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______________________________________________________________________ 

Abstract: Paper surface plays a key role in paper quality. Accurate paper surface profiles contain the 
fundamental raw information of the surface for a wide range of length-scales, to which different aspects 
of the paper quality are connected. With the goal of exploring the availability of such paper surface data 
obtained through a mechanical stylus profilometer, we present in this paper an approach for setting up a 
Multiscale SPC procedure that monitors simultaneously two key quality surface phenomena that develop 
at different scales: roughness and waviness. The raw profiles, after adequate processing using a multiscale 
framework based on wavelets, give rise to quantities that can be effectively used to monitor these two 
phenomena in a simple and integrated way, and therefore be implemented in practice for quality control 
purposes. The effectiveness of the proposed procedure is assessed by simulation as well as through a pilot 
study involving real paper surface profiles. 

Keywords: Multiscale analysis, paper surface, process monitoring and diagnosis, statistical process 
control, wavelets. 
______________________________________________________________________ 

1. Introduction   

aper is a very complex material, exhibiting properties that derive from a structural 
hierarchy of arrangements for different elements (molecules, fibrils, fibres, network of 

fibres, etc.), beginning at a scale of a few nanometres and proceeding all the way up to a 
few dozens centimetres or even meters [20]. This complexity is also present at its boundary, 
the paper surface, which plays a central role in many of the relevant properties from the 
perspective of the end user, such as general appearance (optical properties, flatness, etc.), 
printability (e.g. the absorption of ink) and friction features, to name a few. Being aware of 
this importance, the Pulp and Paper Industry developed methods to assess and characterize 
paper surface features at different scales, and, in particular, special attention has been 
devoted to surface phenomena known as roughness and waviness. Roughness is a fine 
length-scale phenomena, that results from the superposition of the so called optical 
roughness (scales up to µ1 m ), micro roughness (scales between µ µ−1 100m m ) and 
macro roughness (scales between −0.1 1mm mm ), each one with their own specific 
structural elements [18]. It is usually characterized indirectly by instruments based upon the 
air-leakage principle, quite handy and fast for integration in production quality control 
schemes, but also somewhat uninformative regarding the nature of the irregularities that 
drive this phenomenon. Waviness, on the other hand, refers to those larger scale deviations 
from a flat shape, an example of which are the so called “piping streaks”, that consist of 
streaks aligned along the largest dimension of paper, 1-3 cm wide, that may develop as a 
consequence of different fibre alignment streaks across the paper machine [37], but other 
representatives do exist, including the so called “flutes/ fluting” in heavy ink coverage areas 
[31], and cockling, which consists of small “bumps”, 5-50 mm in diameter, occurring at 
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random positions in the sheet as a consequence of hygroexpansivity and structural 
unevenness of paper [23], [18]. Quite often these larger scale waviness phenomena are 
assessed by trained operators through subjective classification schemes based upon 
sensorial analysis using several criteria defined a priori by a panel of experts, but efforts 
have also been carried out towards the development of more systematic and 
instrumental-based methodologies, namely using optical technology [31] and mechanical 
stylus profilometry [8]. Profilometry, in particular, is a technique that collects a detailed 
profile of the paper surface, to be processed afterwards in order to calculate several 
parameters that summarize the main features of the profile at a given range of scales where 
the analysis is to be focused. The complete surface profiles contain all the raw information 
necessary to characterize the phenomena located at different scales, ranging from a few 
micrometers to a few centimetres [42]. Figure 1 presents the raw data for a real paper 
profile, and its decomposition into components relative to different scales. These 
components result from a multiscale decomposition followed by a selective aggregation of 
scales made in order to isolate the two main surface phenomena that we want to monitor 
(roughness and waviness), as will be described in Section 3. 
 

  a) Original profile

  b) Roughness profile   c) Intermediate scales phenomena

  d) Waviness profile   e) Residual profile

 
Figure 1. The original profile (a) and the associated surface phenomena located at
different scales, obtained by performing a multiscale decomposition based on the wavelet
transformation followed by scale aggregation using accumulated engineering knowledge:
b) roughness profile; c) intermediate scales phenomena, that will not be used in this work
for monitoring purposes; (d) waviness profile; and (e) residual profile. Summing up the
last four profiles (b-e), one obtains the original measured surface profile (a). 



Multiscale Statistical Process Control of Paper Surface Profiles                         265 

  

Our aim in this work is to take advantage of such types of raw data (along with an 
adequate decomposition framework) to set up a Statistical Process Control scheme that 
addresses directly the fundamental nature of irregularities related to each phenomenon and 
not to some indirect or subjective measure of them. 

The issue of monitoring process and product profiles is not new, and has been recently 
brought to the attention of the scientific community [44], as being “the most promising 
area of research in statistical process control”. In this reference, work carried out in 
applications involving linear and non-linear profiles (using splines and wavelets) is reviewed, 
along with discussions regarding both Phase I and Phase II methodologies. Profiles 
monitoring is also a well established reality in the field of monitoring batch processes. In 
such a context, profiles regard data collected during the progress of the batch, and 
methodologies such as principal components analysis, partial least squares and several 
multiway analysis frameworks have been proposed and used with success [30,29,43]. The 
chemometrics community has also developed techniques to process profiles arising from 
spectra collected using several sources (e.g., NIR), some of which with the goal of process 
monitoring [33], and, more recently, similar applications involving the use of images (an 
higher dimensional profile) have also been reported [4]. 

As to paper itself, the surface profiles present a multiscale structure and the 
phenomena we want to monitor, roughness and waviness, indeed arise at different 
length-scales. This so called multiscale data, in opposition to data that can be thoroughly 
characterized using a single scale (of time or length), can be very adequately handled using 
frameworks based upon wavelet theory. Wavelet-based methodologies do enable the 
incorporation of the concept of scale right into the core of data analysis, thus providing an 
adequate mathematical language to describe multiscale phenomena. In fact, there is already 
a quite extensive list of papers reporting application of wavelets in process monitoring 
schemes, that somehow explore the decorrelation and energy compaction ability of the 
wavelet transform [2,10,41], in the improved detection of underlying deterministic events 
immerse in a stochastic, possibly autocorrelated background. Both the univariate [2,38] and 
multivariate cases [1,19,27] have been addressed, as well as non-linear applications [12,35]. 
Ganesan et al. [13] present a review paper, where over one hundred and fifty papers are 
cited regarding multiscale monitoring. In this context, several developments have also been 
reported regarding applications to profile monitoring. Trygg et al. [39] applied a 2D wavelet 
transformation to compress data from NIR (near-infrared) spectra collected over time and 
estimated a PCA model for this 2D compressed matrix, that was then used to check 
whether new incoming spectra deviate from those collected during normal operation. Other 
applications to process monitoring of profiles based on wavelet coefficients and metrics 
derived from it, include the following: quadropole mass spectrometry data from rapid 
thermal chemical vapour deposition process [21], tonnage signals from a stamping process 
[16,17], the central azimuth curve of antenna signals [15], print mottle images [3] and 
unprinted paper images [5] to assess paper quality regarding its printing performance and 
formation (i.e., the degree of uniformity in the fibre network that constitutes paper), 
respectively, data from a semi-batch copolymerization process [45] and electrochemical 
noise data (fluctuation in potential) to characterize localized corrosion processes [9]. 

Paper surface profiles do present, however, some characteristics that make them 
different from those analyzed in the applications reported in the literature referred above. 
Since the sample to be analyzed is collected at random, the location of a given feature in 
the length direction (X-axis) is not very critical but the global behaviour of the profile 
obtained for the relevant scales is. Furthermore, paper surface does present a multiscale 
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structure linked to a physical, and in fact observable, reality, which enables the gathering of 
engineering knowledge, that can be then applied to the selection of those scales that are of 
interest for each particular surface phenomenon we want to address.  

In the following section, we present a brief summary of wavelet theory, that plays a 
central role in our monitoring methodology, to be presented in the third section. Then, in 
section 4, we test the suggested multiscale monitoring methodology using both 
computational simulations and real data from paper surface profiles acquired using a 
mechanical stylus profilometer. We also present at this point a diagnostic extension that 
enables a finer characterization of a significant event in the waviness control chart, 
conceived to assist operators once a special event of this type is detected. A conclusions 
section sums up the proposed methodology and results obtained. 

2. Wavelet Transformation and Multiscale Decomposition 

In general terms, a transform provides an alternative and equivalent way of 
representing raw data as an expansion of basis terms multiplied by the transform 
coefficients. These coefficients constitute the “transform” and, if the methodology is 
properly chosen, data analysis can become much more efficient and effective when 
conducted over them, instead of over the original data set. For the particular class of 
signals exhibiting complex multiscale features, i.e. patterns appearing at different locations 
and with different localizations either in time or frequency [2], the usual linear transforms, 
such as the Fourier transform, do require a large number of high magnitude coefficients to 
reproduce them, and therefore do not provide a very efficient representation. This happens 
because the form of the time/ frequency windows [25, 41] associated with their basis 
functions does not change across the time/ frequency plane, in order to cover effectively and 
efficiently the localized high energy zones of the several features present in the signal. 
Wavelet basis, on the other hand, do provide an alternative coverage of this plane that is 
especially adequate to handle such type of signals (the so called “constant-Q” scheme, 
[32]). 

Wavelets are a particular type of functions whose location and localization 
characteristics in time/ frequency are ruled by two parameters: both the localization in this 
plane and the location in the frequency domain are determined by the scale parameter, s, 
whereas the location in the time domain is controlled by the time translation parameter, b. 
Each wavelet, ( )ψ ,s b t , can be obtained from the so called “mother wavelet”, ( )ψ t , 
through a scaling operation (that “stretches” or “compresses” the original function, 
establishing its form) and a translation operation (that controls its positioning in the time 
axis): 

( )ψ ψ −⎛= ⎜
⎝ ⎠

,
1

s b

t b
t

ss

⎞
⎟ .                          (1) 

The shape of the mother wavelet is such that it does have an equal area above and 
below the t – axis, satisfying the following equation: 

                          ( ) 0t dtψ∫ =\ .                             (2)  

As a result, besides having a compact localization in this axis, wavelets do also 
oscillate around it, feature from which derives the name of “wavelets” (small waves). The 
mother wavelet also presents an unit norm: 
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( )ψ =∫ 2 1t dt\ .                              (3) 

In Continuous Wavelet Transforms (CWT), the scale and translation parameters vary 
continuously, constituting a redundant transformation. Therefore, in order to construct a 
basis set, these parameters should be appropriately sampled, so that the set of wavelet 
functions parameterized by the new indices (scale index, j, and translation index, k) does 
cover the time-frequency plane in a non-redundant way. This sampling consists of applying 
a dyadic grid in which b is sampled more frequently for lower values of s, and s grows 
exponentially with the power of 2: 

             ψ ψ ψ ψ
=

= ⋅
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Mallat [24] presented a multiscale (or multiresolution) decomposition framework, 
where coarser approximations of a given signal represented at the finest scale can be 
considered as projections to approximation subspaces jV  indexed by scale index j, that 
span progressively shorter regions of ( )2 ,L R  and have a nested structure 
( 1 1,j j j jV V ). On the other hand, details that are lost in this process of projecting 
the signal to increasingly coarser approximation spaces can also be considered as 
projections to complementary subspaces, the details spaces, 

V V+ +⊂ ≠

jW , that, in conjunction with 
the approximation space, span the space of the original signal. In other words, this allows 
us to write a given signal at the finest scale, say 0 , as the sum of its projection to the 
approximation space at scale j, plus all the details relative to the scales in between: 

( )f t

= =
= + ⇔ = +∑0 0 0

1 1
( ) ( ) ( ) ( ) Pr ( ) Pr ( )

j

j j

j i V W
i i

∑ 0i
f t f t w t f t f t f t .          (5) 

The projections ( )jf t  and { } = …1, ,i i j
 in (5) can adequately be written in terms of 

linear combinations of the spaces basis functions multiplied by the expansion coefficients 
(calculated as inner products of the signal and the basis functions). These expansion 
coefficients are called approximation coefficients, 

( )w t

∈(j
ka k Z)

∈ )
, and details coefficients, 

, and are usually referred to as the (orthogonal) Discrete Wavelet 
Transform [7] or simply as “wavelet coefficients”, Equation (7). The basis functions of the 
approximation space 

= …( 1, , ;i
kd i j k Z

jV  are the so called “scaling functions”, { }φ
∈]

( )t,k j
k

, that, similarly 
to what happens with wavelets, can be generated from φ ( )t  (also known as “father 
wavelet”) by appropriate scaling and translation operations. The φ ( )t  function is also 
constrained to unit norm: 

                               ( )φ =∫\
2 1t dt .                               (6) 

φ ψ φ ψ
=

= + = =∑ ∑∑0 , , , ,
1

( ) ( ) ( ) , ( ), ( ) , ( ), ( )
j

j i j i
k j k k i k k j j k k j i k

k i k

f t a t d t a f t t d f t t .     (7) 

The basis functions for the detail spaces are the already presented wavelet functions. 
When working with discrete data (such as is the case with surface profiles) the procedure 
adopted consists of assuming that such signals constitute already the projection onto the 
approximation space 0V , which means that its values coincide under this circumstances 
with . Then, the expansion coefficients presented in Equation (7) are computed 
by applying the highly efficient recursive procedure proposed by Mallat [24], with a 

∈0 (ka k Z)
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computational complexity O(N).  

Using these concepts and terminology, we can now interpret more thoroughly what is 
being portrayed in Figure 1: (a) is the original (sampled) signal, ; (b) is the roughness 
profile, given by the sum of the projections of  onto the detail spaces with scales 
allocated to the roughness phenomena, 

0f

0f

Rogi J iR w∈= ∑ ; (c) is the intermediate scales 
phenomena profile, given analogously by 

I Si J iIS ∈ w= ∑ ; (d) is the waviness profile, given by 

W av
; and finally (e) is the residual profile, given by the projection of  onto the 

approximation space at the coarsest scale , , which is also the decomposition depth 
used for analysing our profiles. In particular, the index sets for the scales relative to each 
phenomenon are defined by 

i J iW ∈= ∑ w 0f

J Jf

{ }= …1,2, ,6RogJ  (roughness), { }= 7,8,9ISJ  (intermediate 
scales) and { }= 10,11W avJ  (waviness), as results from both engineering knowledge and a 
careful analysis of profiles, to be discussed in the next section. 

3. A Multiscale SPC Approach for Monitoring Paper Surface Phenomena 

3.1. The Proposed Framework 

The proposed approach for conducting integrated Multiscale SPC (MS-SPC), in order 
to monitor both roughness and waviness phenomena simultaneously, has the following 
basic components: 

1. Acquisition of a paper profile on a predefined direction. 

2. Multiscale decomposition of the de-trended profile (i.e., the profile with linear trend 
removed), obtaining the wavelet coefficients at each scale ( =1:j J , where J is the 
decomposition depth). 

3. Using only those scales whose indices are relative to roughness and waviness 
phenomena (sets Rog  and ), calculate the parameters that summarize the 
relevant information for product quality control purposes (this may require the 
separate reconstruction of these two profiles back into the original domain, by 
applying the inverse wavelet transform to a set of processed coefficients where the 
only non-zero elements are those corresponding to the selected scales for each 
phenomenon). Examples of this type of parameters are, for instance, the variance 
of the detail coefficients at a certain scale, or the maximum profile valley depth [14] 
of the reconstructed profiles. 

J W avJ

4. Implementation of SPC procedures for monitoring the parameters calculated in step 
3. 

5. If an alarm is produced, we check for its validity and look for root causes when 
appropriate. If it occurs in the waviness control chart, we use a diagnostic tool to 
characterize the event more fully (see below). Otherwise, return to step 1, and repeat 
the whole procedure for the next paper sheet profile acquired. 

3.1.1. Acquisition of  Profile 

The measurement device that we use for step 1 is a MahrSurf mechanical stylus 
profilometer set, with a Perthometer S2 data processing unit, a drive unit PGK 120, and a 
MFW – skidless pick-up set. The profiles to be processed contain the central 6144 measures 
of surface height, separated by approximately µ8.93 m , taken in the paper cross direction, 
as the type of waviness phenomena we are especially concerned with, the “piping streaks”, 
do always occur along a direction that is perpendicular to the measured one. Thus, using 
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cross direction paper profiles, we can assess the magnitude of cross direction roughness 
together with that of “piping streaks” (as illustrated in Figure 1a). Furthermore, other large 
scale deformations, without any directional preferential alignment, such as “cockling”, can 
also be detected. 

3.1.2. Wavelet Decomposition 

The decomposition depth used in step 2 is =11J , so that the frequency range where 
“piping streaks” do develop can be adequately covered. An orthogonal Symmlet-8 wavelet 
filter [25] was employed, since: the shape of its associated wavelet does resemble that of 
waviness profiles; it is smooth; does have a compact support; and is more symmetric (by 
design) then filters from the Daubechies orthogonal wavelet family. 

3.1.3. Selection of  Scales Relative to Each Phenomenon 

As already mentioned, engineering knowledge refers that roughness scales range up to 
1 mm, meaning that the maximum scale index should be somewhere between 6 and 7 
(because, ). On the other hand, by carefully analysing the 
multiscale patterns for different metrics in several profiles with different waviness 
magnitudes, but approximately the same roughness behaviour, and, in particular, if we look 
at the variance of the detail coefficients at each scale (Figure 2), we clearly detect a change 
of pattern occurring slightly before scale 6, indicating that roughness phenomena stop 
somewhere between scales 4 and 6. 

− ⎡ ⎤∈ × ×⎣ ⎦
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Figure 2. Log-log plot of the variance of detail coefficients at each scale (j), for 90 
surface profiles taken in the paper cross direction. These samples have different levels 
of waviness magnitude, but similar roughness behaviour. 

 



270                                                         Reis and Saraiva 

Therefore, balancing these two pieces of information, we set the maximum scale 
index for roughness phenomena equal to 6, as an adequate compromise between the 
engineering knowledge available about this particular phenomenon and the analysis 
performed on a selected group of samples. The scale indices associated with this 
phenomena are then as follows: { }= 1,2,...,6RogJ . As to those relative to waviness, the 
maximum scale index is limited by the decomposition depth scale (11), and we set the 
minimum scale index equal to 10, in order to capture the minimum scale associated with 
“piping streaks” surface irregularities, since: . Thus, the 
scale indices adopted for monitoring waviness phenomena are 

−× × ≈10 62 8.93 10 0.01 (1m m c )m

{ }= 10,11W avJ . 

Another task to be performed in step 3 regards the calculation of parameters that 
summarise the relevant characteristics of the two phenomena to be employed for quality 
control purposes. Many metrics have been proposed to characterize both roughness (e.g. 
arithmetical mean deviation of profile, maximum height of profile, RMS deviation of 
profile, etc.) and waviness profiles (e.g. total height of profile, mean width of profile 
elements, slope of profile, etc.), that can be consulted in the profilometry literature [34] and 
norms [14], to which we can sum up others based upon wavelet coefficients (e.g. variance 
of detail coefficients distributed across selected scales for each phenomenon, and its slope 
in a log-log plot for roughness scales). As many of these metrics give rise to highly 
correlated data sets when used together, we can either use them all and compress the 
monitoring dimension space using, for instance, PCA, or choose a subset that provides all 
the important profile information for monitoring purposes, and set up control charts only 
for this subset. Using extended simulations and analysing real data profiles, we verified that 
very often a single adequately chosen parameter is good enough to detect magnitude 
changes in the roughness and waviness phenomena. This parsimonious solution works 
quite well, but can also be easily extended to incorporate more parameters. Therefore, the 
parameter (statistic, in the usual statistical terminology) chosen for monitoring roughness is 
the sample or empirical variance of the reconstructed roughness profile: 

         
( )

Empirical variance of  roughness profiles
= −∑

=
−

2

1

1

N
k kR R

N
,            (8) 

where { } =
≡

1:k k N
R R  is the roughness profile ( N  stands for the number of points in the 

roughness profile, which is also the same as the length of the original profile), obtained by 
performing an inverse wavelet transformation of the vector of wavelet coefficients where 
the only non-zero elements are those relative to the roughness scales, or, equivalently, 

Rogi J iR w∈= ∑ , R  corresponds to its sample average (note that both the roughness profile, 
, and the projections to the detail spaces, , are vectors of the same dimension, R iw N ). 

As for the chosen waviness parameter (once again a statistic under the usual statistical 
terminology), we defined a simple magnitude parameter that correlated quite well with the 
visual assessment of waviness profiles, given by the maximum deviation from the mean 
value, , defined as: maxD

                 ( )=max max ,p vD C C ,                           (9) 

where pC  and  represent, respectively, the largest peak height and the largest valley 
depth of the profile centred at its mean value, 

vC

( ) ( )= − mC x W x Z , where is defined as: mZ



Multiscale Statistical Process Control of Paper Surface Profiles                         271 

  

               ( )= ∫
−

max

min
max min

1 x

m x
Z

x x
W x dx ,                     (10) 

i.e., ( )(= maxpC C )x  and ( )( )= minvC C x  (  and  represent the initial and 
final X-axis coordinates, to be considered for the purpose of calculating ); W  is the 
waviness profile, obtained through the same procedure adopted for R, but using the 
waviness scales instead in the reconstruction algorithm: 

minx maxx

mZ

∈
= ∑

W av

i
i J

W w . 

3.1.4. Implementation of  SPC Monitoring 

The two parameters referred above are used to monitor the multiscale phenomena in 
step 4, through two separate Shewhart control charts for individual observations [28]. Its 
upper control limits were set through a non-parametric approach, using a Gaussian kernel 
density estimation methodology [36] over reference data that do correspond to normal 
operation conditions. As the underlying reference distribution depends strongly upon real 
industrial production conditions, and since no sufficient data are available at the moment to 
describe it thoroughly using a parametric approach, this alternative allowed us to assess the 
potential utility of our methodology. Furthermore, other SPC procedures can also be 
implemented in the future, such as CUSUM or EWMA, to enhance sensitivity to small 
shifts, as extensions of the proposed approach. 

In step 5 we provide the operator with a diagnosis tool that maps each waviness 
profile into a two dimensional plot of λmax  versus max , where D λmax  stands for the finite 
wavelength where power spectra reaches a maximum. Since “piping streaks” are well 
localized in the frequency domain (they have a characteristic wavelength typically 
somewhere around 20 mm, but this value depends upon a specific paper machine), this plot 
allows for the fast identification of those high magnitude samples that may be classified 
into this type of abnormality. Several reference horizontal lines assist operators in the 
classification of the magnitude of the phenomena into three quality classes (good, 
intermediate, bad), which reflect the perception of a panel of experts, being afterwards 
translated into values of . Another vertical reference line provides a separation 
between two wavelength ranges, one of which regards the “piping streaks” characteristic 
wavelength domain (Figure 7). 

maxD

3.2. A Short Discussion of  the Proposed Approach 

As the monitoring parameters (or statistics) were calculated from the roughness and 
waviness profiles obtained upon reconstruction back into the original domain of the 
respective wavelet coefficients, our methodology essentially consists of a multiscale filtering 
procedure to separate relevant phenomena occurring at different scales. This could also be 
done using frequency domain techniques, which, in fact, constitute the currently adopted 
approach, where profiles are separated using high and low-pass filtering techniques with 
normalized wavelength cutoffs [14,34]. However, there are some advantages of adopting a 
multiscale approach. For instance, in the context of the spectral analysis of paper profiles 
using frequency based techniques, Wågberg and Johansson [42] refer that plotting the 
power spectrum over relative bands instead of linear bands would facilitate the extraction 
of contributions arising from different parts of the spectrum, suggesting an octave series as 
an adequate one. This is just the way information is organized across the scales obtained 
through the wavelet transform, and, in fact, we have already used this property for 
analysing the range of scales where roughness phenomena dominate the profile structure 
(Figure 2). Furthermore, multiscale methods address multiscale phenomena using an 
adequate mathematical language, i.e., using the concept of scale as the core of the analysis, 
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instead of frequency, more connected to periodic phenomena. This facilitates the analysis 
and interpretation of results, and moves the discussion towards the very nature of the 
underlying phenomena. On the other hand, the availability of well established multiscale 
tools allows one to quickly visualize and quantify any structure at a given scale, without 
having to worry with the non-trivial problem of selecting the adequate cutoffs and filtering 
procedures, but only with the selection of the scales to consider, something much closer to 
our physical perception of the problem, and thus easier to use. 

4. Application of the MS-SPC Approach for Monitoring Paper Surface 
Phenomena 

In this section we test our MS-SPC procedure for the simultaneous monitoring of 
paper roughness and waviness, using several simulated scenarios as well as real industrial 
data. In the simulations, realistic paper surface profiles were generated, representing a 
variety of situations that go from typical normal operating conditions to several degrees of 
abnormal situations (moderate and high), in order to evaluate the sensitivity of the 
proposed methodology to shifts, and therefore its potential adequacy for real world 
industrial practice. Then, using real paper surface profiles, we tested how the methodology 
performs in practice through a set of approximately one hundred cross direction paper 
surface profiles representing mainly different levels of waviness magnitude, but where some 
abnormal roughness behaviour can also be found.  

4.1. Monte Carlo Simulation Study 

This simulation study regards an assessment of the underlying potential of our 
MS-SPC methodology under simulated, though realistic, scenarios. As the behaviour of the 
true underlying industrial process, and therefore that of the monitoring statistics, are both 
rather complex and, to a larger extent, remain unknown at the present stage, we present 
here results that can be used to evaluate such a potential, deferring the accurate 
characterization of its Phase 2 performance (e.g., through ARL, ATS metrics) to future 
work, when sound statistical modelling becomes possible with the availability of larger data 
sets.  

To design a realistic simulation study, both waviness and especially roughness 
phenomena were carefully analysed, in order to estimate adequate models that are 
compatible with the main features present in real world paper surface profiles. This means 
that, for instance, the simulated roughness profiles should exhibit a power spectrum 
compatible with the results presented in Figure 2, which renders some descriptions from 
the field of statistical geometry of random fibre networks, that lead to simple iid Normal or 
Poisson models with high mean value [18] inadequate, as they do not give rise to power 
spectra with such characteristics (they lack the autocorrelation modelling arising from the 
natural dependencies between the measurements of height in adjacent positions). On the 
other hand, analysing the height distributions in roughness profiles we often found 
distributions slightly skewed towards the left, as happened also with other authors [11]. 
Therefore, in order to develop a model for the (cross direction) roughness of the paper 
grade that we want to describe (R), we adopted an approach based on time series theory 
[6,22], and fitted a suitable autoregressive moving average model (ARMA) that reproduces 
observed characteristics of roughness. In this regard, ARMA(2,2) was found to be the 
lowest order model that passes both the residual autocorrelation and partial-autocorrelation 
tests. From all the normal operation roughness profiles, we choose a typical one to fit 
ARMA model parameters, making sure that these parameters do represent the overall set 
of models obtained from fitting all the available normal operation roughness profiles. The 
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model thus obtained is as follows: 

( ) ( ) ( ) ( )
( )

( ) ( )σ σ

− −

−

=

= − −

= + +

=

1 2

1

2 2

, with

1 0.6605 0.09479

( ) 1 0.8111 0.2365

~ 0, , 2.3320e e

A q W t C q e t

A q q q

C q q q

e t iid N

−2
                  (11) 

where ( )A q  and ( )C q  are polynomials in the shift operator, q, such that 
. Figure 3 illustrates the validity of the estimated model regarding a 

description of the true raw profile, in terms of the sample autocorrelation and 
partial-autocorrelation functions. We also verified that it reproduces the desired power 
spectrum behaviour within the roughness scales range. 

( ) ( )− = −1 1q W k W k
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Figure 3. Sample autocorrelation and partial autocorrelation functions for a real 
roughness profile (left) and for a simulated profile using the estimated model (right). 

 

Another model was also fitted to a roughness profile from an abnormal situation, to 
be used during the simulations as representative of such situations: 

σ

− −

− −

= − +

= + +

=

1 2

1 2

2

( )  1 1.002  0.16               

( )  1 0.5168 0.1035   

2.3420e

A q q q

C q q q               (12) 
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Data generated using models (11) and (12) were filtered before entering in our 
simulations, in order to reproduce exclusively phenomena in the roughness scales, 

{ }= −1 6RogJ . 

As for waviness phenomena (W ), both the type of waveforms typically found when 
“piping streaks” are present, as well as other lower frequency irregularities and normal 
operation conditions profiles were simulated through the superposition (sum) of several 
sinusoidal waveforms, ( )λ== ∑ 1 ,Wn

i i i iW W A , each one with its own wavelength (λi ) and 
amplitude ( ). We have used four of such elementary waves (iA = 4Wn ) to synthesize the 
overall waviness profiles, through the following sequence of steps: 

1. Definition of simulation parameters, including average wavelength (λ ), wavelength 
half range ( λ∆ ), average maximum amplitude ( maxA ) and amplitude range (∆ ). maxA

2. Generate the wavelengths λi  for each component wave , where iW

( )λ λ λ λ λ− ∆ + ∆~ ,i U , i=1:4; with ( )⋅U  representing an uniform distribution in the 
range specified as argument. 

3. Generate the amplitude  for the final waveform W , where maxA

( )− ∆ + ∆max max max max max~ ,A U A A A A . 

4. Definition of amplitudes for each component wave, , calculating first the unscaled 
amplitude for each component, , and then scaling the four components in order to 
obtain a final waveform with the amplitude specified in step 3, i.e. 

iW
*
iA

( )− ∆ + ∆*
max max max max~ ,iA U A A A A , = ∑* *

maxi iA A A Ai . 

5. Generation of individual wave components using the same sampling spacing and 
number of points as for the real profiles ( µ8.93 m  and 6144, respectively), and 
summation to obtain the resulting waviness profile, ( )λ== ∑4

1 ,i i i iW W A . 

Finally, both the roughness and waviness profiles are combined to obtain the 
simulated raw profiles, P ( ). Our MS-SPC approach was tested under several 
scenarios, in order to assess its potential to detect shifts of different magnitude in the 
waviness profile, as well as shifts in roughness. Figure 4 presents the MS-SPC control charts 
for data regarding five simulation scenarios, described in Table 1. 

= +P R W

 
Table 1. Simulation parameters associated with the different scenarios studied. 

Scenario/ Simulation parameter 
λ  

(mm) 
λ∆  

(mm) 
maxA  

(µm) 

∆ maxA  
(µm) 

Roughnes

s model 
      

1. Normal operation 40 10 30 20 (3.4) 
2. “Piping streaks”, moderate magnitude 17 3 70 20 (3.4) 
3. “Piping streaks”, high magnitude 17 3 110 20 (3.4) 
4. “Cockling”, high magnitude 80 20 100 20 (3.4) 
5. Roughness, high magnitude 40 10 30 20 (3.5) 

 

The first two plots (a and b) refer to control charts for roughness and waviness, 
respectively, with 99% control limits established after a preliminary Gaussian kernel density 
estimation step, where 40 samples representing normal operation conditions were used, 
whereas plot c) combines them into a single plot (lines in this plot are control limits for 
each parameter, represented only for reference, not aiming to define the combined 99% 
control region, although this could also be done within the scope of non-parametric 
approaches [26]). The non-parametric estimation approach was adopted, in order to 
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overcome the difficulties raised by the shapes of the distributions found for the monitoring 
statistics, that do not resemble any known probability density function. Under such 
circumstances, the Gaussian kernel density method provides an adequate way to estimate 
the underlying distribution, through an adequate fit/ smoothness trade-off [36]. 

From Figure 4 (.a and .b), we can verify that all the shifts simulated under conditions 
2-5 are clearly detected in the appropriate control chart, even the one for the moderate 
“piping streaks” irregularity. In Figure 4.c, one can notice an overlapping occurring in the 
region of significant waviness phenomena, where “piping streaks” of different magnitude 
and “cockling” appear superimposed. However, since the former has a quite localized 
behaviour in the frequency domain, these two types of phenomena can be quite well 
resolved in the current simulation conditions, by bringing in an extra classifying element, 
which is the (finite) wavelength where the waviness profile power spectra reaches its 
maximum, λmax . 
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Figure 4. Control charts for monitoring roughness (a) and waviness (b), both 
with 99% upper control limits, and a combined plot that monitors both statistics 
(c). The five sectors indicated in plots a) and b) and the symbols used in plot c) 
refer to the simulation scenarios described in Table 1. 
 
Figure 5 presents such a plot, where we can see that a separation is indeed possible 

between these two phenomena (Figure 4.c is just the orthogonal projection of the points in 
this three-dimensional plot, onto the “variance of roughness profile” versus “ ” plane). 
As we are particularly concerned with following “piping streaks”, we will pursue this idea a 
bit further in order to develop a plot that indicates when such phenomena might be 
occurring, to be presented in the next subsection. 

maxD

4.2. MS-SPC of  Real Paper Surface Profiles 

To further test our MS-SPC approach under conditions even closer to those found in 
real industrial practice, a pilot study was run in the context of a collaboration between our 



276                                                         Reis and Saraiva 

research group and Portucel (a major Portuguese pulp and paper company). Approximately 
one hundred profiles were gathered, containing samples within the normal operation 
quality standards as well as others corresponding to several types of abnormal situations. 
Table 2 presents a general description of the samples whose profiles were used in this study. 
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Figure 5. A three dimensional plot of the variance of roughness profiles versus 
 and maxD λmax . Symbols refer to the scenarios described in Table 1. Waviness 

(2-3) and cockling (4) clusters appear now quite well separated. 
 

Table 2. Description of surface phenomena exhibited by real surface profiles. 

Descr ption i Samples 
  

Reference set 1-40 
No waviness 41-61 

Moderate waviness 62-82 
High waviness 83-88 

Upward trend on Bendtsen 
roughness 89-98 

 

Control limits were set based on the variability exhibited by the samples from the 
reference set, following the same approach used for the simulation study. The test set 
contains samples with low, moderate and high waviness, as well as samples that correspond 
to an upward trend in roughness magnitude, as measured by the Bendtsen tester [18,40], an 
instrument based on the air-leakage principle, that measures the volume of air flowing 
between a ring and the paper surface. As no roughness measurements were available for the 
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former samples, with various levels of waviness magnitude, it is not possible to analyse the 
monitoring performance of the roughness chart for such samples. Some moderate and high 
waviness samples can be classified into typical “piping-streaks” and “cockling” 
representatives by looking at their profiles, but for others that is not possible, and we refer to 
them simply as (high or moderate) waviness samples. 
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Figure 6. Control charts for monitoring roughness (a) and waviness (b). The first 
part of the data sets (1) regards reference data, the second (2) is relative to waviness 
phenomena with different magnitudes (see Table 2 for details) and the third (3) 
regards an upward trend in roughness, as measured by the Bendtsen tester. 

 

Figure 6 presents our MS-SPC monitoring results for the real profiles. We can see that 
the SPC chart for monitoring waviness does indeed follow the magnitude trends of the 
samples described in Table 2. As for the chart relative to roughness, we can also verify that 
it captures the upward trend in the last 10 samples, besides other significant events scattered 
through other samples in the test set. To facilitate the detection of samples with “piping 
streaks” waviness, a two-dimensional plot of λmax  versus , presented in Figure 7 was 
adopted, where the samples appear segregated along the vertical direction according to the 
magnitude of the waviness phenomena, and, along the horizontal direction, according to 
their characteristic wavelength. In general, this plot enables a correct separation, especially 
when samples present a well defined waviness behaviour, such as is usually the case when 
“piping streaks” occur. The horizontal classification boundaries presented in Figure 7 were 
set by analysing the location and localization of the samples classified into three waviness 
magnitudes classes, through a simple procedure that weights the natural upper and lower 
boundaries for each adjacent class, using the number of elements in each class, whereas the 
vertical classification line was drawn using engineering knowledge regarding “piping 
streaks”. 

maxD
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Figure 7. Two-dimensional plot of λmax  versus max  for the real profiles data set. 
In this plot, waviness phenomena are classified into three levels of magnitude, 
separated by horizontal lines (low at the bottom, moderate at the middle and high at 
the top), and in two regions of characteristic wavelength, the range at the left being 
characteristic of “piping streaks” phenomena. 

D

From what was presented in these two studies, we can see that the proposed MS-SPC 
methodology can indeed be used for monitoring simultaneously both paper waviness and 
roughness phenomena. 

5. Conclusions 

In this paper a MS-SPC approach for the simultaneous monitoring of both roughness 
and waviness paper surface phenomena in an integrated way was proposed, and its 
potential analysed through simulated realistic scenarios and using real industrial data. This 
approach is built around a wavelet based multiscale decomposition framework that 
essentially conducts a multiscale filtering of the raw profile, effectively separating the two 
phenomena under analysis, making also use of available engineering knowledge and 
information derived from the analysis of the distributions of different quantities through 
the scales. The results presented from the two case studies carried out allow us to conclude 
in favour of the adequacy of adopting the proposed MS-SPC for monitoring 
simultaneously both types of phenomena, but its thorough characterization in terms of 
Phase 2 detection performance metrics (ARL, ATS) is deferred until more process data can 
be accumulated, and thus support more detailed statistical modelling. 
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