.991 1 0.980 -2.00

-3.00 1 1 1 0.998 1 0.990 

-2.50 1 1 1 0.999 1 0.983 

-2.50 -3.00 1 1 1 0.997 1 0.992 

-3.00 -3.00 1 1 1 0.999 1 0.997 

6. Conclusion 

� As far as in control ARL is concerned performance of  the proposed method is 
better than that of  existing Hotelling 2T chart. With the increase of 	 in control 
ARL decreases. 

� As far as out of  control performance is concerned though performance of  the 
proposed method is slightly poorer than the existing method but it is quite 
satisfactory. Especially for detecting higher shift (>1.5) the performance of  the 
proposed method is as good as the existing one. 

� With the increase of  sample size the performance of  the chart is improving to 
detect a particular shift. 

� In both type control charts we have noticed a different picture in ‘in control’ and 
‘out of  control’ criteria. This is expected since for any test of  hypothesis if  we try 
to increase probability of  Type-I error 	( ) then probability of  Type-II error will 
decrease and vice versa.

6.1. Advantage and Disadvantage of  the Proposed Control Chart 

� It is easy to calculate the test statistic for the proposed method. 

� It does not require any distributional assumptions. 

� Estimate of  � is needed for existing methodology but for the proposed method 
it is not needed. 

� Its limitation is it cannot be recommended for sample size less than 10. 

� It can be applied only for bivariate cases. When number of  variables is more than 
2, multivariate Generalization of  the bivariate Sign Test for location can be 
applied. 
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6.2. Scope for Further Study 

The above study can be extended by simulating data from other non-normal 

multivariate distribution like multivariate gamma. Multivariate Generalization of  the 

bivariate Sign test for location can also be applied taking data for more than 2 variables 

assuming different distributions. 
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