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______________________________________________________________________ 

Abstract: Classic charting procedures are usually designed assuming that process parameters are known 

or may be estimated using large Phase I samples gathered before a production run. However, in some 

manufacturing settings, such as during the process start-up, historical data cannot be collected to accurately 

estimate the in-control process parameters. In this article, we suggest a new self-starting control chart which 

uses consecutive observations to jointly update the parameter estimates and check for out-of-control 

conditions. In particular, we introduce a charting procedure, ACUSCORE, that updates the reference 

pattern of a type-CUSCORE chart using an adaptive EWMA. The proposed control chart seems to 

outperform traditional self-starting control charts which neglect the dynamic pattern of  the mean change. 

Keywords: Adaptive EWMA, CUSCORE, Q charts, quality control, recursive residuals. 

______________________________________________________________________ 

1. Introduction 

raditional control charts are usually designed assuming that the in-control (IC) process 

parameters are exactly known. In most practical applications, however, the process 

parameters are unknown and are replaced with estimates from an IC Phase I sample. 

Previous research work (see Jensen et al. [11] for a systematic review) has demonstrated that 

parameter estimation substantially degrades the run-length performance of classical control 

charts. At least in the case of the Shewhart [18], EWMA [14] and CUSUM[15] control charts, 

using estimates in place of known parameters causes too many false alarms unless the Phase I 

samples are sufficiently large to accurately estimate the unknown parameters. However, 

gathering large calibration samples is usually costly and problematic and it may be even 

impossible in some settings such as during the start-up stages where data are not available 

before a production run. 

In this context, three alternative approaches can be used to address the design issue:  

i) modifying decision intervals: control limits of  classical control charts are widened to 

account for the variability in the sampling distribution of the estimates; see for example 

Jones [13] and Capizzi and Masarotto [3] for independent and autocorrelated data, 

respectively; 

ii) formulating a proper “change-point” model as suggested in Hawkins et al. [8], Hawkins 

and Zamba [9], Hawkins and Zamba [10]: a chart, based on the likelihood ratio test, is 

designed without assuming that the in-control process parameters are known; 

iii) using “self-starting” control charts (Hawkins [5], Quesenberry [17], Quesenberry [19], 

Sullivan and Jones [24], Zantek [26], Hawkins and Maboudou-Tchao [6]).     

Following the last two approaches, since the very beginning of  the production run, the 
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parameter estimates are updated with each new observation and out-of-control (OC) 

conditions are simultaneously checked. 

It should be noted that the first approach has the disadvantage of  yielding schemes with 

unpredictable run length properties. Indeed, the IC average run length, depending on the 

parameter estimates, is a random variable with its own distribution. On the other hand, the 

change-point formulation may be computationally burdensome. 

The “self-starting” approach, conversely, seems to be able to identify shifts occurring in 

the early history of the process even maintaining the IC run length ( )RL  properties at the 

specified values. This approach sequentially transforms the consecutive readings from an 

unknown-parameter process to a sequence of independent Q  statistics having a completely 

known distribution when the process is in-control. Thus, traditional control charts can be 

applied to these transformed values. Observe that, however, when the original process 

parameters shift to new stable levels (sustained changes), the effect on the transformed data 

does not last long. Since control charts that neglect this phenomenon may show a very poor 

out-control performance in detecting small shifts in the process mean, we here investigate an 

alternative self-starting chart explicitly accounting for dynamic patterns in the mean shift. 

Practitioners should note that the new chart provides a relatively simple procedure 

which largely outperforms the previously suggested self-starting schemes. On the other hand, 

it exhibits some limitations. In particular, 

� it only tries to detect a shift from an initial level. Incidentally, this advise also applies to 

the change-point approach; 

� it is designed for detecting persistent step changes. Thus, performance might be 

unsatisfactory in other change points scenarios, such as in the presence of  time varying 

changes and in particular when a gradual degradation occurs near the beginning of  the 

monitoring phase. 

Both these limitations, that are intrinsic to the self-starting methodology itself, arise due 

to a lack of any knowledge about the true IC process level when the monitoring process starts. 

The remainder of the paper is organized as follows. In the case of a sustained change in 

the process mean of a normal distribution, Section 2 presents the corresponding Q  statistics 

and some standard monitoring schemes based on these transformed values, such as the 

CUSUM and the EWMA. Section 3 introduces a new charting procedure that updates the 

reference pattern of  a type-CUSCORE chart using an adaptive EWMA. The design of  the 

proposed control chart is discussed in Section 4 and a practical example is presented in 

Section 5. Comparisons with other control charts of Q statistics are given in Section 6. 

2. Q -Transformation and Related Control Charts 

 Assume that, under control, the process measurements { }, 1, 2,...,tx t �  are 

independent normal random variables with mean �  and variance 
2 ,�  that is 

2( , ).N � �  

From some time period ,�  the process mean changes from �  to .� 	�
  Process 

parameters, time and magnitude of  the mean shift are all unknown. 

Let tm  and 
2
ts  respectively denote the sample mean and sample variance of  the first t  

observations. Their values can be computed, as each value ,tx  for 3,t �  is gathered, using 

the following updating formulas  
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with 2 1 2( ) / 2m x x� 
  and 
2 2
2 1 2( ) / 2.s x x� �  

The statistics  
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1
,t
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at
T

t s �

�
�                                 (2) 

for testing the null hypothesis that the two samples tx  and 1 1( ,..., )tx x �  come from 

distributions with the same unknown mean ,�  are statistically independent and follow a 

Student t  distribution with 2t �  degrees of freedom. Given the number of degrees of 

freedom is varying from one observation to the next, the tT  are not identically distributed. 

However, let ( )G� �  and 
1( )� � �  denote the cumulative distribution function (cdf) of a Student 

t  random variable, with �  degrees of freedom, and the inverse standard normal cdf, 

respectively. Then, Hawkins [5] and Quesenberry [17] use the following transformation  

1
2[ ( )], 3.t t tQ G T t� �

�� �                             (3) 

Since, under control, the tQ  statistics are independent and identically distributed 

random variables from a (0,1)N  distribution, traditional control charts based on tQ  can be 

used for detecting a shift in the process mean. 

In particular, a self-starting CUSUM (Hawkins [5], Hawkins and Olwell [7], Zantek [26]) 

of tQ  is defined, for 3,t �  by  

1

1

min{0, },

max{0, },

L L
t t t

U U
t t t

C C Q k

C C Q k

�

�

� � 
 

�

� 
 ��
                          (4) 

with 2 2 0L UC C� �  and k  denoting the CUSUM reference value. Given a suitable value of 

the control limit ,h  the control chart (4) signals when either 
L
tC h� �  or .U

tC h�  

Correspondingly, a self-starting EWMA is given by  

1 1( ),t t t tZ Z Q Z�� �� 
 �                             (5) 

where 2 0Z �  and 0 1.�� �  The EWMA of tQ  signals when | | / (2 ).tZ h � �� �  

3. An Adaptive CUSCORE Control Chart 

Observe that traditional control schemes, such as the CUSUM and EWMA charts, are 

designed assuming that the step mean shift in the original series { }tx  results in a sustained 

mean shift in the transformed series .tQ  However, after the change point, the mean of tQ  is 

a time dependent function. In particular, it is possible to show that the pattern of the mean 

change is substantially affected by both the magnitude 	  and the time �  of the shift. For 
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example, Figure 1 shows that, when a shift in the process mean occurs, there is an immediate 

and rapid increase in the mean value of  this expected value, however, gets closer to zero 

as more shifted observations are used to update the sample mean estimate, i.e. as  increases. 

Thus, a control chart which fails to signal within a few observations following the shift, that is 

inside a ‘‘window of opportunity’’, can result in poor out-of-control run length performances. 

;tQ

t

 

 
	� . occurs at Figure 1. Mean values of t  when a mean shift of size Q �  The 

four curves correspond to: (i)� 	� �26, 0.5 26, 2 (solid); (ii) � 	� �
26, 0.5

 (dashed); 
(iii) � 	� � 26, 0.5 (dotted and dashed); (iv) � 	� �

Q

tQ

Q

3,t

 (dotted). 

 

Thus, it would be desirable to design a self-starting control chart using not only the t ’s 

level but also the fault signature of the mean shift, and in particular the information contained 

in the correlation between  and its expected value. 

When the fault signature is known, this issue may be addressed using a CUSCORE 

control chart (Box and Ramirez [1]). Unfortunately, the expected value of t  depends on 

the unknown magnitude and time of  the change. Thus, starting from �  we here suggest 

to  

(a) estimate the current mean level of tQ  using the following adaptive EWMA (AEWMA) 

1 1 1(1 ) ,t t tf w f w Q�� � 


2 0f � tw

                           (6) 

where  and  is the weight function given by 

1
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                  (7) 

� � 0 1. and �� �  with 
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Such an estimate of the current process mean level has been introduced by Yashchin [25] 

and it has been used in the SPC framework to implement an adaptive version of both the 

EWMA and CUSUM control chart (see Capizzi and Masarotto [2], Shu [21] and Jiang et al.  

[12]). For a better understanding of the weight function (7) readers can refer to these 

references and, in particular, to the related plot in Capizzi and Masarotto [2]. 

(b) monitor the process using the following CUSCORE-type control chart 

�

�

� � 
 � 

�

� 
 � ��

1

1

min{0, ( / 2)},

max{0, ( / 2)},

L L
t t tt t

U U
t t tt t

AC AC f fQ

AC AC f fQ
                  (8) 

with 2 2 0L UAC AC� �  and tf  given by (6). 

The control chart (8) signals when either 
L
tAC h� �  or .U

tAC h�  In the following, we 

will refer to (8) as the Adaptive CUSCORE (ACUSCORE) control chart. 

As soon as two observations are available, the self-starting scheme (8) makes use of  each 

new observation to calculate the statistics tT  and tQ  via equations (2) and (3); if the 

ACUSCORE does not signal, the current observation is then used to update the sample mean 

tm  and the variance 
2
ts  via equation (1). Sampling and updating of parameter estimates 

continue until the hypothesis that the process is in control is rejected. 

The control statistics 
L
tAC  and 

U
tAC  are similar to a two sided CUSUM. The 

difference is that detection is based on the cumulative sum of  the product between | |tf  and 

tx  and not on the cumulative sum of tx  itself. Given this similarity, post-signal 

interpretation of  the ACUSCORE control statistics can be done as in the CUSUM case. In 

particular, 

1. the shift direction can be determined from which of the two control statistics 
L
tAC  and 

U
tAC  hit the control limit; 

2. the time of the change-point can be estimated using the last time the control statistic, 

responsible for the signal, has been equal to zero.     

Observe that, an adaptive approach has not been previously discussed for the 

self-starting charts. However, control chart (8) is far from being the first proposal for schemes 

adaptively updating the reference value of type-CUSCORE and CUSUM charts or 

accounting for a dynamic pattern of the mean change. A similar idea has been used, for 

example, by Sparks [23] and Jiang et al. [12] to implement an adaptive version of the CUSUM 

control chart (ACUSUM), by Han and Tsung [4] to design a Reference-Free CUSCORE 

(RFCUSCORE) and by Shu et al. [22] to develop a weighted CUSUM chart (WCUSUM). 

With regard to these proposals, it should be noted that  

i) the ACUSUM has been suggested for detecting a persistent change in the process 

mean. Thus, it may result in poor performances when the mean of  the monitoring 

stream has a dynamic pattern as in the considered framework (see Shu et al. [22]); 

ii) the RFCUSCORE is a special case of ACUSCORE chart when | |tf  in (8) is 

replaced with | |,tQ  i.e., when �  and �  are equal to zero in equation (7). However, 

given the behavior of the mean response in the self-starting situation, we found that 

using a smooth estimate of  the fault signature can lead to an improved 

performance; 

iii) the WCUSUM is quite similar to our proposal and, even if comparisons with this 
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chart are not presented in this paper, its performance is essentially equivalent to that 

of the ACUSCORE chart when an adaptive EWMA, in place of a standard EWMA 

used in Shu et al. [22], is chosen to update the weighting function .tf  

4. Design of the ACUSCORE Control Chart 

The design of the ACUSCORE chart involves the choice of three parameters ,� �  and 

.h  

We performed an extensive simulation study to understand the effect of  �  and �  on 

the ACUSCORE performance. In particular, for various values of , ,� � 	  and ,�  we studied 

the expected delays in detecting a change of  size 	  occurring at observation ,�  i.e.  

( 1| ).OCd E RL RL	 � �� � � �                         (9) 

Results can be summarized as follows. 

i) When 6,� � the best detection power is obtained for values of � in the interval [0.05,

0.25]. Different choices of � inside this interval seem to have a relatively small effect

on the detection power. On the other end, larger values of � reduce the performance

against small shifts. See, for example, Table 1 which illustrates the effect of � when

3.� �   

ii) For every value of ,� small � ’s perform better against large mean shifts while large

� ’s are better against small shifts. A good compromise can be obtained choosing � in

the interval [2.5, 3.5] See, for example, Table 2. 

 

Table 1. Expected delays for various values of , 3� � �  and 51.� �  For each 
scheme, the critical limit has been computed so that ( ) 0.1.r RL �� � �  Each 
entries is based on 100000 Monte Carlo replications. 

�  
	  0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 

0.5 35.77 35.06 35.78 37.16 38.77 40.69 45.26 51.45 59.52 
1.0 13.78 13.14 13.13 13.28 13.43 13.57 13.73 13.82 13.87 
1.5 8.22 7.64 7.51 7.53 7.59 7.66 7.78 7.82 7.79 
2.0 5.70 5.27 5.12 5.08 5.08 5.10 5.15 5.17 5.16 
3.0 3.01 2.93 2.88 2.86 2.84 2.84 2.83 2.82 2.81 
4.0 1.70 1.77 1.81 1.83 1.85 1.86 1.86 1.86 1.85 
5.0 1.18 1.24 1.28 1.32 1.34 1.36 1.38 1.38 1.38 
6.0 1.03 1.05 1.07 1.08 1.10 1.11 1.12 1.13 1.12 

 

Table 2. Expected delays for various values of , 0.15� � �  and 51.� �  For 

each scheme, the critical limit has been computed so that Pr( ) 0.1.RL �� �  

Each entries is based on 100000 Monte Carlo replications.  

�  
	  1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

0.5 64.72 53.63 42.82 39.92 35.78 34.87 34.69 34.69 34.69 
1.0 14.59 14.57 13.85 13.59 13.13 13.03 13.00 13.00 13.01 
1.5 7.81 7.55 7.42 7.60 7.51 7.56 7.59 7.59 7.59 
2.0 4.98 4.69 4.72 4.97 5.12 5.24 5.30 5.30 5.30 
3.0 2.63 2.42 2.43 2.68 2.88 3.10 3.30 3.30 3.33 
4.0 1.72 1.58 1.55 1.73 1.81 2.03 2.37 2.37 2.44 
5.0 1.29 1.20 1.17 1.27 1.28 1.41 1.76 1.76 1.88 
6.0 1.08 1.04 1.03 1.07 1.07 1.12 1.33 1.33 1.47 
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Given these results, we recommend to set 0.15� �  and 3� �  this choice provides 

good performance in a variety of  OC conditions. 

since 

h

1 (1 ) ,t t tf f Q

Hence, ACUSCORE design is reduced to the relatively easier selection of the control 

limits  which will be discussed later. It is interesting to note that this practical advantage of  

the suggested scheme is due to the use of an AEWMA statistic to estimate the fault signature. 

Indeed, if the adaptive EWMA is replaced by a standard EWMA, i.e., if we estimate the fault 

signature using  

� ��� 
 �                          (10) 

with �  fixed, the performance of  the resulting scheme crucially depends on the smoothing 

parameter .�  This point is illustrated in Figure 2 which shows the expected delays of  three 

ACUSCORE schemes based on the standard EWMA (10). Note that smaller values of �  

lead to a quicker detection of smaller shifts, while larger values of �  produce better 

performance for larger shifts. Figure 2 also lets us to compare the three standard 

EWMA-based schemes with the suggested AEWMA-based chart. Observe that the expected 

delay of the ACUSCORE based on an adaptive EWMA is either the shortest or near the 

shortest for every value of the mean shift. Hence, no standard EWMA-based scheme offers a 

comparable protection against both small and large shifts. 

 

 

Figure 2. Expected delays when � 51.�  The four curves correspond to: (i) the 
suggested ACUSCORE chart based on the AEWMA estimate of  the fault signature 
� �� �( 0.15, 3;

0.1
 solid line); (ii) a CUSCORE based on a standard EWMA with 

� � 0.4 (dashed); (iii) a CUSCORE based on a standard EWMA with � �
0.7

 
(dotted and dashed); (iv) a CUSCORE based on a standard EWMA with � �

Pr( )=0.1.RL

 
(dotted). Critical limits of  the four schemes have been computed so that 

��

,h

 Expected delays have been estimated using 100000 Monte Carlo 
replications.  

 

In choosing the decision interval  practitioners may need to balance the control chart 

performances in the in and out-of-control conditions. Table 3, in particular, shows the 
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ACUSCORE control limits able to achieve a desired value of the in-control ,  

Then, for each value of  the control limit  Table 3 also shows the probability of giving a 

false alarm within the first 

ARL 0.ARL

,h

�  observations, 

( ),r ICp P RL r  � �

	  occurred at observation .and the expected delay in detecting a change of size �  Since the 

analytical computation of the run length distribution seems difficult, Table 3 has been 

obtained by simulations. We found that an efficient approach for the computation of  

consists in using the Polyak-Ruppert stochastic approximation algorithm [16, 20]. In 

particular, our implementation is based on the recommendations given by Capizzi and 

Masarotto [3].  

h

( 51)

 

Table 3. Adaptive CUSCORE decision intervals and corresponding 

in-control and out-of-control � �  run length characteristics. All 
quantities have been estimated using 100000 Monte Carlo replications. 

h  
 2.698 4.196 6.033 7.970 8.977 11.558 

In-control  
 50.000 100.000 200.000 370.400 500.000 1000.000 0ARL

25p  0.241 0.058 0.009 0.002 0.000 0.000 

50p  0.614 0.256 0.071 0.015 0.006 0.001 

100p  0.917 0.617 0.287 0.107 0.061 0.012 

200p  0.996 0.908 0.628 0.345 0.241 0.086 
Out-of-control 

0.25d

0.50d

 24.827 49.888 101.704 198.155 271.731 607.465 
 14.598 24.288 40.284 66.433 86.364 172.486 

0.75d  9.417 14.244 21.664 31.458 37.441 57.463 

1.00d

1.50d

2.00d

 6.814 9.880 14.420 20.115 23.661 33.868 
 4.256 5.882 8.163 10.909 12.495 17.081 
 3.041 4.083 5.487 7.138 8.072 10.692 

3.00d

5.00d

 1.844 2.368 3.063 3.886 4.346 5.573 
 1.070 1.157 1.333 1.594 1.742 3.186 

 

5. A Practical Example 

In this section, the adaptive CUSCORE is illustrated using an example discussed in 

Hawkins [5]. Two laboratories carry out routine indirect (instrumental) assays for precious 

metals of batches of a feedstock. A portion of a reference material is taken and assayed 

alongside the unknown material coming from a new batch in order to detect changes in the 

level and/or variability of  its assays. 

In the following we illustrate the application of the ACUSCORE to data from the first 

laboratory.  

The original, x nd transformed, tQ  surements are plotted in Figure 3. According 

to Hawkins [5], there is an upward mean change approximately after the 15th observations. 

To detect this shift, we use a ACUSCORE control chart setting, as recommended, 0.15

 a meat

� �  

and 3.� �  Furt ill ass hat an in-control ARL  equal 100 is desired; he , 

using Table 3, we set 4.196.h �  The control statis L
tC  and ,U

tAC  along  the 

l limits, are plotted in Figure 4. Details of  the computation are listed in Table 4. Note 

her, we w ume t nce

tics A  with

contro
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that starting from 16, U
tt AC�  increases a  is signaled at 33.tnd an alarm �  Since 15t �  is 

 instant e such that 0U
tACthe last  of tim � , the scheme su at a mean shift occurs at or 

near 16.t �  

ggests th

 

    
Figure 3. Laboratory data (left) and related  statistics (right). tQ

 

 
Figure 4. ACUSCORE control statistics for the laboratory data. 

 

6. Comparison with Other Control Charts 

To illustrate the advantages of the ACUSCORE control scheme, we compare its 

sensitivity to that of two traditional -charts which neglect the dynamic pattern of  the mean 

change, such as the CUSUM and EWMA control charts of t  given by (4) and (5), 

respectively. Comparisons are shown for some of the most commonly used values of the 

design constants  and 

Q

k .

Q

�  
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The three control schemes exhibit a different tendency to signal early false alarms. Thus, 
in order to make a fair comparison between the corresponding detection powers, decision 

intervals of (4), (5) and (8) are determined so that the probability to give a false alarm before 
�  is equal for the three control charts. In particular, the values of h  are here obtained so that 
this probability is equal to that of a Shewhart chart with known �  and 

2�  and standard 

3�  control limits. For two values of the time of  the shift ( 26� �  and 51), Table 5 lists the 
expected delays (9) for the compared charts. In general, it is found that the ACUSCORE 

performs much better than the other two charts for detecting small mean shifts whereas the 
behavior of the three control schemes is substantially equivalent for both intermediate and 

large shifts. It should also be noted that, although the expected delay in detecting a change 
decreases with the shift time ,�  throughout the three charts, the out-of-control performances 

of the CUSUM and EWMA charts seem to be more strongly depending on the shift 

occurrence time than the ACUSCORE chart when shifts are both small and large. In addition, 
observe that results concerning the CUSUM chart are consistent with those shown by Zantek 
[26] who found that the best performance of the self-starting CUSUM may be obtained 

choosing the reference value in the interval [0.25, 0.35]. 

 

Table 4. Data and control statistics computation. 

 tx  tQ  tm  2
ts  L

tAC  U
tAC  

1  0.82  0.00  0.00 0.00  0.00 0.00 
2  0.40  0.00  0.61 0.09  0.00 0.00 
3 2.02�  1.71�  0.27�  2.35 0.41�  0.00 
4 0.02�   0.12 0.20�  1.58 0.36�  0.00 
5 2.18�  1.14�  0.60�  1.97 0.69�  0.00 
6 0.64�  0.02�  0.61�  1.57 0.65�  0.00 
7 0.39�   0.15 0.58�  1.32 0.59�  0.01 
8 0.51�   0.05 0.57�  1.13 0.57�  0.00 
9  1.17  1.38 0.37�  1.32 0.50�  0.07 
10  0.49  0.68 0.29�  1.25 0.39�  0.16 
11 1.77�  1.18�  0.42�  1.33 0.45�  0.09 
12 0.64�  0.18�  0.44�  1.21 0.46�  0.08 
13 2.30�  1.50�  0.58�  1.37 0.85�  0.00 
14 1.55�  0.77�  0.65�  1.34 1.06�  0.00 
15 0.90�  0.20�  0.67�  1.24 1.07�  0.00 
16  0.03  0.59 0.63�  1.19 0.94�  0.10 
17  0.50  0.97 0.56�  1.19 0.92�  0.12 
18  0.60  1.00 0.50�  1.20 0.78�  0.24 
19 0.65�  0.14�  0.50�  1.13 0.78�  0.22 
20  0.19  0.62 0.47�  1.10 0.66�  0.32 
21 0.38�   0.08 0.46�  1.04 0.64�  0.32 
22 0.72�  0.24�  0.48�  0.99 0.66�  0.29 
23 0.21�   0.26 0.46�  0.95 0.62�  0.31 
24 0.50�  0.04�  0.47�  0.91 0.62�  0.30 
25  0.95  1.41 0.41�  0.95 0.16�  0.67 
26  1.59  1.91 0.33�  1.07  0.00 1.56 
27  0.68  0.94 0.29�  1.07  0.00 1.94 
28 0.34�  0.04�  0.30�  1.03  0.00 1.79 
29  0.30  0.57 0.28�  1.00  0.00 1.95 
30  2.23  2.32 0.19�  1.18  0.00 3.47 
31 0.75�  0.50�  0.21�  1.15 0.12�  3.00 
32  1.39  1.43 0.16�  1.19  0.00 3.77 
33  1.01  1.04 0.12�  1.19  0.00 4.27 



An Enhanced Control Chart for Start-Up Processes and Short Runs                             199 

Table 5. Expected delays in detecting a mean shift occurring at observation .�  Estimates are 
based on 100000 Monte Carlo replications.   

Parameters Standardized shift ( )	  

�  �  �  k  h  0.25 0.5 0.75 1 1.5 2 3 4 5 6 

Adaptive CUSCORE 

26 0.15 3  4.06 60.19 34.11 19.17 12.60 7.21 4.92 2.85 1.84 1.31 1.08 

 CUSUM  

   0.30  6.16 171.52 103.05 44.06 17.31 6.70 4.62 3.06 2.40 2.03 1.82 

   0.50 4.47 245.90 186.44 110.73 48.30 7.88 4.24 2.61 2.02 1.73 1.50 

   1.00 2.45 320.31 304.06 279.07 239.86 121.95 30.41 2.21 1.50 1.18 1.04 

EWMA 

 0.05    2.21 149.78 7.59 32.33 15.69 7.99  5.73 3.91 3.12 2.67 2.38  

 0.15    2.69 244.86 170.45 94.82 41.98 8.71 4.77 2.97 2.29 1.93 1.70 

 0.40   2.91 310.41 282.45 244.76 195.11 101.95 38.35 3.38 1.69 1.35 1.17  

Adaptive CUSCORE 

51 0.15  3  5.24 75.39  32.58 18.12 12.32 7.13 4.87 2.76 1.74 1.25 1.06 

CUSUM 

   0.30 6.64 203.80 83.49 24.04 11.53  6.26 4.46 2.97 2.31 1.94 1.76 

   0.50 4.63 268.99  157.18  57.72 17.40 5.79 3.86 2.46 1.91 1.62  1.35  

   1.00 2.49  335.36 295.42 229.63 151.44 29.06 4.25 1.96 1.38 1.11 1.02 

EWMA 

 0.05    2.37 176.65 59.98 21.33 12.61 7.42 5.42 3.68 2.89 2.45 2.16 

 0.15    2.75 259.06 133.78 46.36 16.13 6.23 4.21 2.70 2.08 1.75 1.54 

 0.40    2.94 324.38 263.98 184.33 110.38 22.42 5.15 2.13 1.54 1.25 1.09 

 

To better investigate the performance of the ACUSCORE over the other two charts, 

we also compared the ACUSCORE cumulative distribution function with those of the 

CUSUM and EWMA charts designed to have the best detection power, that is a CUSUM 

with 0.30k �  and an EWMA with 0.05.� �  Figures 5-7 confirm that, for a small value of 

the mean shift, the ACUSCORE exhibits a clear advantage over the other two charts in 

terms of detection power. On the other hand, the ACUSCORE reaction to a relatively 

larger value of the mean shift is at least comparable to that of the EWMA and CUSUM 

control charts. 

 

7. Conclusions 

An enhanced CUSCORE control chart is here proposed to monitor the mean of a 

sequence of data in those situations where either no observation or limited amounts of data 

are available prior to the start of process monitoring. In particular, we introduce and discuss a 

self-starting CUSCORE chart, based on the Q  statistics, whose reference value is updated 

using an adaptive EWMA. Our results show that, in the presence of  small mean shifts, the 

ACUSCORE is able to outperform those control charts designed to be optimal for detecting a 

constant mean shift. Future research will concern the generalization of the proposed 

procedure to the multivariate framework. 
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Figure 5. Cumulative distribution function of  the run length when a mean shift 
of size 0.5�  occurs at 26.� �  The three curves correspond to the following 

control charts: (i) ACUSCORE with 0.15� �  and 3� �  (solid line); (ii) 

CUSUM with 0.30k �  (dashed line); (iii) EWMA with 0.05� �  (dotted 

line). 

 

 

 
Figure 6. Cumulative distribution function of  the run length when a 
mean shift of  size 1�  occurs at 26.� �  Legend: see Figure 5.  
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Figure 7. Cumulative distribution function of  the run length when a 
mean shift of  size 3�  occurs at 26.� �  Legend: see Figure 5.  
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