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______________________________________________________________________ 

Abstract: In many applications the shift directions of  observation vectors are limited, which allows 

focusing detection power on a limited subspace with improved sensitivity. This paper develops a new 

multivariate nonparametric statistical process control chart for monitoring location parameters, which is 

based on integrating a directional multivariate spatial-sign test and exponentially weighted moving 

average control scheme to on-line sequential monitoring. The computation speed of  the proposed scheme 

is fast with a similar computation effort to its parametric counterpart, regression-adjusted control charts. 

It has a distribution-free property over a broad class of  population models, which implies the in-control 

run length distribution can attain or is always very close to the nominal one when using the same control 

limit designed for a multivariate normal distribution. This proposed control chart possesses some other 

appealing features. Simulation studies show that it is efficient in detecting small or moderate shifts, when 

the process distribution is heavy-tailed or skewed. Finally, a specific SPC example, multistage process 

control, is also presented to demonstrate the effectiveness of  our method. 

Keywords: Distribution-free, multivariate regression-adjusted chart, nonparametric procedure, robustness, 

spatial sign test, statistical process control. 

______________________________________________________________________ 

1. Introduction 

tatistical process control (SPC) has been widely used to monitor various industrial 

processes. In many applications, the quality of a product is often related to several 

correlated quality characteristics. In modern SPC, it becomes common to monitor several 

quality characteristics of a process simultaneously in the areas but not limited to signal 

processing, network security, image processing, genetics, stock marketing and other 

economic problems. This is called multivariate statistical process control (MSPC) in the 

literature, which is also the focus of this paper. See [2, 31, 37, 40] for discussion. With newly 

developed advancement in data acquisition systems and computing technologies, MSPC can 

and should play a greater role in monitoring and improving manufacturing and service 

processes. 

One of the tasks of MSPC is to detect the change in a multivariate process location vector 

of parameters   (mean, median or some percentile of the distribution) as quickly as possible. 

To be more specific, it is usually assumed that there are 0m  independent and identically 

distributed (i.i.d.) historical (reference) observations, 
0 1 0

p
m R    x x , for some integer, 

1p  , and the i th future observation, ix , is collected over time from the following 

multivariate change-point model  
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where   is the unknown change point and 0 1  . Methods for accomplishing these tasks 

are usually derived under the assumption that the observed measurement vectors ix  are 

distributed 0( )pN    for 1 2i     , and 1( )pN    for 1i n    , with 0  and   

known. Throughout we take 0 0   without loss of generality. Then a portmanteau test for 

detecting a mean shift is based on testing 0 0H    versus 1 0H   , using the likelihood 

ratio test (LRT) statistic 1

1 2T

i i i 



  x x x . This procedure assumes that the covariance 

matrix does not change. Replacing   with some sample covariance matrix, S , results in the 

Hotelling’s 
2T statistic. Based on such test statistics, several MSPC control charts have been 

proposed, in the framework of cumulative sum (CUSUM) or exponentially weighted moving 

average (EWMA). Most charting statistics take quadratic forms of the related test statistics; 

for instance, [6, 11, 19, 25-26, 38].  

MSPC control charts with quadratic charting statistics are powerful when one is 

interested in detecting shifts that occur in majority components of  . In practice, however, 

shifts often occur in only a few of the mean components. In such cases, more powerful control 

charts are possible. Hawkins [8-9] suggested a multivariate control chart, the regression- 

adjusted scheme, and showed that this chart was more effective than the one based on 
2T when the potential shift occurs in only a few measurement components. Zou and Qiu [41] 

showed that the regression-adjusted chart is essentially equivalent to the chart based on the 

LRT test for the case when only one measurement component shifts but the component index 

is unknown (see Section 2 for a related discussion). Hereafter, the charting techniques based 

on integrating several known directions will generically be termed as directional control 

charts. Besides general applications in MSPC, the idea of directional control charts has been 

applied to several SPC fields; see [43, 45] for the monitoring of multistage processes, [14] for 

change detection in autocorrelated processes and [35] for multi-sensor change-point detection 

problem.  

All these works are based on an assumption that the process distribution is completely 

known with multivariate normal distribution. However, it is well recognized that, in many 

applications, the underlying process distribution is unknown and not multivariate normal, so 

that statistical properties of these control charts, designed to perform best under the normal 

distribution, could potentially be (highly) affected. The problem of performance deterioration 

due to the non-normality is severe with small samples, particularly individual observation 

cases (c.f., [22]) since the cental limit theorem is no longer (approximately) valid. 

Nonparametric or robust charts would be useful in such situations. In the last several years, 

univariate nonparametric control charts have attracted much attention from researchers and a 

nice overview of this topic was presented by [4]. Some effort has been devoted to multivariate 

nonparametric control schemes, such as the control schemes based on data-depth ([18]), 

support vector machines ([34]), antiranks ([27]) or bivariate sign ([7]). Recently, Zou and 

Tsung [44] developed a multivariate control chart, multivariate sign EWMA (MSEWMA), 

based on integrating spatial-sign invariant test of [28] and EWMA control scheme. Their 

method can be viewed as a nonparametric 
2T -type charting technique (c.f., Section 2).  

Motivated by [44] use of spatial sign, this paper develops a new multivariate SPC 

methodology for monitoring location parameters. This methodology adapts directional 

spatial-sign test to on-line sequential monitoring by incorporating the EWMA scheme. Our 

proposed new chart has the following positive features: (i) It has distribution-free property 

over a broad class of population models in the sense that the IC run length distribution can 

attain or is always very close to the nominal one when using the same control limit designed 

for a multivariate normal distribution; (ii) Its computation speed is fast with a similar 

computation effort to the regression-adjusted chart; (iii) It can be easily designed and 
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constructed because only the multivariate median and the transformation matrix need to be 

specified from the reference data set before monitoring; (iv) Compared with Hawkins’s 

regression-adjusted chart, it is efficient in detecting small or moderate process shifts when the 

process distribution is heavy-tailed or skewed. In comparison with MSEWMA, the proposed 

scheme is more effective when potential changes occur in only very few components of a 

high-dimensional monitoring system. The rest of this paper is organized as follows: our 

proposed methodology is described in detail in Section 2. Its numerical performance is 

thoroughly investigated in Section 3. In Section 4, we demonstrate the method using an 

example from manufacturing processes. Conclusions and extensions are given in Section 5.  

2. Methodology 

2.1. Multivariate Directional Tests Using Spatial-Sign 

The monitoring problem is closely related to parametric and nonparametric statistical 

tests of hypotheses for the one-sample location problem in the context of multivariate 

statistical analysis. Hence, to facilitate the derivation of the proposed charting statistic, we 

start by assuming that 1 n x x  are i.i.d from ( )F x , where ( )F   represents a continuous 

p -dimensional distribution “located" at the vector  . We want to test the null hypothesis, 

0H , that 0   against 1H  that 0  . Without loss of generality, we assume that 0 0  . 

Otherwise, we substitute 0i x  in place of ix .  

In creating tests for this problem, different levels of assumption have been proposed for 

the distribution of the ix ’s. Under the multinormality assumption, the classical parametric 

test, the generalized likelihood ratio test (GLRT; [1]) for testing if the mean 0   results in 

the Hotelling’s 
2T statistic as mentioned in Section 1. Sometimes we do have some 

knowledge about the alternative hypothesis, such as its specific direction,   d , where the 

direction, d , is a known vector but the scale,  , is an unknown constant. In such a case, the 

hypothesis test would be 0 0H    versus 1H    d  For this problem, the likelihood 

ratio test is considered to be the uniformly most powerful unbiased test ([17]), which assumes 

that the underlying population is p -variate normal. It rejects 0H  in favor of 1H  if 

1

21 2( )TV n 



  d d x d  is large enough.  

Furthermore, in a more practical situation, we may consider the following hypothesis 

test,  

 0 1 1 20 rH H or or             d d d                       (2) 

where the alternative hypothesis has several possible directions, …1 2 r  d d d , with known 

vectors. To consider the case r  is finite, the generalized likelihood ratio test (under normality) 

will reject the null hypothesis if the test statistic,  

 
1

max
ii r

V
  

d
                                             (3) 

is larger than a pre-specified critical value. The efficiency of this test can be expected to be 

superior to 
2T -type tests due to its more sharply focused rejection region. Zou et al. [45] 

establish some good asymptotic superiority of the directional GLRT over the invariant GLRT 

under certain conditions. It can be easily checked that 
i

V d ’s are just the regression-adjusted 

variables defined in [8], where id  has a single nonzero component 1 located at the i th 

position. Hawkins [8] suggested an MSPC control chart using …1max
ii p V   d  as a charting 

statistic.  
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As is well known, the definitions of univariate signs and ranks are based on the ordering 

of the data. However, a natural ordering of the data points does not exist in the multivariate 

case. The multivariate concepts of a spatial sign and a spatial rank have been developed 

accordingly in the literature, see a recent book [23] for a comprehensive introduction. Some 

key points are given in the following. In one dimension, the sign of an observation is basically 

its direction ( 1  or 1 ) from the origin. In higher dimensions, in this spirit, the spatial sign 

function is defined as  

 
1 0

( )
0 0

U
     
  

x x x
x

x
   

where 
1 2( )T  x x x  is the Euclidean length of the vector x . The function value is just a 

direction (a point in the unit p -sphere) whenever 0x . Applying the spatial sign function 

to the empirical distribution given by data points 1 nx x  produces the so-called spatial sign 

vectors ( )i iUu x . Clearly, in the univariate case, it reduces to the classical sign statistic 

sgn( )ix , where sgn( )  is the sign function.  

Additional published work has investigated location testing problem in the 

nonparametric setting in the literature. A nice overview on this topic and related references 

can be found in [24]. Specially, Randles [28] develops a simple multivariate sign test based on 

the transformation proposed by Tyler [36]. Tyler’s transformation, in a population version 

0 , is defined by the solutions of the following equation:  

 
1

( ) ( )T
pE U U

p
     x x I                                 (4) 

where pI  denotes the p p  identity matrix. Such 0 0
T  W  is unique as Tyler showed. 

Thus, 0  is unique if we define it is a p p  upper triangular positive-definite matrix with a 

one in the upper left-hand element. Randles [28] proposes to use 
2

IQ np v  as an invariant 

test statistic and 0H  is rejected for large values, where 0( )i iU v x  and 
1

1
n
i in  v v . 

Intuitively speaking, the equation (4) aims to make the second moment of the transformed 

random vector ix  match that of elliptical distributions. To be more specific, as well known, 

under elliptical distributions of ix  and assuming ( )i pCov x I  where   indicates that the 

vectors are the same except for a constant, [ ( )] 0iE U x  and 
1[ ( ) ( )]T

i i pE U U px x I . The 

equation in (4) is to transform ix  to 0 i x  so that the corresponding spatial-sign vector 

0( )iU  x  would perform like a uniform sign vector under null hypotheses (from the 

viewpoint of the first two moments).  

In light of  (3), we will propose a directional sign test statistic which allows focusing 

detection power on a limited subspace with improved sensitivity to the invariant sign test. 

To this end, we firstly state a useful result as follows.  

Result 1. Suppose the underlying distribution is elliptically symmetric with density function 
1
2

1

2

0( ) ( )pf k h  



    x x . We have 0( )iE v .  

By [36], we know 
1 W . Then, this proposition can be readily seen by using 

integration by parts.  

Consider the hypothesis test 0 0H    versus 1H    d . By Result 1, 1
1

n
i in
 v  is 

roughly an estimate of shift direction 0   Wd d . By mimicking the directional GLRT, we 

naturally use  

22

0( )T T

dQ np  
W

d v d                             (5) 
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as a directional test statistic. Actually, the 
2
dQ  can be regarded as a score test statistic with a 

specific loss function. Consider the following 1L  distance  

 
1

( )
n

i
i

D  


     Wx d  

Clearly, 1 ( )Tn
i i iD             Wd W x d x d  As a consequence, the score statistic is 

0 0( ) T TS D n





     d v , where we assume 0 0   again. By noting 
1Cov( ) ( )np v , we 

can obtain the test statistic dQ  after normalizing the score statistic S . In a similar spirit, we 

can view the invariant test statistic IQ  proposed by [28] as a Wald-type statistic based on the 

1L  loss function ( )D  .  

With the help of this heuristic derivation, the difference and connection between dQ  

and its parametric counterpart, the regression adjusted statistic dV , would be more apparent. 

As well known, dV  is a score test statistic, under multivariate normality assumption or 

equivalently under the 2L  norm 1

2
1

n
i i   
   x d . In contrast, dQ  is a spatial-sign version 

of score test statistic in the sense that the 1L  norm is used instead. Now, consider the testing 

problem (3). Under 0H , 2
1j

d

dQ   as n  . Hence, like the test in (4), it is natural to 

combine all the r  score test statistics 
jdQ  through taking their maximum, say,  

 
1
max

jr d
j r

M Q
 

                                          (6) 

Corresponding, 1
ˆ argmax

jj r dk Q   is an ideal estimate of the index of true shift direction. 

Similar to their univariate counterparts, the spatial signs based methods are expected and 

have been shown to be quite robust for various distributions since those methods use the 

direction of observations from the origin rather than the original magnitudes of observations 

([23]). Therefore, we are interested in tackling the monitoring problem (1) using the test 

statistics rM .  

2.2. A Directional Multivariate Sign EWMA Control Chart 

Firstly, we elaborate on the individual observation model, which is an advantage of our 

proposed control scheme because it is able to handle the case when the sample size is one. The 

extension to the group case is presented at the end of this subsection. Although the 

monitoring problem (1) is closely related to the standard hypothesis tests in Section 2.1, they 

are completely different and distinguished by the fundamental difference between on-line and 

off-line decision issues (c.f., [37]).  

Following the idea of [44], the proposed control scheme contains two steps. The first step 

is to establish the baseline based on the reference sample, that is to say, to extract information 

from the sample of size 0m  by obtaining a multivariate center 0 , and a transformation 

matrix, 0 . This step is similar to that of constructing traditional control charts in which 0  

and 0  are estimated from the historical data before monitoring. We recommend using 

[12]’s affine equivariant multivariate median which serves sign-based testing purpose and the 

by-product of finding such median is just the desired transformation matrix ([44]). The affine 

equivariant multivariate median, 0 , and the associated transformation matrix, 0 , are 

defined by the solutions of the following equations:  

 1[ ( ( ))] 0 [ ( ( )) ( ( ))]T
i i i pE U E U U p            x x x I              (7) 

and the corresponding sample version, 00
ˆ ˆ( )  , is defined by the solution of the sample 

equations based on 0m  historical observations,  
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0 0

0 0
1

1 10 0

1 1
( ( )) 0 ( ( )) ( ( ))T

i i i p
i m i m

U U U p
m m

   

   
          x x x I        (8) 

where   is a p p  upper triangular positive-definite matrix with a one in the upper 

left-hand element. In a multivariate normal distribution with mean vector 0  and 

variance-covariance matrix 0 , it is easily seen that 0 0   and 
1 1

0 0 0 0( )T p tr      . In 

what follows, we use 0 0( )   rather than 00
ˆ ˆ( )   unless indicated otherwise, as an SPC 

Phase II convention. It should be emphasized that the simultaneous equations (7) aim to 

make the first two moments of the transformed random vector ix  match those of elliptical 

distributions. In other words, one transforms ix  to 0 0( )i  x  so that the corresponding 

spatial-sign vector 0 0( ( ))iU  x  would perform like a uniform sign vector (from the 

viewpoint of the first two moments). It does not use its distance from the origin.  

In light of (6), after 0 0( )   is specified or estimated, for on-line collected observations 

…   1 2i ix , the second step is to standardize and transform them to obtain the unit vector 

iv , i.e., the multivariate spatial sign, through 0 0( ( ))i iU   v x . With this choice, the unit 

vectors of the transformed data have a variance-covariance structure like that of a random 

variable that is uniform on the unit p -sphere when the process is IC. Then, we define an 

EWMA sequence based on spatial-sign vectors with current individual observation as  

 1(1 )i i i    w w v                                        (9) 

where the initial vector, 0w , is usually taken to be 0( )E w  and thus should be 0  due to our 

definition in (7) and 0 1   is the smoothing constant. Finally, similar to rM , the 

proposed control chart issues a signal if  

 
0 0

2 2
0

1

(2 )
max( ) T

T T
i j i j

j r

p
M L


   


      d w d                  (10) 

where 0L   is a control limit chosen to achieve a specific IC Average Run Length (ARL) 

( 0ARL ). Note that the weighted average (9) reflects the relevance of the data: the more recent 

observations are more informative for detecting the change and thus getting the larger weights. 

Hereafter, this chart is referred to as the multivariate directional sign EWMA (MDSE) chart.  

After the MDSE chart gives an OC signal at the k th observation, we can use 
2
iw  

directly to implement a diagnostic procedure. Namely, we can find  
  

 
0 0

2 2
0

1
arg max( ) T

T T
j i j

j r
 

  
    d w d                            (11) 

to specify the shifted component. As a side note, when a group of g observations, say 

…1{ }i ig x x  are taken sequentially from the process at each time point, the MDSE chart can 

be readily defined in a similar way to (10) by using 
1

1 0 0( ( ))g
j ijg U 
   x  instead of iv  in 

(9).  

2.3. Design and Implementation 

Estimating 0 0( )   involves iterative routines for MDSE and it is a little more 

complicated than estimating 0 0( )   for traditional parametric schemes. However, by using 

some efficient algorithms ([12]), the convergence of  0 0( )   from the historical data with 

any practical p  and 0m  is guaranteed and is usually quite fast. The detailed algorithm is 

provided in the Appendix of  [44]. Please also refer to that paper for some detailed 

discussions on computation.  
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As we will see in Section 3, our proposed MDSE chart is robust under IC with 

appropriate weights, (0 0 2]   , except for very skewed distributions and high dimensional 

cases. In general, a smaller   leads to a quicker detection of smaller shifts (c.f., e.g., [20]), 

which is still valid with MDSE. Based on our simulation results, we suggest choosing 

(0 025 0 2]     in practice, and using (0 025 0 1]     when there is evidence that the 

underlying distribution is very skewed. In practice, one could get a rough picture about the 

departure of the underlying distribution from normality by looking at its marginal 

distributions. Some graphical tools like histogram or QQ-plot are usually helpful. Some 

multivariate normality tests can be used as well, such as Mardia’s test (c.f., [21]). Very small 

p -values would indicate that the underlying distribution may be far away from multivariate 

normal distribution. Some engineering experience or prior knowledge about the process 

should also be taken into consideration.  

In what follows, we summarize two useful properties of the MDSE chart which facilitate 

its design. The proof of these two results are straightforward based on the proof of 

Propositions 1 and 2 in [44] and omitted here.  

Result 2. When the process is IC, the MDSE chart is location-invariant.  

The invariant property here is in the sense that for any constant vector b , the run-length 

distribution of the MDSE stays the same if the IC observations are distributed as x b . This 

property is intuitively appealing since it ensures that the performance of MDSE is the same 

for any initial location.  

Result 3. Given r  fixed directions jd ’s, the MDSE chart is distribution free for the class of 

distributions with elliptical directions in the sense that its IC run length distribution depends 

only on 0  rather than the distribution.  

In the class of distributions with elliptical directions, random variables are generated via 

i i irx Du , where the iu ’s are i.i.d. uniform on the unit p  sphere, D  is a p p  

nonsingular matrix, and the ir ’s are positive scalars. The elliptical directions family contains 

all the elliptically symmetric distributions, such as multinormal and multivariate t  

distributions and certain skewed distributions. This result is particularly useful in determining 

the control limit, L , because, for any continuous process distribution with elliptical 

directions, it is determined by 0  as achieving the desired IC run-length distribution. In 

other words, the control limits for distributions with elliptical directions are the same if their 

0 ’s are the same. Hence, we can use the multivariate normal distribution with given 0  

(obtained through (8)) to find the control limits. The dependence of L  on 0  analogously 

raises when designing regression-adjusted control charts whose control limits depend on   

even for multinormal distributions ([8]). This dependence is a particular disadvantage of 

directional charts relative to invariant charts because we cannot tabulate the control limits for 

general use. For the same reason, the Markov chain method for ARL approximation 

developed by [44] is not feasible for MDSE, and thus simulation procedures are necessary. 

Certainly, this would not produce any difficulty in constructing the MDSE chart by virtue of 

the massive computing and data storage capabilities of modern computers. Since the 

searching procedure is a one-time computation before the Phase II online process monitoring, 

it is convenient to accomplish. Fortran code for implementing the proposed procedure is 

available from the authors upon request.  

As a Phase II SPC convention, it is usually assumed that the IC parameters are known or, 

equivalently, that they are estimated from a sufficiently large reference dataset. It should be 

pointed out that when 0m  is not large (say, 0 1000m  ; see Table 3 in Section 3), there would 

be considerable uncertainty in the parameter estimation, which in turn would distort the IC 



122                                                             Zi, Zou, Zhou and Wang 

run length distribution of the MDSE control chart. From the results, we can see that, as long 

as 0 2000m  , the 0ARL  values are quite stable in various cases. Therefore, we suggest 

collecting at least 2000 IC observations before Phase II process monitoring. To deal with the 

situation when a sufficiently large reference data set is unavailable, one possible method is to 

adjust the control limit of the chart properly by simulation to obtain the desired 0ARL  (cf., 

[16]). That is, we can generate a pseudo reference sample of size 0m  and then obtain the 

corresponding run-length with a given control limit. Repeat this procedure to approximate 

the 0ARL  and then use the bisection search method to find the control limit. Of course, the 

detection ability would still be severely compromised. This is essentially analogous to the 

estimated parameters problem in the context of parametric control charts (see [13] for an 

overview).  

3. Numerical Performance 

We present some simulation results in this section regarding the numerical performance 

of the proposed MDSE chart and compare it with its parametric counterpart, REWMA, 

originally proposed by [8] and adapted by [41]. To be more specific, the chart statistic of 

REWMA is given by  

 
1

0

21 2
0

1

(2 )
max ( )T

ij j
j r


 

 
 
 

     


  d dz


 

where 1 0(1 ) ( )i i i     z z x . In addition, the invariant control chart, MSEWMA, 

proposed by [44] is also included in this study for comparison use. The MEWMA chart ([19]) 

is not considered here for the following reason: its pros and cons relative to REWMA and 

MSEWMA have been addressed by [41] and [44] in detail, respectively. Hence, based on the 

results shown below, we can easily get a rough picture of the comparison between MDSE and 

MEWMA. At the end of this section, we will provide some general guideline for engineers to 

choose an appropriate chart according to their major concern.  

We start by assuming that 0m  is sufficiently large, in this case 30,000. In all the 

underlying distributions considered, we first generate 0m  i.i.d. samples and then estimate 

0 0( )   and 0 0( )  . Control limits of the MDSE and REWMA charts are determined by 

simulations to attain the nominal 0ARL  under the standard multivariate normal 

distribution, while the Markov chain approximation is used for MSEWMA and MEWMA 

([29, 44]). Since the zero-state and steady-state ARL (SSARL) comparison results are similar, 

only the SSARLs are provided. To evaluate the SSARL behavior of each chart, any series in 

which a signal occurs before the ( 1)  th observation is discarded (c.f., [10]). We only 

present the results when 0ARL =200 and 50   for illustration because similar conclusions 

hold for other cases. All the ARL results in this section are obtained from 40,000 replications. 

Following the robustness analysis in [32]), we consider the following distributions: (i) 

multivariate normal, denoted as pN ; (ii) multivariate t  with   degrees of freedom, 

denoted as pt  ; (iii) multivariate gamma with shape parameter   and scale parameter 1, 

denoted as p  . Details on the multivariate t  and gamma distributions can be found in the 

Appendix of [32]. In addition, the following distribution is involved in the comparison: (iv) in 

each observed vector, the first [ 2]p   measurement components are i.i.d. t  distributed with 

  degrees of freedom and the other [ 2]p p   measurement components are i.i.d. 

chi-square distributed with [ 2] 1    degrees of freedom. The reason for considering this 

distribution is that unlike (i)-(iii), its marginal distributions are not all the same.  
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Table 1. 0ARL  values of  MDSE and REWMA charts under scenarios (ii)-(iv) when 
10p   or 20. 

  MDSE REWMA 

  10p    20p   10p    20p   

 \   0 1   0 05  0 025   0 1 0 05 0 025 0 1  0 05 0 025   0 1  0 05  0 025
 3  201  200  198   200 202 200 103 153 209   86.0 137 197  
 4  200  200  201   201 199 201 105 159 190   90.1 139 182  
 5  202  201  199   200 199 201 119 162 192   100 146 185  

(ii) 7  199  201  200   200 201 200 139 175 192   123 164 193  
 10  199  200  201   201 200 199 159 184 197   147 177 195  
 15  200  200  200   201 202 200 171 191 196   163 184 200  
 1  110  167  195   64.7 113 166 52.2 96.4 155   36.3 72.1 126  
 2  139  183  197   87.7 138 183 73.2 125 181   52.0 98.6 151  
 3  151  187  199   105 153 186 87.5 142 180   65.7 114 165  

(iii) 5  167  192  200   126 168 193 107 158 184   83.7 137 176  
 10  182  197  200   153 183 200 138 176 192   117 163 189  
 15  188  197  200   167 190 201 150 187 195   134 173 192  
 3  131  168  189   83.0 135 172 61.2 110 160   43.1 87.1 126  
 4  140  169  181   102 143 172 81.2 130 172   58.3 101 153  
 5  141  168  184   116 144 173 89.6 140 178   67.3 104 161  

(iv) 7  148  170  189   134 150 177 108 156 185   84.0 115 177  
 10  161  171  190   150 161 181 128 166 190   106 130 183  
 15  165  182  192   160 168 185 143 180 193   121 141 185  

 

3.1. Comparisons Between MDSE and REWMA 
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Figure 1. OC ARL comparison of  the MDSE and REWMA charts using 

0 025    and 0.1 with a shift in the first component and 10p   under: (a) 
multivariate normal distribution; (b) multivariate t  distribution; (c) multivariate 
Gamma distribution; (d) multivariate mixed-components distributions. 
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In this subsection, the MDSE and REWMA charts are compared in terms of IC and OC 

ARLs. The number and variety of covariance matrices and shift directions are too large to 

allow a comprehensive, all-encompassing comparison. Our goal is to show the effectiveness, 

robustness and sensitivity of the MDSE chart, and thus we only choose certain representative 

models for illustration. Specifically, for the first three distribution cases, the covariance matrix 

0 ( )ij   is chosen to be 1ii   and 0 5 i j
ij     , for 1 2i j p     . As both the MDSE 

and REWMA are directional charts, for brevity, a shift of size   in only the first component 

is used, i.e., 1i x e  with 1 (1 0 0)T   e  . We conducted some other simulations with 

various shift types and the results show that the general conclusions given below do not 

change.  

We firstly evaluate the 0ARL  values under distribution scenarios (ii)-(iv). The control 

limits of both charts are found by simulation under normality assumption. The 0ARL s of 

MDSE and REWMA under various cases with different combinations of dimensionality,   

and degrees of freedom   are tabulated in Table 1. From this table, we can see that the 

MDSE is more robust than REWMA to the heavy-tailed and skewed distributions even when 

the distribution is not in the class of elliptical direction such as the distributions (iii) and (iv). 

Its 0ARL  is always not far away from the nominal one even for the extremely non-normal 

and high-dimensional distributions. The REWMA usually has a larger bias in the 0ARL  

and the degradation becomes more pronounced as the dimensionality increases.  
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Figure 2. OC ARL comparison of  the MDSE and REWMA charts using 
0 025    and 0.1 with a shift in the first component and 20p   under: (a) 

multivariate normal distribution; (b) multivariate t  distribution; (c) multivariate 
Gamma distribution; (d) multivariate mixed-components distributions. 
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Next, we turn to Figures 1 and 2, which give OC ARL values (in log-scale) when 

10p   and 20p  , respectively. The   values in the scenarios (ii)-(iv) are chosen as 4, 2 

and 4, respectively. To appreciate the pros and cons of  MDSE with respect to REWMA 

under OC models, we consider a bias-corrected OC ARL comparison in the sense that the 

control limits of  both charts are adjusted to make their IC ARLs equal to the nominal one. 

The corresponding ARL results with 0 1    and 0 025  are summarized in those two 

figures. Note that such charting schemes with adjustment are only for comparison use in 

our simulations but not applicable in practical applications since the error distribution is 

usually unknown as we claimed before.  

The results in the two figures are similar: On one hand, the MDSE chart is more 

efficient in detecting the small and moderate shifts than the REWMA chart in the sense 

that with the same   values, the OC ARLs of  the MDSE are generally smaller than those 

of  the REWMA in most of  cases. Even for normal distribution (the scenario (i)), the 

MDSE chart performs quite satisfactorily for small and moderate shifts and the difference 

between MDSE and REWMA is small, although the REWMA chart has superior 

efficiency as we would expect since the parametric hypothesis is the correct one in this case. 

Clearly, with an appropriate value of   , the MDSE chart is able to outperform the 

REWMA chart in detecting small and moderate shifts even when the elliptical assumption 

is not valid (in scenarios (iii) and (iv)), and in some cases the advantage is prominent 

especially when p  is large; On the other hand, the REWMA is more efficient in detecting 

large shifts, such as 3 0   . This is understandable because the MDSE, which is 

essentially based on signs rather than distances, shares a similar drawback as those sign- or 

rank-based charts for univariate processes. That is, even though the shift is quite large, the 

ranks of  the observations may not be able to grow larger.  

3.2. Comparisons Between MDSE and MSEWMA 
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Figure 3. OC ARL comparison of  the MDSE and MSEWMA charts using 
0 025    under 20p   scenario (ii) with: (a) shift in only the first component; 

(b) the first [ 2]p  components have a common shift size; (c) linearly increasing 
shifts in the first [ 2]p  components 

Although the major benefit of  MDSE is to be in the situation that the hypothesis (2) is 

correct and the distribution is far away from normal, it is also interest to compare the 

MDSE and MSEWMA charts which can provide better understanding of  the performance 

of  MDSE and the difference between directional and invariant charting schemes. As 

mentioned before, both the MSEWMA and MDSE charts are based on spatial-signs and 
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thus their difference lies in the shift pattern rather than the distribution. So, we only 

consider to use multivariate t  distribution (the scenario (ii)) for illustration. Because a 

similar conclusion holds for other cases, we only present the results with 0 025    and 

20p   for brevity. Figure 3 shows the OC ARL comparison between MDSE and 

MSEWMA under the 20 4t   distributions with the nominal 0ARL  is fixed as 200. As an 

illustration, three scenarios are considered: (1) shift in only the first component; (2) equal 

shift, i.e, the first ap  components have a common shift size  ; (3) linearly increasing 

allocation, say i i   for 1 ai p   . Note that the last two scenarios correspond to the 

situation the post-change distributions are misspecified for MDSE. To make the ARL 

performance comparable among the configurations of  various scenarios, we set 
2 2

1
ap

i i   .  

Figure 3 presents the log-ARL curves of  the MDSE and MSEWMA charts with ap  

being chosen as [ 2]p  . Clearly, MDSE is more effective than MSEWMA when potential 

changes occur in only one component as we assume in (2). On the other hand, MDSE 

would be outperformed by MSEWMA by a large margin, as when the change occurs in 

moderate or large number of  components as shown in Figure 3(b)-(c). These findings are 

consistent with the properties of  LRT or score tests with misspecified alternatives ([45]). 

We conducted other simulations with various correlation structures, p  and 0ARL , to see 

if  the above conclusions would change. These simulation results (not reported here but 

available from authors upon request) show that the conclusion on the performance of  

MDSE relative to MSEWMA and REWMA would generally hold for other choices of  p  

and 0ARL .  

3.3. Diagnostic Performance Analysis 

We now compare the proposed diagnostic procedure (11) with the diagnostic method 

using REWMA. Table 2 summarizes the simulation results under scenarios (i)-(iv) in which 

the parameters are chosen as the same as those in Figure 2. In this table, the observed 

frequencies that the diagnostic procedures identify shifted measurement components 

correctly are reported. Except for a very small shift, such as 0 25   , both estimating 

procedures perform quite well from the viewpoint of  correct probabilities. It can be easily 

observed that MDSE is more accurate than REWMA for the non-normal distributions as 

we would expect, especially when   is not large enough. After taking into account its 

computational effort, we think that the MDSE approach provides a reasonable diagnosis 

tool for MSPC. 

3.4. Effect of  0m  

Finally, we study the effect of  0m  on the performance of  MDSE and REWMA 

because in all the foregoing numerical analysis, it is assumed that the IC parameters are 

estimated from a sufficiently large reference data set (equivalently assume that the IC 

distribution is known). To this end, we use the multivariate normal and multivariate 

gamma distributions with two degrees of  freedom. Only the case 10p   and 0ARL =200 

is considered. Table 3 shows the IC ARL and standard deviation of  the run length (SDRL) 

values of  MDSE and REWMA when the IC parameters 0 0( )   for MDSE and 0 0( )   

for REWMA are computed from an IC data set with various historical sample sizes, 0m . 

From this table, it can be seen that (i) when 0m  is relatively small, the actual 0ARL  and 

SDRL values of  the two charts are both quite far away from the nominal level of  200; (ii) 

when 0m  increases, such biases decrease; (iii) the biases in 0ARL  of  MDSE are smaller 

than REWMA with the same   (by the results of  10 0(0 )N  ), although it appears that 

the chart with the smaller   has a little larger bias in 0ARL .  
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Table 2. Diagnosis comparison between MDSE and REWMA. 

 (i) (ii) 

 MDSE REWMA MDSE REWMA 

   0.1 0.025 0.1 0.025 0.1 0.025 0.1 0.025 

0.25  0.40  0.55  0.40 0.56 0.35 0.52  0.11  0.34  
0.50  0.78  0.80  0.79 0.80 0.77 0.79  0.34  0.69  
0.75  0.90  0.88  0.88 0.88 0.89 0.88  0.65  0.83  
1.00  0.94  0.91  0.93 0.91 0.94 0.92  0.82  0.87  
1.50  0.96  0.94  0.95 0.93 0.97 0.96  0.93  0.92  
2.00  0.98  0.95  0.96 0.94 0.98 0.97  0.96  0.95  
3.00  0.99  0.97  0.98 0.96 0.99 0.98  0.98  0.96  
4.00  0.99  0.98  0.98 0.97 1.00 0.99  0.98  0.98  
5.00  0.99  0.98  0.99 0.98 1.00 0.99  0.99  0.98  

 
(iii) (iv) 

 MDSE  REWMA  MDSE  REWMA   

   0.1 0.025 0.1 0.025 0.1 0.025 0.1 0.025 

0.25  0.37  0.26  0.57 0.52 0.14 0.10  0.35  0.29  
0.75  0.89  0.89  0.82 0.87 0.75 0.83  0.52  0.80  
1.00  0.94  0.93  0.91 0.91 0.87 0.89  0.75  0.87  
1.50  0.98  0.96  0.95 0.94 0.94 0.94  0.91  0.91  
2.00  0.98  0.97  0.98 0.96 0.97 0.96  0.95  0.94  
3.00  0.99  0.99  0.98 0.98 0.99 0.98  0.97  0.97  
4.00  1.00  0.99  0.99 0.98 0.99 0.98  0.98  0.97  
5.00  1.00  0.99  0.99 0.99 0.99 0.99  0.99  0.98  

 

Table 3. IC ARL and SDRL values with various Phase I sample sizes, 0m . Numbers in 
parentheses are SDRL values. 

10 0(0 )N   10 2  

MDSE REWMA MDSE REWMA 
0 \m  0.05 0.025 0.05 0.025 0.05 0.025 0.05 0.025 

500 158 (140) 154 (126) 144 (128) 145 (116) 145 (128) 151 (122) 95 (88.9) 119 (101)

750 172 (154) 166 (134) 162 (147) 159 (128) 154 (138) 163 (134) 104 (96.8) 133 (115)

1000 179 (161) 176 (144) 172 (157) 169 (136) 163 (146) 173 (141) 108 (99.1) 143 (122)

1500 188 (171) 186 (156) 184 (167) 182 (153) 166 (150) 178 (149) 115 (105) 150 (129)

2000 194 (176) 192 (159) 186 (169) 188 (159) 170 (154) 183 (154) 115 (107) 156 (136)

3000 199 (183) 199 (168) 194 (176) 193 (162) 173 (154) 186 (156) 119 (108) 163 (143)

5000 201 (180) 200 (170) 202 (183) 198 (167) 181 (163) 196 (165) 121 (111) 167 (147)

4. An Industrial Application: Monitoring in Multistage Process Control 

In this section, we present an industrial example in SPC practice, the monitoring in 

multistage process control, to demonstrate the performance of  the proposed framework and 

compare it with some existing methods. As modern technologies become increasingly 

sophisticated, most manufacturing operations, such as semiconductor manufacturing and 

automotive body assembly, comprise multiple stages. Shi and Zhou [30] provide an 

extensive review of  the multistage process control problems with many industrial examples. 

In these systems, it is often desirable and necessary to design an effective monitoring and 
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diagnosis approach for detecting, isolating and identifying the sources of  a change by 

linking the current stage signal to information about earlier stages in the serial process. 

Zhou et al. [39] and many others discuss sensor allocations and fault diagnosability in 

multistage processes. Zou and Tsung [43] and Zou et al. [45] investigate multistage process 

monitoring and diagnosis problems in various settings.  

Consider a common manufacturing process comprised of  p  stages. For the j th 

product collected, a two-level linear state-space model generated from a practical 

application is usually used to describe the quality measurement to the k th stage ([45]): for 

1k p   , 1 2j     ,  
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where 2
0 0( )jx a  . The kjv  and kjw  are assumed to be independent from each other 

and 2( )
kk k vv   , 2(0 )

kk ww  . The first level of  the model involves the fitting of  the 

quality measurement to the quality characteristic, and kC  is used to relate the 

unobservable process quality characteristic, kx , to the observable quality measurement, 

ky . The second level of  the model involves modeling the transfer of  the quality 

characteristic from the previous stage to the present stage, in which kA  denotes the 

transformation coefficient of  the quality characteristic from stage 1k   to stage k . In 

multistage process applications, kA  and kC  are known constants (or matrices) that are 

usually derived or estimated from engineering knowledge (see [15] for details). The 

unknown magnitude,  , reflects the difference before and after the change-point  .  

As illustrated by [43], under the model assumption above the process shift happens 

only in one of  p  known directions , 1 2 p  d d d , where  
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Hence, a directional test and accordingly a directional monitoring system is 

particularly desired in this problem. Under the normality assumption, say kjv ’s and kjw ’s 

are all normally distributed, Zou and Tsung [43] implemented an REWMA procedure to 

deal with the monitoring and diagnosis of  multistage processes. In practice, we usually 

cannot have an assurance of  normality, especially when p  is large. In those situations, the 

MDSE scheme seems to be an ideal alternative taking robustness into account. Here, we 

present a numerical example, setting  20p  and     ( ) (1 2 0 8)k kA C  which are consistent 

with the numerical examples in [45]. kjv ’s and kjw ’s are assumed to be standardized 

t -distributed with five degrees of  freedom (so that they have unit variance). We consider a 

stage shift at  10  and   50  with shift magnitude 2.0. To attain a nominal 0ARL  

200, the control limits for MDSE and REWMA charts with   0 025  under normality 

assumption are 9.59 and 9.61 respectively. The resulting 0ARL  values under the 

t -distributed assumption are 199 and 181, while the OC ARLs are 31.4 and 45.7 for 

MDSE and REWMA respectively. This result reflects that the MDSE would be more 

robust in detecting shifts than the REWMA chart in the sense that even when the value of  

0ARL  is larger than that of  the REWMA (closer to the nominal one), the OC ARL of  the 

MDSE is still considerably smaller than that of  the REWMA.  
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5. Concluding Remarks 

In this paper, we propose a new detection scheme, MDSE, for monitoring multivariate 

processes with several directions. This procedure is derived from a spatial-sign-based score 

test and naturally integrates the directional information from processes with the EWMA 

scheme. With updating formulations, the proposed scheme is fast to compute with a similar 

computational effort to existing schemes. Compared with existing parametric methods, this 

scheme is not only more robust in IC performance, but it is also generally more sensitive to 

the small and moderate shifts in location parameters for skewed and heavy-tailed 

multivariate distributions. In many cases, the improvement is quite remarkable.  

One drawback of  this scheme, which is common to almost all rank-based (univariate) 

nonparametric schemes, is that it is not as efficient as parametric schemes for very large 

shifts because it only uses the direction of  observations from the origin rather than the 

original magnitudes of  observations. This disadvantage is mainly due to the trade-off  

between robustness and sensitivity. It is also worth pointing out that while a directional 

control chart offers a better performance against shift occurring along known, a priori given, 

directions, it can have zero, or almost zero, power against shifts happening along others, 

unforeseen, directions. Further, the diagnostic procedures described in Section 2 can give 

misleading results if  the actual shift direction is not comprised in the assumed possible 

directions. The effectiveness of  the proposed MDSE chart and associated diagnosis relies 

on the correct specification of  shift directions, and hence some physical knowledge and 

experience from engineers are always necessary in practical applications.  

To deal with the situation when a sufficiently large reference data set is unavailable, 

self-starting methods that handle sequential monitoring by simultaneously updating 

parameter estimates and checking for OC conditions have been developed accordingly. See, 

e.g., [3], [11], [33] under normality assumption and [42] for nonparametric settings. Some 

studies on the development of  corresponding directional nonparametric self-starting charts 

are beyond the scope of  this paper but warrant future research. In addition, one of  our 

ongoing research is to consider the economic design of  multivariate nonparametric charts 

([5]). 
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