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Abstract: This paper focuses on the construction of computer-generated designs on irregularly-shaped, 
constrained regions. Overviews of the Fedorov exchange algorithm (FEA) and other exchange algorithms 
for the construction of D-optimal designs are given. A faster implementation of the FEA is presented, 
which is referred to as fast-FEA (denoted FFEA). The FFEA was applied to construct D-optimal designs 
for several published examples with constrained experimental regions. Designs resulting from the FFEA 
are more D-efficient than published designs, and provide benchmarks for future comparisons of design 
construction algorithms. The construction of G-optimal designs for constrained regions is also discussed 
and illustrated with a published example. 

Keywords: ACED, DETMAX, D-optimality, Fedorov exchange algorithm, genetic algorithm, 
G-optimality, mixture experiment, optimal designs.  

______________________________________________________________________ 

1. Introduction 

tandard statistical designs (e.g. factorial, fractional factorial, Plackett-Burman, central 
composite, and Box-Behnken) are widely used in many scientific and industrial studies. 

However, such designs are generally only applicable to experimental regions that can be 
scaled to cubes or spheres, and have other limitations. Hence, they may not applicable in 
many situations, in which case computer-generated designs (CGDs) are often used. 
Montgomery [11] and Montgomery et al. [12] (hereafter MLJT) mentioned three situations 
in which they deemed CGDs appropriate:  

S

(i) An irregular-shaped experimental region: In this situation, the experimental region is 
subject to constraints, such as for constrained mixture experiment designs.  

(ii) A nonstandard model: There are cases in which experimenters may be led by their 
knowledge of the process being investigated to use models other than those supported 
by standard designs.  

(iii) Unusual sample size requirements: The amount of experimental material, or the time 
or budget available for conducting an experiment, may not correspond to the numbers 
of design points in standard designs. Instead of using a smaller standard design with 
the number of points satisfying experimental limitations, experimenters might prefer 
to use a more flexible CGD with a number of points closer to that allowed by the 
experimental budget.  
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CGDs are commonly generated using point-exchange algorithms (PEAs) to select 
design points from a candidate set so as to optimize a design criterion (a mathematical 
measure of design goodness). The most popular design criterion is D-optimality, which 
involves selecting a design matrix X to minimize −′ 1|X X| . Other design criteria are 
discussed in a subsequent section. Although not widely available in experimental design 
software, no-candidate-set algorithms, such as coordinate-exchange algorithms (CEAs) and 
genetic algorithms (GAs), also are available for generating CGDs. Algorithms for 
generating CGDs are discussed more in a subsequent section.  

This paper focuses on constructing CGDs for irregular-shaped experimental regions. 
Two recent papers on this subject are MLJT (to which we have already alluded) and 
Heredia-Langner et al. [6] (hereafter HCMBR). The latter paper used several real examples 
involving constrained regions to demonstrate that a GA can produce D-optimal designs as 
good or better than PEAs. This paper is intended as a sequel to MLJT and HCMBR and 
has the following objectives:  

(i) To explain the optimal design problem, review the Fedorov exchange algorithm (FEA) 
and other PEAs, and advocate a faster implementation of the FEA for the 
construction of D-optimal experimental designs. This implementation is referred to as 
fast-FEA, and denoted FFEA.  

(ii) To show that the FFEA runs very quickly and generates designs with improved values 
of optimality criteria compared to published designs for several examples.  

(iii) To set benchmarks for comparing algorithms for constructing D-optimal designs 
involving the success rate in producing the best designs and the time used to construct 
these designs.  

(iv) To show that the FFEA for D-optimal designs can be used to generate G-optimal 
designs and that these designs are comparable to those generated by the generalized 
DETMAX algorithm for G-optimal designs discussed by Welch [21] and implemented 
in ACED (Welch [22]).  

An outline of the rest of the paper is as follows. Section 2 discusses the optimal design 
problem and several optimality criteria. Section 3 proposes an approach for obtaining 
G-optimal designs from D-optimal designs. Section 4 discusses the FEA and other PEAs, 
which may be considered as approximations of the FEA. Section 5 discusses alterations to 
the FEA’s implementation, yielding the FFEA that greatly reduces the computational time. 
Section 6 discusses the designs obtained applying the FFEA to several examples from the 
literature and compares the properties of the resulting designs to those published in the 
literature. Section 7 provides some concluding remarks.  

2. The Optimal Design Problem and Optimality Criteria  

The optimal design problem can be defined as choosing an -point design to 
optimize a specified design criterion. Several popular design criteria (also referred to as 
optimality criteria) are discussed in the subsequent paragraph. The traditional approach 
used to solve an optimal design problem involves selecting the  design points from a 
candidate set  of 

n

n

S N  points. However, some no-candidate-set approaches have been 
presented in the literature, as mentioned in the Introduction.  

The linear model for  factors (or components in the case of mixture experiments) 
in  runs in matrix notation is 

m

n =( )E Xy β , where  is an y ×1n  vector of observations,  
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X  is an  matrix of model terms (×n p ≥p m

ix

) that contains  row vectors of model 
terms  (obtained from the design point ), and 

n

′
ix β  is a ×1p  vector of model 

regression coefficients. Assuming that ′X X  is nonsingular, several common optimality 
criteria involve minimizing various functions of −′ 1( )X X : 

(i) D-optimality: Minimizing −′ 1|X X| (or maximizing ′| ) results in minimizing the 
generalized variance of the estimated coefficients and minimizing the volume of the 
confidence ellipsoid of 

|X X

β  (assuming the errors are normally distributed).  

′(ii) A-optimality: Minimizing trace −1( )X X  results in minimizing the average variance of 
the estimated coefficients.  

(iii) G-optimality: Minimizing =max max{ }i

v

v  results in minimizing the maximum 
standardized prediction variance, where  is the prediction variance 
standardized by 

v
−1

i
′ ′= ( )i ix X X x

σ 2 . Ideally,  should be calculated over the entire experimental 
region. However, many design generation software that rely on a set of candidate 
points only calculate  over the set of candidate points.  

maxv

maxv

= avg{ }v(iv) V-optimality: Minimizing iv  results in minimizing the average standardized 
prediction variance. Again, ideally v  should be calculated over the entire 
experimental region, but many design generation software only calculate v  over the 
set of candidate points.  

Note that all of the preceding criteria involve the matrix X, which is referred to as the model 
matrix because it expands the design matrix according to the assumed model form.  

3. D-Optimality as a Criterion for Constructing G -Optimal Designs  

The D-optimality criterion has been more popular than other optimality criteria 
because of computational advantages. Welch [21] argued that the heavy focus on 
D-optimality is inappropriate, because in practice many experiments are aimed at 
estimating the response over the region of interest rather than parameter estimation. He 
therefore generalized Mitchell’s DETMAX algorithm (Mitchell [8]) to implement G- (and 
V-) optimality in his ACED program (Welch [22]). However, he mentioned two frustrations 
in implementing the G-optimality criterion: (i) G-optimality is expensive (i.e., 
computationally intensive and time consuming) and (ii) the G-optimality criterion is prone 
to getting trapped in local optima, and hence does not necessarily produce designs with 
higher G-efficiency than the D- (or V-) optimality criterion. G-efficiency is defined as 

.  / max100 ( )p nv

Although D- and G-optimality are not necessarily equivalent for -point designs, a 
design that is good with respect to the D-optimality criterion is generally also good with 
respect to the other optimality criteria. Some classical designs such as the  factorials 
and Plackett-Burman designs are in fact D-, A-, G-, and V-optimal. Nguyen and Miller [16] 
used this observation to produce  fractional factorial designs of resolution V with high 
A-efficiency, for 

n

2m

2m

≤ ≤7 m 10  and for various values of  by selecting the best A-optimal 
design out of a large pool of generated D-optimal designs. Over years of using both the D- 
and G-optimality criteria in ACED to construct constrained mixture designs, the second 
author has often observed that the design with the best G-efficiency often results from one 
of the tries with the D-optimality criterion.  

n
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Based on the preceding discussion, we propose obtaining a G-optimal design by 
selecting the best G-optimal design among a large number of designs produced by the 
D-optimality criterion. This approach is illustrated in Example 5 of Section 6. There are 
three advantages of this approach to constructing G-optimal designs: (i) D-optimality 
requires less computation and time than G-optimality, (ii) D-optimality is not necessarily 
sacrificed at the cost of G-optimality, and (iii) it is easier to implement a D-optimality 
algorithm than a G-optimality algorithm. However, this approach may fail if there is little 
variation in the quality of the D-optimal designs produced.  

4. The Fedorov Exchange Algorithm and its Approximations  

Nearly all design generation software use at least one form of PEA. Critical to all 
PEAs are updating formulas that simplify the matrix calculations involved in the 
calculating the optimality criteria previously discussed. Let ′M = X X , where  is as 
previously discussed. If  (a row vector obtained from the design point ) is to be 
augmented to or removed from , we have:  

X
′x x

X

(1 )−′ ′± ± 1| | = | |M xx M x M x ,                          (1) 

1 1( )− − −′ ′± ∓ 1= / (1M xx M uu x M x)′± ,                       (2) 

where . Now if  is to be augmented to  and -1=u M x ′x X ′
ix  (a row vector obtained 

from the design point ) is to be removed from  simultaneously, we have:   ix X

1′ ′ }− ± ∆| + | = | | { ( , )i i ix xM xx x x M ,                      (3) 

where .                  (4) 2( )− − − −′ ′ ′ ′ ′∆ = − −1 1 1 1( , ) +i i i ix x x M x x M x x M x x M xx M x−1
i i

| −1

The quantity ∆  is often referred to as Fedorov’s delta function. ( , )ix x

The FEA and comparisons of the FEA performance with other PEAs are discussed in 
detail by Cook and Nachtsheim [1], Nguyen and Miller [15], and Miller and Nguyen [7]. 
Here we briefly discuss the FEA (considered as the most computationally expensive PEA). 
The FEA, developed by Fedorov [2, 3], consists of the following steps:  

Step 1: Start with a randomly chosen non-singular n -point design. Compute , 
 and M ;  

M
| M

Step 2: Find simultaneously a point  in the current -point design and a point  
in  (the candidate set) such that 

ix n x

S ∆ ,( ix x )  calculated by Equation (4) is maximum 
and exchange  with . Update ix x | |M  and M  using Equations (2) and (3).  −1

)Step 2 is repeated until  is less than ∆ ,( ix x ε , a chosen small positive number.  

As previously noted, the FEA is a very expensive algorithm. Consider the mixture 
problem with one process variable in HCMBR (see Example 2 of Section 6) where 15 runs 
are selected from a candidate set of 273 points (a 273-point grid). There are 4095 (=15×  
273) delta functions to evaluate in each iteration and only one result of these 4095 
evaluations is ever used. Hence, there have been several attempts to modify or approximate 
the FEA.  
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The Wynn-Mitchell algorithm due to Mitchell and Miller [10] and Wynn [23] breaks 
each iteration (i.e., each step (ii) of the FEA) into two stages. At the first stage, a point  
in  is found such that  is maximum and then  is added to the current 

-point design. At the second stage, a point  in the 

x

S
−′ 1x M x x

n ix +( -point design is found such 
that  is minimum, and  is removed to yield an n -point design. The 
DETMAX algorithm of Mitchell [8] generalizes this PEA to permit excursions in the sense 
that at each iteration,  (instead of 1) points can be added to (or removed from) the 
design.  

1)n
−′ 1

ix M xi ix

t

The modified FEA (MFEA) of Cook and Nachtsheim [1] broke each iteration of the 
FEA into  stages. At stage  n i = , ,( 1i … n) , point  in the -point design is exchanged 
with a point  in S  ( x  is a point which maximizes 

ix n

x ∆ ,( ix x ) ). Cook and Nachtsheim [1] 
noted that their MFEA produces designs that are comparable to those produced by the 
FEA and is about twice as fast as the FEA. Due to this fact, the MFEA is used as a default 
PEA in several optimal design software packages.  

5. A Fast Fedorov Exchange Algorithm 

 If we study the steps of the PEAs in the previous section in detail, it becomes clear 
that when a design is constructed by the FEA, it is impossible for an approximating 
algorithm (such as the Wynn-Mitchell algorithm or the MFEA) to improve it. However, 
when a design is constructed by an approximating algorithm, there is a possibility for the 
FEA to improve it. Unfortunately, the FEA in its original form might be prohibitively 
expensive to use (Cook and Nachtsheim [1]).  

The following alterations to the implementation of the FEA to accelerate its 
performance are therefore proposed:  

(i) For each try, use a partially random design instead of a completely random design as 
starting design (Galil and Kiefer [4]). For a partially random design,  ( n n ) 
points are randomly selected from 

0n <0

N  candidate points. Now a candidate point  
is added to this -point design if  is maximum and this process continues 
until  points are included in the starting design. Note that several tries are required 
to ensure a good design is obtained as any PEA can get trapped in local optima.  

ix

0n
−1

i

i

)

′x Mi x
n

(ii) Update x M  from  instead of calculating the former afresh 
(Galil and Kiefer [4]).  

−′ ′± 1( )i ixx x −′ 1
ix M x

(iii) Reduce the number of ’s to evaluate by evaluating only those whose sum of 
the first two terms in Equation (4) is greater than 

∆ ,( ix x

δ , the largest value of  
obtained at a particular point. Note that from the Cauchy-Schwarz inequality, the last 
two terms in Equation (4) will never be greater than 0 (Nguyen and Miller [15] and 
Miller and Nguyen [7]).  

∆ ,( )ix x

We refer to this faster implementation of the FEA as fast-FEA, which is denoted FFEA. 
The FFEA is used for all examples in the following section.  

6. Examples  

We now consider five examples from the literature in which computers were used to 
construct designs for constrained regions. We document the performance of the FFEA for 
each example, and show how it improves the published designs in terms of D-optimality 
(Examples 1-4) and G-optimality (Example 5).  
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6.1. Example 1: Adhesive Bond Strength Experiment  

Montgomery [11] pp. 466-472 and MLJT presented an example in which the 
experimenter investigated the strength of an adhesive in joining two parts. The two factors 
of interest are: the amount of adhesive applied to the two parts ( ) and the cure 
temperature ( ). This example reappears in HCMBR with the following constraints for 
the coded values of these two factors 

1x

2x

− ≤ ≤1 ix 1  and − . ≤ +1 20 5 1x x ≤ . Figure 3 of 
HCMBR displays a 12-point design obtained by applying a GA to a 266-point grid. The 
candidate set contains those points on a grid of step size 0.1 that satisfy the mentioned 
constraints. A second-order polynomial in  and  was assumed, with the goal of 
generating a D-optimal design. The HCMBR 12-point design, listed in the first two 
columns of Table 1, has = 3.545E-3. 

1x 2x

−′ 1| |X X

We now show how the FFEA works by using these points as a starting design. In the 
first iteration, the FFEA replaces point (−1, 1) with point (0, 1) and reduces |  to 
3.240E-3. In the second iteration, the FFEA replaces point (0.5, −1) with point (−0.1, −0.4) 
and reduces 

−′ 1|X X

−′ 1| |X X  to 3.191E-3. In the third iteration, the FFEA replaces point (−1, 0.5) 
with point (1, −1) and reduces −′ 1|X X

1|

|  to 3.114E-3. In the fourth iteration, the FFEA 
replaces point (−0.1, −0.4) with point (−0.2, −0.3). The resulting design (the last two 
columns in Table 1) has =3.106E-3. These four iterations also reduce  of the 
HCMBR design from 0.8497 to 0.6754 and increase the G-efficiency from 58.9 to 74.0.  

−′| X X maxv

We gave FFEA the mentioned 266-point candidate set and 1000 tries to work on this 
same problem. The 1000 tries consumed 4 seconds on a 2GHz laptop running under Linux. 
Each try obtained a design with the same −′ 1|X X| =3.106E-3. Thus the average number of 
successes per second for this example is 250 (=1000/ 4). For this example, HCMBR 
reported a design obtained by the MFEA with −′ 1|X X| =3.696E-3. We suspect that 
HCMBR did not perform a sufficient number of tries with the MFEA for this example and 
Examples 2-4.  

In a personal communication with the second author, Heredia-Langner indicated that 
the 12-point design reported in HCMBR was obtained from only a single computer run 
with a single setup of the GA. Hence, it is unknown whether additional runs with different 
GA setups may yield the same improved design obtained by FFEA.  

 

Table 1. Four iterations of FFEA to improve a published 12-point 
design (points to be replaced by new ones are underlined). 

 

1x  2x  1x  2x 1x  2x 1x  2x 1x  2x  
−1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 
−1.0 0.5 −1.0 0.5 −1.0 0.5 1.0 −1.0 1.0 −1.0 

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 
−1.0 1.0 −1.0 1.0 −1.0 1.0 −1.0 1.0 −1.0 1.0 
−1.0 0.5 −1.0 0.5 −1.0 0.5 −1.0 0.5 −1.0 0.5 

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.5 −1.0 0.5 −1.0 −0.1 −0.4 −0.1 −0.4 −0.2 −0.3 
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.5 −1.0 0.5 −1.0 0.5 −1.0 0.5 −1.0 0.5 −1.0 
1.0 −1.0 1.0 −1.0 1.0 −1.0 1.0 −1.0 1.0 −1.0 
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6.2. Example 2: Mixture Experiment with One Process Variable  

Welch [21] described a mixture-process variable (MPV) experiment involving three 
mixture variables ,1 2x x , and  and one process variable 3x ∈ − , ,4 { 1 0 1}x  using the model 

β β= += Σ + +4( ) i i i i i j β 2
44 4= =Σ Σ3 3

1 1i j 1 j iE y x x x x . The candidate set for this problem was a 
273-point grid resulting from partitioning each mixture variable into 13 equally spaced 
levels (0, 1/ 12, …, 1) (yielding 91 mixtures) and then forming combinations with the 
process variable taking coded values of −1, 0, and 1 (3× 91=273). HCMBR obtained a 
15-run design by the GA with −′ 1X X| =0.3774. They also reported a value of 0.5464 
obtained by the MFEA.  

|

We submitted the same candidate set and assumed model form to the FFEA, which 
produced a 15-run design (Table 2) with −′ 1| |X X =0.3750, =0.9806, and G-eff=68.0. 
For a problem of this size, there is little chance that the FFEA got trapped in local optima. 
We ran the FFEA 1000 tries (times), each try with a different starting design, and obtained 
designs with the mentioned value of 

maxv

−′ 1|X X|  933 times. The cumulative distribution of 
 for 1,000 FFEA-generated designs for Example 1 is given in Figure 1. Each try 

requires 4-10 iterations and about 500 (instead of 15

−′ 1| |X X
× 273=4,095) Fedorov delta functions 

are evaluated in each iteration. The total computer time spent for 1000 tries on the 
previously mentioned laptop was 15 seconds. The average number of successes per second 
for this example is therefore 62.2 (=933/ 15).  

 

Table 2. 15-point MPV design. 

1x  2x  3x  4x  

0 0 1 −1 
0 0 1 0 
0 0 1 1 
0 1/ 2 1/ 2 −1 
0 1/ 2 1/ 2 1 
0 7/ 12 5/ 12 0 
0 1 0 −1 
0 1 0 1 

1/ 2 0 1/ 2 −1 
1/ 2 0 1/ 2 1 
1/ 2 1/ 2 0 −1 
1/ 2 1/ 2 0 1 

7/ 12 0 5/ 12 0 
1 0 0 −1 
1 0 0 1 

 

6.3. Example 3: Gasoline Blending Mixture Experiment  

Snee and Marquardt [19] described a gasoline blending experiment whose objective 
was to develop a blending model for a 5-component mixture experiment system. The five 
components were Butane ( ), Alkylate ( ), Lt. St. Run ( ), Reformate ( ) and Cat. 
Cracked ( ), where . The single-component constraints for the components were 

  
HCMBR used the GA to generate a 16-run D-optimal design for a linear mixture model 

1x

= 1
≤ 0.

2x

≤

3x

≤ 0

4x

≤
5x

≤ ≤
Σ ix

≤1 2x x ≤ ≤ ≤3 4 50.00 0.10, 0.00 10, 0.05 0.15, 0.20 .40 and 0.40 0.60.x x x

β=
5

1i= ∑( ) i iE y x
−1| | from a grid of step size 0.0001. The resulting design had =13,827. 

They also reported a design obtained using the MFEA with 
′X X

−′| 1|X X = 13,832. 
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We applied the FFEA to this design problem using one of two candidate sets: (i) the 28 
extreme vertices of the constrained region, and (ii) the 22,041 points on a grid of step size 
0.01 that satisfied the single-component constraints. For both candidate sets, the FFEA 
found the same best design (Table 3) with −′ 1| |X X =13,808, =0.3346, and G-eff=93.4. 
This value of 

maxv
−′ 1|X X|  appears in 15 out of 1000 tries using the first candidate set and 21 

out of 1000 tries using the second candidate set (Figure 1). The FFEA used 1.3 seconds for 
1000 tries with the first candidate set and about 4 minutes with the second candidate set. 
The average number of successes per second for this example is therefore 11.5 (=15/ 1.3) 
for the first candidate set and 0.0875 (=21/ 240) for the second candidate set.  

 
Table 3. Mixture design for the gasoline blending experiment.  

1x  2x  3x  4x  5x  

0.0 0.00 0.05 0.35 0.60 
0.0 0.00 0.05 0.35 0.60 
0.0 0.00 0.05 0.35 0.60 
0.0 0.05 0.15 0.40 0.40 
0.0 0.10 0.05 0.40 0.45 
0.0 0.10 0.15 0.20 0.55 
0.0 0.10 0.15 0.20 0.55 
0.0 0.10 0.15 0.35 0.40 
0.1 0.00 0.10 0.40 0.40 
0.1 0.00 0.15 0.20 0.55 
0.1 0.00 0.15 0.20 0.55 
0.1 0.00 0.15 0.35 0.40 
0.1 0.10 0.05 0.20 0.55 
0.1 0.10 0.05 0.20 0.55 
0.1 0.10 0.05 0.35 0.40 
0.1 0.10 0.05 0.35 0.40 

 

Figure 1. Cumulative distributions of −′ 1|X X|  from 1000 FFEA-generated designs for 
Examples 2, 3 and 4 (each point on a graph represents the result of at least one try). 
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6.4. Example 4: Plastic Formulation Mixture Experiment  

Snee [20] described a plastic formulation mixture experiment whose objective was to 
evaluate the effects of five components on the hardness of the resulting plastic product. The 
five components were: binder ( ), co-binder ( ), plasticizer ( ), monomer A ( ), and 
monomer B( ), where . The single-component constraints were,  

1x

= 1
15,

2x

25.

3x 4x

1x5x

150.

Σ ix

03 .x

. ≤ ≤ .0 50 0 70,
0100050050 42 x..,x. ≤≤≤≤≤≤ , and . ≤ ≤5x .0 00 0 15 , while the multi- 

component constraints were  and . ≤ +4 50 18 x x ≤ 0.26 + + ≤5x

β= = = ++ Σ5 4 5
1 1 1i i i ij

.0 35

β j

3 4x x

Σ j

. HCMBR 
started with a grid of step size 0.0001, and applied a GA to obtain a 25-run D-optimal 
design for a quadratic mixture model = Σ( ) i i iE y x x x . The resulting 
design had | =1.217E48. They also reported a design obtained using the MFEA 
with =1.256E48.  

−1|X X
′| X X

′
−1|

We gave the FFEA a 10,468-point candidate set (consisting of those points in a grid of 
step size 0.01 that satisfied the mentioned single- and multi-component constraints) and 
1000 tries to work on this problem. The FFEA found a design (Table 4) with −′ 1|X X| =  
1.187E48, =0.7811, and G-eff=76.8, which was achieved six times out of 1000 tries 
(Figure 1). These 1000 tries required 18 minutes. The average number of successes for this 
example is therefore  (=6/ 18) per minute or 20 per hour. 

maxv

1/ 3
 

Table 4. Mixture design for the plastic formulation experiment. 

1x  2x  3x  4x  5x  

0.50 0.15 0.09 0.11 0.15 
0.50 0.15 0.09 0.25 0.01 
0.50 0.15 0.15 0.10 0.10 
0.50 0.15 0.15 0.20 0.00 
0.54 0.15 0.05 0.18 0.08 
0.55 0.15 0.05 0.10 0.15 
0.56 0.09 0.10 0.10 0.15 
0.56 0.11 0.15 0.18 0.00 
0.56 0.15 0.11 0.10 0.08 
0.58 0.15 0.05 0.22 0.00 
0.59 0.10 0.05 0.25 0.01 
0.59 0.10 0.09 0.16 0.06 
0.60 0.05 0.09 0.18 0.08 
0.60 0.05 0.10 0.25 0.00 
0.60 0.05 0.15 0.10 0.10 
0.60 0.05 0.15 0.20 0.00 
0.62 0.05 0.15 0.10 0.08 
0.62 0.15 0.05 0.10 0.08 
0.62 0.15 0.05 0.18 0.00 
0.64 0.05 0.05 0.11 0.15 
0.65 0.05 0.05 0.25 0.00 
0.67 0.05 0.10 0.18 0.00 
0.69 0.05 0.05 0.10 0.11 
0.70 0.07 0.05 0.10 0.08 
0.70 0.07 0.05 0.18 0.00 
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To get a fair idea of the difference in performance between the FEA and its 
approximations, we gave the design problems in Examples 1-4 to ACED (software 
implementing an approximation of the FEA mentioned in Section 3). While ACED 
obtained FFEA results for Examples 1 and 2 very quickly, it failed to match FFEA results 
for examples 3 and 4 after 1000 tries.  

6.5. Example 5: Grout Component-Amount Experiment  

Piepel et al. [17] reported an example involving four dry blend materials used to make 
grout from low-level nuclear waste: cement ( ), flyash ( ), attapulgite clay ( ) and slag 
( ), where the levels of each are expressed in pounds per gallon of waste. The 
experimental region is defined by the following constraints: 

1x 2x 3x

4x

. ≤ ≤ .10 5 3 5x , ≤ . ,2 6 0x  . ≤0 0
,.x 023 ≤.50 ≤ ,.x. 0600 4 ≤≤  ,xx. 551 21 .7≤+≤  and 010.x i06. ≤∑≤ . Note that the  

are amounts and not proportions of the dry-blend ingredients, so this is a constrained 
component-amount (rather than mixture) experiment.  

ix

Piepel et al. [17] assumed a second-order polynomial model and generated designs 
with =20, 25 and 30 points using several of the optimality criteria available in ACED. 
They used a candidate set consisting of: (i) the 31 vertices, 63 one-, 44 two-, and 12 
three-dimensional face centroids of the constrained experimental region, (ii) 0.8, 0.6, 0.4, 
and 0.2 shrunken (toward the center point) versions of these 150 points, and (iii) the center 
point of the region. Hence, they supplied total of 751 candidate points to ACED. Because 
of computing power limitations in 1993, they performed only 30 tries with each optimality 
criterion.  

n

ACED using both the G- and D-optimality criteria and the FFEA were run with 1000 
tries, the same model, and a larger 2,277-point candidate set to construct designs 
containing =20, 25, and 30 points. This larger candidate set was formed with a grid of 
step size 0.5, and retaining those points satisfying the previously described constraints. 
Table 5 lists the properties of (i) the G-optimal designs reported in Piepel et al. [17], (ii) the 
best G-optimal designs out of the 1000 ACED G-optimal designs, (iii) the best G-optimal 
designs out of the 1000 ACED D-optimal designs, and (iv) the best G-optimal designs out 
of the 1000 FFEA D-optimal designs.  

n

While it is not obvious for =30, it is clear for =20 and 25 that FFEA designs are 
better than ACED designs with respect to G- and D-optimality. This result supports our 
strategy of constructing G-optimal designs, i.e. selecting the best G-optimal designs from a 
large pool of D-optimal designs. As expected, all new designs in Table 5 are notably better 
than the corresponding designs in Piepel et al. [17] with respect to the reported properties, 
because more tries and a larger candidate set (which contains more boundary points) were 
used. The distributions of v  for FFEA designs for =20, 25 and 30 are given in 
Figure 2.  

n n

max n

Each 1000 tries of the FFEA for each  consumed about 4 minutes on the 2GHz 
laptop previously mentioned, and about 2.5 minutes on a 3GHz PC. Each 1000 tries of 
ACED for each  consumed about 2 minutes on a 3GHz PC when G-optimality was 
used and 1 minute on this PC when D-optimality was used. Note that we implemented the 
FFEA in Java, which is an interpreted language. Therefore, a C++ or Fortran (the language 
used to write ACED) implementation of the FFEA is expected to be up to five times faster 
than a Java implementation of this algorithm on a comparable computing platform. Also 
note that the implementation of G-optimality in ACED is the generalization of the 
DETMAX algorithm (Welch [21]), an approximation of the FEA that includes some of the 
same improvements included in the FFEA. These reasons explain the impressive speed of 
the ACED implementation.   

n

n
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Table 5. Properties of designs for grout experiment. 

n  Criterion By maxv  G-eff v  −′ 1/| | pX X

20  G ACED * 1.041** 72.0 0.646** 0.0327 

  G ACED 0.968 77.5 0.622 0.0331 

  D *** ACED 0.995 75.4 0.666 0.0328 

  D *** FFEA 0.957 78.4 0.626 0.0327 

25  G ACED * 0.797** 75.2 0.535** 0.0261 

  G ACED 0.745 80.6 0.512 0.0262 

  D *** ACED 0.764 78.5 0.501 0.0261 

  D *** FFEA 0.736 81.5 0.512 0.0256 

30  G ACED * 0.604** 82.6 0.412** 0.0215 

  G ACED 0.591 84.6 0.426 0.0214 

  D *** ACED 0.591 84.6 0.408 0.0211 
  D *** FFEA 0.587 85.1 0.417 0.0213 

*Only 30 tries (instead of 1000 tries) were used (Piepel et al. [17]). 
**Calculated over a 751-point grid instead of a 2,277-point grid. 
***D criterion was used but the best G-optimal design was selected. 

 

Figure 2. Cumulative distributions of  from 1000 FFEA-generated designs 
for Example 5 (each point on a graph represents the result of at least one try).  

maxv

 

7. Concluding Remarks  

This paper reviewed the FEA, other PEAs commonly in use, and presented a faster 
implementation of the FEA referred to as the fast-FEA (denoted FFEA). The FFEA was 
applied to several constrained region examples from the literature to provide benchmark 
results on the success rates in obtaining the best D-optimal designs and the computer time 
used. The results for the examples show the FFEA improves on D-optimal designs obtained 
by other algorithms such as the MFEA, generalized DETMAX, and GA.  
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Despite these results, we believe that no-candidate-set algorithms such as the GA and 
CEAs (Meyer and Nachtsheim [13]; Nguyen [14]; Piepel et al. [18]) have a role to play. 
These algorithms have the potential to work for very large constrained mixture and other 
design problems where it is impossible to use the candidate-set-based approach (see Piepel 
et al. [18]). However, no-candidate-set algorithms are still at the infancy stage of 
development. Better and faster implementations of these algorithms will surely one day 
catch up with existing PEAs requiring candidate points. However, even when that time 
comes, there will still be situations (e.g., when the design must be constructed from a 
specific set of candidate points) where a candidate-set-based PEA will be preferred. Hence, 
it is important that high-quality, fast PEAs such as the FFEA be available and implemented 
in software.  

The FFEA is implemented in a program called FEADO (Fedorov Exchange 
Algorithm for constructing D-Optimal experimental designs). More examples of D-optimal 
designs constructed by FEADO can be found at http:/ / designcomputing.net/ feado. The 
Java byte code of this program is available from the first author upon request.  

Finally, we recommend that in constructing CGDs using a PEA such as the FFEA, a 
large number of tries (e.g., 1000) be conducted using a sufficiently large candidate set. The 
traditional practice of making 10-30 tries does not appear to be sufficient to identify the 
best designs in some examples. Further, the approach of selecting the best G-optimal design 
out of a large number of D-optimal tries is recommended as yielding G-optimal designs 
with properties similar to or better than those obtained using a G-optimality criterion. 
Many commercial software packages with optimal design capability implement only the 
D-optimality criterion, so this approach provides for obtaining very good G-optimal 
designs with such software.  
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