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The Mean SIR of Large-Scale Wireless Networks: Its

Closed-Form Expression and Main Applications

Chun-Hung Liu

Abstract—In a large-scale wireless ad hoc network in which all
transmitters form a homogeneous of Poisson point process, the
statistics of the signal-to-interference ratio (SIR) in prior work
is only derived in closed-form for the case of Rayleigh fading
channels. In this letter, the mean SIR is found in closed-form
for general random channel (power) gain, transmission distance
and power control models. According to the derived mean SIR,
we first show that channel gain randomness actually benefits
the mean SIR so that the upper bound on the mean spectrum
efficiency increases. Then we show that stochastic power control
and opportunistic scheduling that capture the randomness of
channel gain and transmission distance can significantly not only
enhance the mean SIR but reduce the outage probability. The
mean-SIR-based throughput capacity is proposed and it can be
maximized by a unique optimal intensity of transmitters if the
derived supporting set of the intensity exists.

Index Terms—Signal-to-Interference Ratio, Poisson Point Pro-
cess, Power Control, Opportunistic Scheduling

I. INTRODUCTION

The statistics of the signal-to-interference ratio (SIR) of an

interference-limited wireless network is very useful to help

us comprehend how the transmission performance metrics,

such as outage probability and throughput, vary with different

random models of channel (power) gain, power control and

spacial distribution of interfering nodes. However, it is hardly

able to be theoretically acquired in closed-form especially

when the wireless network inherently has general and complex

spacial randomness. For example, an ad hoc network in

which all transmitters form a homogeneous Poisson point

process (PPP) is of general spacial randomness whereas its

SIR statistics can be found in closed-form only for the case

of Rayleigh fading channels [1]–[3].

The difficulty of finding the statistics of the SIR in closed-

form for a Poisson wireless network without Rayleigh fading

is due to the the derivation processes without involving the

Laplace transform of the interference. Unfortunately, this

derivation difficulty seems not possible to be casted off until

now. As a result, we resort to finding the mean SIR since it

can also characterize a certain level of the randomness impact

on the transmitting performance of a transmitter. Prior works

in [3], [4] on the statistics of the SIR in Poisson wireless

networks with general channel fading merely characterize the

bounds on the distribution of the SIR. There are no prior works

on the mean SIR of a Poisson wireless network with general

random channel gain models.

In this letter, the mean SIR of a Poisson ad hoc network with

general statistical models of channel gain, power control and
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transmission distance is derived in closed-form by applying

a special integration technique on the Laplace transform of

the interference. To the best of our knowledge, it is the first

and very general work on the mean SIR in the literature.

According to the expression of the derived mean SIR, we first

show that channel gain randomness actually benefits the mean

SIR and the outage probability and mean SIR both can be

significantly improved if power control and/or opportunistic

scheduling schemes are well-designed to catch up channel gain

randomness. The throughput capacity based on the mean SIR

is proposed and it is essentially the upper bound on the mean

Shannon-sense spectrum efficiency if interference is treated as

noise. Finally, we show that the optimal transmitter intensity

that maximizes the throughput capacity uniquely exists if its

derived supporting set is nonempty.

II. SYSTEM MODEL

Consider a large-scale and interference-limited wireless ad

hoc network in which all transmitters form a marked homo-

geneous PPP Φ of intensity λ given by

Φ , {(Xi, Di, Pi, Hi) : Xi ∈ R
2, Di ≥ 1, Pi, Hi ∈ R+}, (1)

where Pi denotes the (random) transmit power of transmitter

Xi, Hi characterizes the channel gain (such as fading and/or

shadowing) between transmitter Xi and the origin, and Di

stands for the (random) transmission distance between trans-

mitter Xi and its desired receiver. All Hi’s are independent

and identically distributed (i.i.d.) random variables with unit

mean, Pi’s are i.i.d. and Di’s are i.i.d. as well if they are

random. Consider a reference receiver located at the origin

and its signal-to-interference ratio (SIR) γ0 is given by

γ0 =
P0H0D

−α
0

I0
, (2)

where I0 =
∑

Xi∈Φ\X0
PiGi‖Xi‖

−α represents the inter-

ference power at the reference receiver where X0 is the

transmitter of the reference receiver, α > 2 is the path loss

exponent, ‖X − Y ‖ denotes the Euclidean distance between

nodes X and Y , and Gi characterizes the channel gain from

interferer Xi to the origin. All Gi’s are i.i.d. as well.

According to the Slivnyak theorem [5], the interference

powers evaluated at any nodes in the network have the same

statistics if the nodes are a homogeneous PPP. That indicates

the statistics of the SIR at any receiver in the network is

also identical since all received signal powers are iid as well.

Intuitively, the distribution of the point process is unaffected

by the addition of a receiver at the origin. Accordingly, without

loss of generality we will perform our analysis based on the
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reference receiver at the origin. The performance measured at

the origin is often referred to the Palm measure, and to keep

with simplified notation we will denote the probability and

expectation of functionals evaluated at the origin by P and E,

respectively.

III. THE CLOSED-FORM MEAN SIR AND UPPER BOUND

ON AREA SPECTRUM EFFICIENCY

In this section, the exact closed-form of the mean SIR in

(2) is first characterized for any random channel gain, power

control and transmission distance models and afterward its

important applications in power control, scheduling and upper

bound on the mean spectrum efficiency are discussed. The

mean SIR of any receivers in the network with general random

models is shown in the following theorem.

Theorem 1: Under arbitrary channel gain, transmission

distance and power control models, the mean SIR of any

receivers in the network can be shown as

E[γ0] =
E[PHD−α]Γ(1 + α

2 )

{πλΓ
(

1− 2
α

)

E[P
2

α ]E[G
2

α ]}
α

2

, (3)

where Γ(x) =
∫∞

0
tx−1e−tdt is the gamma function.

Proof: Since the signal and interference powers in (2) are

independent, the mean of γ0 can be written as

E[γ0] = E
[

HPD−α
]

· E

[

1

I0

]

. (4)

The mean of 1/I0 can be found as follows

E

[

1

I0

]

= E

[
∫ ∞

0

e−sI0ds

]

=

∫ ∞

0

E
[

e−sI0
]

ds.

According to the probability generating functional (PGF) of a

homogeneous PPP [2], [5], letting Y be an exponential random

variable with unit mean leads to

E
[

e−sI0
]

= E

[

e−s
∑

Xi∈Φ\X0
PiGi‖Xi‖

−α
]

= EΦ

{

∏

Xi∈Φ
EPiGi

[

e−sPiGi‖Xi‖
−α

]}

(⋆)
= exp

(

−πλE

[
∫ ∞

0

(

1− e−sPGr
−α

2

)

dr

])

= exp

(

−πλ

∫ ∞

0

P[Y ≤ sPGr−
α

2 ]dr

)

= exp

(

−πλΓ

(

1−
2

α

)

s
2

αE[P
2

α ]E[G
2

α ]

)

,

where (⋆) is due to the PGF of a homogeneous PPP. Thus,

E

[

1

I0

]

=

∫ ∞

0

exp

(

−πλΓ

(

1−
2

α

)

s
2

αE[P
2

α ]E[G
2

α ]

)

ds

=
Γ(1 + α

2 )

{πλΓ
(

1− 2
α

)

E[P
2

α ]E[G
2

α ]}
α

2

.

Substituting the above result into (4) results in (3).

The closed-form mean of the SIR in Theorem 1 is a

very general result which is different from the existing ones

obtained by assuming Rayleigh fading channels [2]. Most

importantly, it is valid for any stochastic power control, chan-

nel power, and transmission distance models. For example,
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Fig. 1. The simulation and theoretical results of the mean SIR for α = 4 and
D = 15m. The mean SIR slightly decreases when m increases (i.e. channels
become less fading.), i.e. fading indeed benefits the mean SIR.

if all transmit powers are the same constant, all transmission

distances are constant d, and all channels undergo Nakagami

fading and their fading gains are i.i.d. Gamma distribution with

unit mean and variance 1/m for any m > 0, then we have

E[H] = 1, E[G
2

α ] = Γ(m+ 2
α
)/Γ(m)m

2

α and the mean SIR

in (3) can be explicitly expressed as

E[γ0(m)] =
mΓ(1 + α

2 )[Γ(m)]
α

2

[πd2λΓ(1− 2
α
)Γ(m+ 2

α
)]

α

2

, m > 0. (5)

Since we can show that E[γ0(m)] is a monotonic decreasing

and convex function of m, we have E[γ0(m)] ≥ E[γ0(∞)],
which indicates that fading benefits the mean SIR since

E[γ0(∞)] corresponds to the mean SIR without fading. The

intuition behind this observation is because fading only weak-

ens the interference channel powers. The simulation results of

the mean SIR in Fig. 1 apparently support this observation.

The mean SIR can be used to acquire the exact upper bound

on the mean spectrum efficiency that in general cannot be

found in closed-form, especially in a Poisson wireless network.

The following theorem specifies the exact upper bound on the

mean Shannon channel capacity per unit spectrum and when

the bound is tight.

Theorem 2: If the interference power is treated as noise,

the upper bound on the mean spectrum efficiency C(λ) ,

E[log2(1 + γ0)] is given by

C(λ) ≤ log2(1 + E[γ0]) = log2

(

1 +
κ

λ
α

2

)

, (6)

where κ ,
E[PHD−α]Γ(1+α

2
)

{πΓ(1− 2

α )E[P
2

α ]E[G
2

α ]}
α

2

and the upper bound is

fairly tight whenever λ ≫ κ
2

α .

Proof: By Jensen’s inequality, the upper bound on C(λ)
is log2(1+E[γ0]). Substituting (3) into log2(1+E[γ0]) leads

to (6). To make the upper bound tight, E[γ0] ≪ 1 should hold

since C(λ) = E[log2(1 + γ0)] ≈
E[γ0]
ln 2 for γ0 ≪ 1 a.s. Thus,

κλ−α

2 ≪ 1, i.e., λ ≫ κ
2

α .

According to Theorem 2, we realize that C(λ) can be ac-

curately represented by its upper bound provided that κ
2

α is

substantially smaller than the intensity. Namely, the situations,

such as long transmission distance, large path loss and dense
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network, etc., are able to make the bound tight. There are

more implications can be grasped from Theorems 1 and 2,

and they result in a couple of pivotal applications, which will

be specified in the following section.

IV. MAIN APPLICATIONS OF THE MEAN SIR

The closed-form expression of the mean SIR in Theorem

1 reveals that power control and channel gain models have a

significant impact on the magnitude of the mean SIR. We first

study the fundamental interactions among mean SIR, power

control, and opportunistic scheduling. Afterwards, we study

the throughput capacity that is defined on the basis of the

mean SIR.

A. Power Control and Opportunistic Scheduling

Power control is one of the most important factors that

deeply affect the mean SIR given in (3). To elaborate this, first

consider the case that any stochastic power control policies that

do not depend on the channel gain and path loss. In this case,

the mean SIR is virtually affected by the term (E[P ])
2

α /E[P
2

α ]
which is always greater than unity by Hölder’s inequality.

Accordingly, we learn that any non-channel-aware stochastic

power control policies benefit the mean SIR. Accordingly, we

can conjecture that channel-aware power control also increases

the mean SIR if it is appropriately designed based on the

channel gains, which is validated in the following theorem.

Theorem 3: Suppose all transmitters can obtain channel

state information from their receivers and adopt the channel-

aware stochastic power control law, P ∈ Θ(HρDυ) where ρ
and υ are both constants, with finite mean E[P ] < ∞. The

power control law increases the mean SIR of a receiver if

ρ ≥ −1, E[H1+ρ] ≥ E[Hρ], υ ≥ α and E[D1−α

υ ] ≥ E[D].
Proof: According to the Hölder inequality for a positive

random variable Z, we have E[Za]
1

c ≥ E[Z
a

c ] if a > 0 and

c > 1. If E[Za] ≥ E[Zb] for a ≥ b ≥ 0, we further have

E[Za]
1

c ≥ E[Z
a

c ] ≥ E[Z
b

c ]. Now if the power control law

P ∈ Θ(HρDυ) is applied, the mean SIR becomes

E[γ0] =
E[Hρ+1]E[Dυ−α]Γ(1 + α

2 )

{πλΓ
(

1− 2
α

)

E[H
2

α
ρ]E[D

2

α
υ]E[G

2

α ]}
α

2

, (7)

which increases because E[Hρ+1]
2

α ≥ E[H
2

α
ρ] due to ρ ≥ −1

and E[H1+ρ] ≥ E[Hρ] whereas E[Dυ−α]
2

α ≥ E[D
2

α
υ] due to

υ ≥ α and E[Dυ(1−α

υ
)] ≥ E[Dυ].

Theorem 1 essentially expounds that the mean SIR increases

if power control can capture the randomness of channel and

distance variations. Accordingly, for a fixed SIR threshold θ
the outage probability P[γ0 < θ] can be reduced by the power

control law since the mean SIR E[γ0] =
∫∞

0
(1−P[γ0 < θ])dθ

is increased and outage probability is a monotonic increasing

function of threshold θ. This important observation contradicts

the general consensus that power control in an interference-

limited network is not an efficient means of enhancing trans-

mission performance in terms of outage probability or SIR. In

addition, the outage probability in a Poisson ad hoc network

with channel-aware power control cannot be found in closed-

form so that how it is precisely affected by power control

cannot be analyzed. The simulation results in Figs. 2 and
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Fig. 2. The simulation results of the mean SIR with P = HρDυ/E[HρDυ ]
for α = 4, Nakagami-m fading and uniformly distributed D ∈ [15, 25]. The
mean SIR increases as P satisfies the conditions in Theorem 3.
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Fig. 3. The simulation results of the outage probability with P =
HρDυ/E[HρDυ ] for α = 4, θ = 0.5, Nakagami-m fading and uniformly
distributed D ∈ [15, 25]. The outage probability decreases as P satisfies the
conditions in Theorem 3.

3 respectively present the mean SIR and outage probability

for Nakagami-m fading, uniform-distributed transmission dis-

tance and power P = HρDυ/E[HρDυ] and they obviously

illustrate that channel-aware power control can significantly

improve the mean SIR as well as outage probability.

The performance of power control on the mean SIR can be

further improved by opportunistic scheduling. Consider every

transmitter adopts a channel-aware opportunistic scheduling

scheme that schedules a transmission whenever its channel

gain is larger than some threshold [3], [6]. For example, if a

transmitter opportunistically schedules a transmission under

the constraints H ≥ h0 and D ≤ d0 for two constants

h0 > 0, d0 > 1 (i.e., it avoids transmitting in the situation

of deep fading and long distance), the resulting transmitting

nodes consist of a homogeneous PPP of intensity λP[H ≥
h0]P[D ≤ d0] since all Hi’s and Di’s are independent. Under

this scheduling scheme, the mean SIR with power control law

P ∈ Θ(HρDυ) can be derived as

E[γ0] =
E
c
H(ρ+ 1, h0)ED(υ − α, d0)Γ(1 +

α
2 )

{πλsΓ
(

1− 2
α

)

Ec
H( 2

α
ρ, h0)ED( 2

α
υ, d0)E[G

2

α ]}
α

2

,
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where λs = λF c
H(h0)FD(d0), E

c
Z(a, b) , E[Za|Z ≥

b] = [bF c
Z(b

1

a ) +
∫∞

b
F c
Z(z

1

a )dz]/F c
Z(b), EZ(a, b) ,

E[Za|Z ≤ b] =
∫ b

0
F c
Z(z

1

a )dz/FZ(b) and FZ(·)(F
c
Z(·))

is the CDF (CCDF) of random Z. Apparently, the op-

portunistic scheduling scheme not only increases the re-

ceived signal power but also reduces the interference

power as long as F c
H(h0)FD(d0)E

c
H( 2

α
ρ, h0)ED( 2

α
υ, d0) <

E
c
H( 2

α
ρ, 0)ED( 2

α
υ, sup(D)). Thus, a pair of well-chosen

threshold values of h0 and d0 is able to significantly improve

the mean SIR as well as the outage probability.

B. Throughput Capacity and Its Optimality

According to the upper bound on the mean spectrum effi-

ciency given in Theorem 2, we define the throughput capacity

of a wireless network with an SIR threshold θ as follows

T(λ, θ) , log2(1 + E[γ0])λP[γ0 ≥ θ] (8)

whose physical meaning is the upper bound on the area

spectrum efficiency λC(λ)F c
γ0
(λ, θ). Although the throughput

capacity is similar to the definition of spatial throughput or

transmission capacity of a wireless network in [1], [7], its

feature is to capture how the channel capacity changes with

the intensity under different power control and opportunistic

scheduling schemes, which is ignored in the previous network

throughput metrics proposed in the literature. Consequently,

the throughput capacity can characterize the fundamental limit

of the per-unit-area network throughput in a Shannon-capacity

sense, and its optimality can be attained if a unique optimal

intensity exists as shown in the following theorem.

Theorem 4: Let set Πλ define as

Πλ ,

{

λ ∈ R++ :
λ

2

d2ℓ

dλ2
< −

dℓ

dλ
<

ℓ

λ

}

, (9)

where ℓ(λ, θ) = F c
γ0
(λ, θ) log2(1 + κλ−α

2 ) for all λ ∈ R++.

If Πλ 6= ∅, there exists an unique optimal intensity λ∗ ∈ Πλ

that maximizes the throughput capacity defined in (8).

Proof: Since T(λ, θ) = λF c
γ0
(λ, θ) log2

(

1 + κλ−α

2

)

=
λℓ(λ, θ) and F c

γ0
(λ, θ) and log2(1 + κλ−α

2 ) are both mono-

tonic decreasing and convex function of λ, their product

ℓ(λ, θ) is also monotonic and convex. The first and second

derivatives of T(λ, θ) with respect to λ can be expressed as

dT

dλ
= ℓ+ λ

dℓ

dλ
and

d2T

dλ2
= 2

dℓ

dλ
+ λ

d2ℓ

dλ2

in which dℓ
dλ

< 0 and d2ℓ
dλ2 > 0. If Πλ is not empty, T(λ, θ)

is concave for any λ ∈ Πλ due to d2T
dλ2 < 0. According to the

Bolzano Weierstrass theorem, there exists a unique optimal

λ∗ ∈ Πλ such that T(λ∗, θ) is maximal over Πλ. For any

λ /∈ Πλ, we know d2T
dλ2 ≥ 0 and dT

dλ
≤ 0 so that T(λ, θ)

is convex and monotonic decreasing and it does not have a

maximum. Thus, λ∗ is the sole maximizer of T(λ, θ).
In general, the optimal intensity λ∗ cannot be found in

closed-form. Nevertheless, it indeed exists in almost all of

random channel gain and transmission distance models. As

the simulation results shown in Fig. 4, there indeed exists only

one optimal intensity that maximizes the throughput capacities

of all power control laws. In addition, simulation results also
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Fig. 4. The simulation results of the throughput capacity (T) and area
spectrum efficiency (λC(λ)F c

γ0
(λ, θ)) for P = HρDυ/E[HρDυ ], α = 4,

θ = 0.5, Nakagami-m fading and uniformly distributed D ∈ [15, 25].

indicate λ∗ ≈ arg supλ λC(λ)Fγ0
(λ, θ) even when T(λ, θ) is

not a very tight bound on λC(λ)Fγ0
(λ, θ).

V. CONCLUSION

The closed-form expression of the mean SIR for a Poisson

ad hoc network is found under general channel gain, transmis-

sion distance and power control models. The mean expression

of SIR contains two key implications: channel randomness

can benefit the mean SIR, and power control and scheduling

schemes that capture the channel randomness can improve the

mean SIR and outage probability. The throughput capacity that

is defined based on the mean SIR is proposed to characterize

the mean area spectrum efficiency in a Shannon-capacity sense

and its maximum exists if the supporting set of the unique

optimal intensity of transmitters is nonempty.
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