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______________________________________________________________________ 

Abstract: Monitoring the coefficient of variation (CV) is a successful approach to Statistical Process 

Control when the process mean and standard deviation are not constant. In recent years the CV has been 

investigated by many researchers as the monitored statistic for several control charts. Viewed under this 

perspective, this paper presents a new efficient method to monitor the CV by means of Run Rules (RR) type 

charts. Tables are provided to show the statistical run length properties of Shewhart- � , RR 2 3 �� � , 

RR 3 4 �� �  and RR 4 5 �� �  control charts for several combinations of in control CV values 0� , sample size 

n  and shift size � . Indeed, comparative studies have been performed to find the best control chart for 

each combination. An example illustrates the use of these charts on real data gathered from a metal 

sintering process. 

Keywords: Average run length, coefficient of variation, Markov chain, run rules. 

______________________________________________________________________ 

1. Introduction 

uality is one of the most important consumer decision factors. Furthermore, Quality 

control has become one of the most important strategies to increase the productivity of 

industrial and services organizations. One of the fundamental principles of the SPC 

(Statistical Process Control) is that a normally distributed process cannot be claimed to be 

in-control until it has a constant mean and variance. This implies that a shift in the mean and / 

or the standard-deviation makes the process out-of-control. However, control charting 

techniques were recently extended to various service sectors such as health, education, 

finance and various societal applications where the mean and the standard-deviation may not 

be constant all the time but the process may nevertheless be declared in-control if their ratio 

remains stable around a constant value. In this case, it is natural to explore the use of the 

coefficient of variation (CV, in short) �  which is a normalized measure of dispersion of a 

probability distribution that is defined as the ratio of the standard deviation �  to the mean 

� . The CV has several applications in applied statistics and is receiving increased attention in 

quality control. Generally, it is widely used to compare data sets having different units or 

widely different means. Several published works have investigated, in the case of normality, 

the distribution of the sample coefficient of variation and its related inferential properties, see 

Hendricks and Robey [12], Iglewicz and Myers [14], Iglewicz et al. [15], Mahmoudvand and 

Hassani [21], McKay [22], Reh and Scheffler [28], Tian [33], Vangel [34], Verrill and 

Johnson [35] and Warren [36]. 

 

Q 



76                                                     Castagliola, Achouri, Taleb, Celano and Psarakis 

For instance, the CV is commonly used in renewal theory, queuing theory, and 

reliability theory. In the field of finance (see Sharpe [31]), it is interpreted as a measure of the 

risk faced by investors, by relating the volatility of the return on an asset to the expected value 

of the return. It is also adopted in chemical and biological assay quality control to validate 

results, see Reed et al. [27]. It is worth noting that there are many opportunities for SPC 

monitoring of the CV also in the fields of materials engineering and manufacturing. Often 

some quality characteristics related to the physical properties of products constituted by metal 

alloys or composite materials have a standard-deviation which is proportional to their 

population mean. Usually, these properties are related to the way atoms of a metal diffuse 

into another. Tool cutting life and several properties of sintered materials are typical 

examples from this setting.   

As pioneers in this field, Kang et al. [16] developed a control chart for monitoring the CV 

using rational subgroups. In this chart, the mean may change from one sample to another, 

making useless to plot the ( )X R�  or ( )X S�  control charts. A common clinical 

chemistry-control problem in which repeated measurements of some characteristic (the 

amount of a chemical in a patient blood) is used to show that the CV is a potentially attractive 

tool in quality improvement, where neither the process mean nor the variance are constant. 

In Kang et al. [16]’s paper, the CV is monitored through a Shewhart-Type chart. This makes 

this chart sensitive to large shifts in the CV but not very sensitive to small to moderate shifts.   

Hong et al. [13], proposed an EWMA-CV (Exponentially Weighted Moving Average) 

control chart in order to improve the Shewhart’s type chart proposed by Kang et al. [16] and 

detect small shifts more efficiently. The ARL  (Average Run Length) was used in this paper 

to investigate the performance of the EWMA-CV chart v.s. the Shewhart-CV control chart 

proposed by Kang et al. [16]. The results clearly showed that the EWMA-CV chart gives 

smaller out-of-control ARL ’s than the Shewhart-CV chart proposed by Kang et al. [16]. 

Castagliola et al. [7] suggested a new method to monitor the CV by means of two 

one-sided EWMA charts (denoted EWMA-CV2) of the CV squared. The performance 

investigation with this chart requires an extensive computational analysis based on a Markov 

chain approach (while the Hong et al. [13] approach in only based on simulation). A 

numerical analysis demonstrated that the control chart proposed by Castagliola et al. [7] 

almost always yielded smaller ARL  values than the control chart proposed by Hong et al. 

[13], even if the difference between these values is often rather small.   

Very recently, Calzada and Scariano [5] suggested a synthetic control chart (denoted as 

SynCV) for monitoring the coefficient of variation. The results showed (see Table 8 in 

Calzada and Scariano [5]) that the out-of-control ARLs obtained for the SynCV chart are 

obviously smaller than the ones for the CV chart of Kang et al. [16] but the former are 

generally larger than the out-of-control ARL ’s obtained for the EWMA-CV2
 chart of 

Castagliola et al. [7] as long as the increasing shift in the CV is not too large. Contrary to 

Castagliola et al. [7] in which the authors investigated both the CV increasing and decreasing 

cases, Calzada and Scariano [5] only provided results concerning the CV increasing case.   

Although EWMA and synthetic type control charts efficiently detect small or moderate 

shifts in the process mean, their “relatively complexity of use” (i.e. two chart parameters, 

( )K ��  for EWMA type charts and ( )K L�  for synthetic type charts) has not been widely 

accepted everywhere by the quality practitioners. In this way, it is natural to explore the use of 

a Shewhart chart with supplementary run rules as an intermediate solution (a single 

parameter K  needs to be selected for run rules type charts). The most popular Run Rules 

were suggested by the Western Electric Corporation [37]. Several Run Rules have also been 
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suggested by Bissell [4], Page [25], Roberts [30] and Wheeler [38]. As Champ and Woodall [8] 

pointed out, these rules may be stated in the following form: an out-of-control signal is given 

if r  of the last �  standardized sample means fall in the interval ( )a b� , where r � �  

and a b	 . A good discussion of some of these rules is given by Nelson [23]. Using a Markov 

chain approach, Champ and Woodall [8] obtained the exact formula to evaluate the 

Run-Length distribution and applied it to compute the time until the signal of an alarm for the 

Shewhart control chart with supplementary Run Rules. Palm [26] used their method to 

construct tables of Run-Length percentiles, when one or more of 3 additional Run Rules are 

used with a Shewhart chart for monitoring the mean ( X chart). Lowry et al. [20] used the 

Markov chain approach to study the Western Electric Run Rules for S - and R -charts, and 

suggested alternative rules, also based on runs. The supplementary Run Rules need to be used 

cautiously. Traditionally, the performance of a control chart is evaluated by the Average Run 

Length ( )ARL . The standard Shewhart X  control chart has an in-control ARL  equal 

to 0 1 0 0027 370 4ARL 
 � � 
 � . However, Champ and Woodall [8] found that a Shewhart 

control chart with the Western Electric Rules results in an in-control ARL  of 91.75, in 

contrast to 370.4 for the Shewhart control chart alone. This means that the simultaneously 

use of Run Rules may cause an increasing number of false alarms and so may increase the 

cost of quality. Some other works that have discussed the problem of ARL  of Shewhart 

charts with Run Rules are that of Acosta-Mejia [2], Antzoulakos and Rakitzis [3], Champ 

and Woodall [9], Divoky and Taylor [10], Fu et al. [11], Khoo [17], Klein [18], Palm [26], 

Riaz et al. [29], Shmueli and Cohen [32], Yasui et al. [39] and Zhang and Castagliola [40].   

The goal of this paper is to introduce and compare several run rules charts for monitoring 

the CV. It is important to note that, as for all run rules type control charts, the run rules charts 

for monitoring the CV introduced in this paper will not outperform more advanced strategies 

like the EWMA-CV 2 chart proposed by Castagliola et al. [7] or the SynCV chart proposed by 

Calzada and Scariano [5]. Consequently, this paper must be considered as a framework for 

quality practitioners who already made the choice to implement an intermediate type of 

control charts. The remainder of the paper is organized as follows: in Section 2, the 

distribution properties of the sample coefficient of variation �̂  are discussed; in Section 3, 

three run rules charts for monitoring the CV are introduced and their run length performances 

( ARL , SDRL ) are defined; in Section 4, a numerical analysis is conducted in order to 

compare the three run rules charts for monitoring the CV and to propose simple guidelines; in 

Section 5, an illustrative example is provided to show the implementation of one run rules 

chart for monitoring the CV; in Section 6, concluding remarks with comments and 

recommendations for future research are given.  

2. Properties of the (Sample) Coefficient of Variation 

Let X  be a positive random variable and let ( ) 0E X� 
 
  and ( )X� �
  be the 

mean and standard-deviation of X  respectively. By definition, the coefficient of variation �  

of the random variable X  is defined as  

�
�

�

 �  

Now, let us assume that …1{ }nX X� �  is a sample of n  normal i.i.d. ( )� ��  random 

variables. Let X  and S  be the sample mean and the sample standard-deviation of 

…1 nX X� � , i.e.,  

1

1 n

i
i

X X
n 



 ��  
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and  

2

1

1
( ) .

1

n

i
i

S X X
n 



 ��
�

 

The sample coefficient of variation �̂  is defined as  

ˆ
S

X
� 
 �  

By definition, �̂  is defined on (0 )��� . The distributional properties of the sample 

coefficient of variation �̂  have been studied by Hendricks and Robey [12], Iglewicz and 

Myers [14], Iglewicz et al. [15], McKay [22], Reh and Scheffler [28], Vangel [34] and Warren 

[36]. Among these authors, Iglewicz et al. [15] noticed that ˆ/n �  follows a noncentral t  

distribution with 1n �  degrees of freedom and noncentrality parameter /n � . Based on 

this property, it is easy to derive the c.d.f. (cumulative distribution function) ˆ ( )F x n� �� � of �̂  

as  

ˆ ( ) 1 1t

n n
F x n F n

x
� �

�

� �
� � 
 � � � �� �� �

� �
                            (1) 

where ( )tF �  is the c.d.f. of the noncentral t  distribution with 1n �  degrees of freedom and 

noncentrality parameter /n � . Inverting ˆ ( )F x n� �� �  gives the inverse c.d.f. 1
ˆ ( )F n� � �� � �  

of �̂  as  

 

� �
1

ˆ
1

( )
1 1 n

t

n
F n

F n
�

�

� �
�

�

�
� � 
 �

� � �
                            (2) 

where 
1( )tF � �  is the inverse c.d.f. of the non-central t  distribution.  

3. SPC Monitoring Using Run Rules Control Charts 

Let us suppose that we observe subgroups 1 2{ }k k k nX X X� � �� � ��  of size n , at time 

1 2k 
 � �� . We assume that there is independence within and between these subgroups and 

we also assume that each random variable k jX �  follows a normal ( )k k� ��  distribution 

where parameters k�  and k�  are constrained by the relation 0/k k k� � � �
 
  when the 

process is in-control. This implies that from one subgroup to another, the values of k�  and 

k�  may change, but the coefficient of variation /k k k� � �
  must be equal to some 

predefined in-control value 0 0 0/� � �
 , common to all the subgroups where 0�  is the 

in-control mean and 0�  is the in-control standard-deviation.   

Kang et al. [16] were the first to investigate the opportunity to monitor the coefficient of 

variation through a Shewhart type chart: in their paper, an application from the medical field 

is discussed to show the motivations which can lead quality practitioners to monitor the 

coefficient of variation instead of other sample statistics. In the remainder of this paper the 

Shewhart chart proposed by Kang et al. [16] is denoted as “SH �� ”. The control limits 

SHLCL  and SHUCL  proposed by Kang et al. [16] are probability type control limits with an 

assumed type I error rate of 0 0 0027� 
 � , i.e. an in-control 0 370 4ARL 
 � . That is, SHLCL  

and SHUCL  are respectively equal to:  

�
� � ���

��
� �


 � � �01
ˆ 02SHLCL F n

�
� � ���

��
� �


 � � �01
ˆ 02

1 ,SHUCL F n  

where �
�1
ˆ (.)F  is the inverse c.d.f. of �̂  defined in (2).   
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The goal of this paper is to apply and evaluate several Run Rules strategies in order to 

monitor the CV. It is important to note that, like in Klein [18], we only focus on pure Run 

Rules type charts which only require warning limits and no control limit and assume that an 

out-of-control condition must be signaled only if the selected Run Rules pattern occurs.   

In the 2-out-of-3 Run Rules (from now on, denoted as RR 2 3 �� �  chart), an out-of-control 

signal is obtained if two out of three successive values ˆ
k�  are plotted above an upper warning 

limit UWL  or two out of three successive points are plotted below a lower warning limit 

LWL  with  

 � �
 0
ˆ( )LWL � ��� � �2 3 0

ˆ( )K                                   (3) 

 � �
 0
ˆ( )UWL � ��� �2 3 0

ˆ( ),K                                   (4) 

where 2 3K �  is a chart parameter to be defined and where 0
ˆ( )� �  and 0

ˆ( )� �  are the mean 

and standard-deviation of the sample coefficient of variation �̂  when the process is 

in-control, i.e. 0k� �
 . Since there is no closed form for 0
ˆ( )� �  and 0

ˆ( )� � , Hong et al. [13] 

suggested to use the approximations proposed by Reh and Scheffler [28], i.e.  

2 4 2
2 4 60 0 0

0 0 0 0 02 3

3 71 1 1 7 1 19
ˆ( ) 1 3 15

4 4 32 4 32 128n n n

� � �
� � � � � �

� �� � � �� �� � � � � � � � � �� �� � � �� �� �� � � � � �� �
�     (5) 

4 2
2 4 2 6 0 0

0 0 0 0 0 02 3

7 31 1 1 3 1 3
ˆ( ) 8 69

2 8 2 4 16n n n

� �
� � � � � � �

� �� � � �� � � � � � � � �� �� � � �
� � � � � �

�         (6) 

In order to investigate the RR 2 3 �� �  chart, it is necessary to define all the possible states 

depending on the position of the last two points plotted on the chart, as pictured in Figure 1.  

(1)�1st point above UWL  and 2nd point between the warning limits,  

(2)�1st point above UWL  and 2nd point below LWL ,  

(3)�1st point between the warning limits and 2nd point above UWL ,  

(4)�both points between the warning limits,  

(5)�1st point between the warning limits and 2nd point below LWL ,  

(6)�1st point below LWL  and 2nd point above UWL ,  

(7)�1st point below LWL  and 2nd point between the warning limits.  

 
Figure 1. States of 2-out-of-3 Run Rules chart. 
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Thus a new point, i.e. the third point of the run, will lead to one of the above seven states 

or into the 8th state where two out of the three successive points are plotted out of the warning 

limits, i.e. an out-of-control status is signaled. The run length performances ( ARL  and 

SDRL ) of the RR 2 3 �� �  chart can be obtained by using the following Markov chain matrix 

(8 8)�P  corresponding to the eight previously defined states (where the 8th state corresponds to 

the absorbing state)  

��
�� � ��
��

�� ��
�� ��
 
 ��� ��� � ��� � � ��

��
��� �

� �

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
1

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 1

C UL

C L U

UC L

U C L

UT C L

L UC

U LC

p p p

p p p

p p p

p p p

p p p

p p p

p p p

Q r

P

0

 

where 
 � � ��(0 0 0)T0 , (7 7)�Q  is matrix of transient probabilities, the vector (7 1)�r  satisfies 


 �r 1 Q1  (i.e. row probabilities must sum to 1), with 
 � � � � � �(1 1 1 1 1 1 1)T1 . The corresponding 

vector (7 1)�q  of initial probabilities associated with the transient states is equal to 

(0 0 0 1 0 0 0)T
 � � � � � �q  (i.e. the initial state is the fourth one). The probabilities 

ˆ( )Lp P LWL�
 � , ˆ( )Up P UWL�
 �  and ˆ( )Cp P LWL UWL�
 � �  are equal to  

ˆ 1

ˆ 1

( )

1 ( )

1 ,

L

U

C L U

p F LWL n

p F UWL n

p p p

�

�

�

�


 � � �


 � � � �


 � �

 

where � �� �ˆ 1(. )F n  is the c.d.f. of �̂  as defined in (1) and where 1 0� ��
  is an out-of-control 

value for the CV. Values of (0 1)� � �  correspond to a decrease of the nominal coefficient of 

variation, while values of 1� 
  correspond to an increase of the nominal coefficient of 

variation.   

The number of steps L  until the process reaches the absorbing state is a Discrete 

PHase-type (or DPH) random variable of parameters ( )�Q q , (see Neuts [24] or Latouche and 

Ramaswami [19]). Consequently, the mean ( )ARL  and the standard-deviation ( )SDRL  of 

the run length L  of the RR 2 3 �� �  chart are equal to  

�

�







1

2

,

,

ARL

SDRL
 

with  

�

�

� � � �

�

�


 � �


 � �


 � � �

1
1

2
2

2
2 2 1 1

( )

2 ( )

T

T

q I Q 1

q I Q Q1  

The RR 2 3 �� �  chart may easily be extended to “longer” Run Rules like, for instance, the 

3-out-of-4 and the 4-out-of-5 Run Rules (denoted as the RR 3 4 �� �  and RR 4 5 �� �  charts in the 

following). An example of application of longer Run Rules can be found in Capobianco et al. 

[6] where a RR 3 4 X� �  chart is implemented in order to monitor the mean of a quality 

characteristic in a piston manufacturing line and is demonstrated to outperform the 
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RR 2 3 X� �  chart. In the RR 3 4 �� �  chart, an out-of-control signal is obtained if three out of 

four successive values of ˆ
k�  are above (below) UWL  ( LWL ) while, in the RR 4 5 �� �  chart, 

an out-of-control signal is obtained if four out of five successive values of ˆ
k�  are above 

(below) UWL  ( LWL ). The warning limits of the RR 3 4 �� �  and RR 4 5 �� �  charts are defined 

similarly as for the RR 2 3 �� �  chart. The only difference is that the chart parameter 2 3K �  in (3) 

and (4) has to be replaced by new chart parameters 3 4K �  and 4 5K � , respectively.   

The ARL  and SDRL  of the RR 3 4 �� �  and RR 4 5 �� �  charts may also be obtained 

using the same equations as for the RR 2 3 �� �  chart. The only difference is that, for the 

RR 3 4 �� �  chart, the matrix (25 25)�Q  of transient probabilities is equal to  
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

� �
� �

� �
� �

� �
� �

� � �
� � �

� � �
� � �

� �
� �

� � �
� � �


�

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

� �
� �

� �
� �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

� � �
� � �

� � �
� � �

� �
� �

� �
� �

� � �
� � �

� �
� �

� � �
� � �

� � �
� � �

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� �
� �

� �
� �

� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

 

and vector (0 0 1 0 0)T
 � � � � � �q � �  (i.e. the initial state is the 13th one). Concerning the 

RR 4 5 �� �  chart, the size of matrix Q  is (79 79)�  (for this reason it will not be presented 

here) and vector (0 0 1 0 0)T
 � � � � � �q � �  (i.e. the initial state is the 40th one).  

4. Numerical Analysis 

In this paper, the investigated statistical measure of performance is the zero-state ARL  

(Average Run Length), defined as the average number of samples before a control chart 

signals an “out-of-control” condition or issues a false alarm. Once the control chart parameter 

K  (in our case 23K , 34K  or 45K , depending on the selected rule) is defined, the ARL  can 

be numerically evaluated for a particular shift � , from an in-control value 0�  to an 

out-of-control value 1 0� ��
 , by using the Markov chain approach presented in the previous 

section.   

It is usual to use the mean ( ARL ) and the standard deviation ( SDRL ) of the run length 

( RL ) distribution to evaluate the performance of control charts. When a process is in-control, 
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the average RL  will be denoted 0ARL  and the standard deviation of the RL  will be 

denoted 0SDRL . On the contrary, when a process is out-of-control, the average RL  will be 

denoted 1ARL  and the standard deviation of the RL  is 1SDRL . A control chart is 

considered better than its competitors if it has the smaller 1ARL  value for a specific mean 

shift �  when 0ARL  is the same for all the charts.   

In practice, it is interesting for the quality practitioner to find out the optimal chart 

parameter K  
 (i.e. in our case 23K  , 34K  

 or 45K  ) such that  

 0 0 0( )ARL K n ARL� �  � � � 
 �  

i.e. the optimal chart parameter K  
 such that when the process is functioning at the nominal 

coefficient of variation 0� �
 , then 0ARL ARL
 , where 0ARL  is some predefined 

“in-control” ARL  value.   

Table 1 provides out-of-control 1 1( )ARL SDRL�  of the SH ��  chart for different 

combinations of {5n 
 , 7 , 10 , 15} , 0 {0 05� 
 � , 0 1� , 0 15� , 0 2}� , {0 5� 
 � , 0 6� , 0 7� , 

0 8� , 0 9}�  (i.e. decreasing case) and {1 1� 
 � , 1 2� , 1 5� , 2 , 2 5}�  (i.e. increasing case). The 

value for the in-control ARL  is set at 0 370 4ARL 
 � . For the same combinations of n , 0�  

and � , Tables 2, 3 and 4 also provide out-of-control 1 1( )ARL SDRL�  of the RR 2 3 �� � , 

RR 3 4 �� �  and RR 4 5 �� �  charts, respectively, as well as the optimal chart parameters 23K  , 

34K  
 and 45K  . For instance, concerning the increasing case, if 10n 
 , 0 0 15� 
 �  and 

1 1� 
 �  (i.e. 1 0 165� 
 � ) then 1 123 1ARL 
 �  and 1 122 6SDRL 
 �  for the SH ��  chart (in 

Table 1) while, for the RR 2 3 �� � , RR 3 4 �� �  and RR 4 5 �� �  charts, the corresponding values of 

1ARL  and 1SDRL  in Tables 2, 3 and 4 are (74 72 2)� � , (81 1 78 4)� � �  and (89 2 85 6)� � � , 

respectively. Concerning the decreasing case, if 15n 
 , 0 0 2� 
 �  and 0 8� 
 �  (i.e. 1 0 16� 
 � ) 

then 1 74ARL 
  and 1 73 5SDRL 
 �  for the SH ��  chart (in Table 1) while, for the RR 2 3 �� � , 

RR 3 4 �� �  and RR 4 5 �� �  charts, the corresponding values of 1ARL  and 1SDRL  in Tables 2, 

3 and 4 are (45 9 44 1)� � � , (20 9 18 4)� � �  and (15 3 12 2)� � � , respectively.   

In particular, as it can be noticed in Table 2 for the RR 2 3 �� �  chart, the performance of 

this two-sided scheme reveals the problem of ARL -biased performance (see for instance 

Acosta-Mejia [1]), especially for small sample sizes. This fact seriously affects the 

simultaneous monitoring of increasing or decreasing shifts in CV, since it is more difficult to 

detect certain (decreasing) shifts in the process parameter. One way to overcome this problem 

is to suggest a one-sided (downward) version of the RR 2 3 �� �  chart with a single lower 

warning limit � �
 0
ˆ( )LWL � ��� �2 3 0

ˆ( )K . The run length performances ( ARL and SDRL ) of 

the downward RR 2 3 �� �  chart can be obtained the same way as for the two-sided case by 

using the following matrix of transient probabilities (3 3)�Q  (corresponding to states 4, 5 and 

7 in Figure 1, re-labeled 1, 2 and 3)  

 

1 0

0 0 1

1 0 0

L L

L

L

p p

p

p

�� �
� �
 � �� �
� ��� �

Q  

with the vector (3 1) (1 0 0)T
� 
 � �q  of initial probabilities associated with the transient states. 

For example, in Table 2, for the (two-sided) RR 2 3 �� �  chart and for 5n 
 , 0 0 05� 
 �  and 

0 9� 
 �  we have 2 3 1 934K  
� 
 � , 1 1179 5ARL 
 �  and 1 1177 5SDRL 
 � . We clearly have an 

ARL -biased situation since 1 0 370 4ARL ARL
 
 � . If we use a downward one-sided 

RR 2 3 �� �  chart, the chart parameter 2 3 1 604K  
� 
 �  and 1 182 2ARL 
 �  and 1 180 4SDRL 
 � . 

Using such a downward one-sided RR 2 3 �� �  chart allows to overcome the ARL -biased 

situation and improve the performance of the RR 2 3 �� �  chart. 
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Table 1. 1 1( )ARL SDRL�  of the SH ��  chart for {5n 
 , 7 , 10 , 15} , 0 {0 05� 
 � , 0 1� , 
0 15� , 0 2}� , {0 5� 
 � , 0 6� , 0 7� , 0 8� , 0 9}�  (i.e. decreasing case) and {1 1� 
 � , 1 2� , 
1 5� , 2 , 2 5}�  (i.e. increasing case). The in-control ARL  is 0 370 4ARL 
 � . 

 5n 
  

�  0 0 05� 
 �  0 0 1� 
 �  0 0 15� 
 �  0 0 2� 
 �  

0.5 (51 5 51 0)� � �  (51 8 51 3)� � �  (52 4 51 9)� � �  (53 1 52 6)� � �  

0.6 (102 3 101 8)� � �  (102 9 102 4)� � � (103 8 103 3)� � � (105 1 104 6)� � �  

0.7 (184 7 184 2)� � �  (185 5 185 0)� � � (186 9 186 4)� � � (188 7 188 2)� � �  

0.8 (308 4 307 9)� � �  (309 4 308 9)� � � (310 9 310 4)� � � (313 0 312 5)� � �  

0.9 (445 7 445 2)� � �  (446 1 445 6)� � � (446 6 446 1)� � � (447 3 446 8)� � �  

1.1 (159 9 159 4)� � �  (160 6 160 1)� � � (162 0 161 5)� � � (164 0 163 4)� � �  

1.2 (64 7 64 2)� � �  (65 3 64 8)� � �  (66 4 65 9)� � �  (68 1 67 6)� � �  

1.5 (10 6 10 1)� � �  (10 8 10 3)� � �  (11 1 10 6)� � �  (11 6 11 1)� � �  

2.0 (2 9 2 3)� � �  (2 9 2 4)� � �  (3 1 2 5)� � �  (3 2 2 7)� � �  

2.5 (1 7 1 1)� � �  (1 8 1 2)� � �  (1 8 1 2)� � �  (1 9 1 3)� � �  

 7n 
  

�  0 0 05� 
 �  0 0 1� 
 �  0 0 15� 
 �  0 0 2� 
 �  

0.5 (18 4 17 9)� � �  (18 6 18 1)� � �  (18 9 18 4)� � �  (19 3 18 8)� � �  

0.6 (45 7 45 2)� � �  (46 1 45 6)� � �  (46 8 46 3)� � �  (47 7 47 2)� � �  

0.7 (102 8 102 3)� � �  (103 5 103 0)� � � (104 8 104 3)� � � (106 5 106 0)� � �  

0.8 (212 1 211 6)� � �  (213 2 212 7)� � � (215 0 214 5)� � � (217 5 217 0)� � �  

0.9 (384 2 383 7)� � �  (385 0 384 5)� � � (386 2 385 7)� � � (387 8 387 3)� � �  

1.1 (141 2 140 7)� � �  (142 2 141 7)� � � (143 8 143 3)� � � (146 1 145 6)� � �  

1.2 (50 3 49 8)� � �  (50 9 50 4)� � �  (52 0 51 5)� � �  (53 7 53 2)� � �  

1.5 (7 2 6 7)� � �  (7 4 6 8)� � �  (7 6 7 1)� � �  (8 0 7 5)� � �  

2.0 (2 1 1 5)� � �  (2 1 1 5)� � �  (2 2 1 6)� � �  (2 3 1 7)� � �  

2.5 (1 3 0 7)� � �  (1 4 0 7)� � �  (1 4 0 8)� � �  (1 5 0 8)� � �  

 10n 
  

�  0 0 05� 
 �  0 0 1� 
 �  0 0 15� 
 �  0 0 2� 
 �  

0.5 (6 2 5 7)� � �  (6 2 5 7)� � �  (6 4 5 8)� � �  (6 5 6 0)� � �  

0.6 (17 9 17 4)� � �  (18 1 17 6)� � �  (18 5 18 0)� � �  (19 0 18 5)� � �  

0.7 (50 1 49 6)� � �  (50 7 50 2)� � �  (51 5 51 0)� � �  (52 8 52 3)� � �  

0.8 (131 7 131 2)� � �  (132 7 132 2)� � � (134 5 134 0)� � � (136 8 136 3)� � �  

0.9 (311 6 311 1)� � �  (312 8 312 3)� � � (314 6 314 1)� � � (317 1 316 6)� � �  

1.1 (120 3 119 8)� � �  (121 3 120 8)� � � (123 1 122 6)� � � (125 7 125 2)� � �  

1.2 (37 1 36 6)� � �  (37 7 37 2)� � �  (38 7 38 2)� � �  (40 2 39 7)� � �  

1.5 (4 8 4 2)� � �  (4 9 4 4)� � �  (5 1 4 6)� � �  (5 4 4 9)� � �  

2.0 (1 5 0 9)� � �  (1 6 0 9)� � �  (1 6 1 0)� � �  (1 7 1 1)� � �  

2.5 (1 1 0 4)� � �  (1 1 0 4)� � �  (1 2 0 4)� � �  (1 2 0 5)� � �  

 15n 
  

�  0 0 05� 
 �  0 0 1� 
 �  0 0 15� 
 �  0 0 2� 
 �  

0.5 (2 2 1 6)� � �  (2 2 1 6)� � �  (2 2 1 7)� � �  (2 3 1 7)� � �  

0.6 (6 2 5 6)� � �  (6 3 5 7)� � �  (6 4 5 9)� � �  (6 6 6 1)� � �  

0.7 (20 5 20 0)� � �  (20 8 20 2)� � �  (21 2 20 7)� � �  (21 9 21 4)� � �  

0.8 (70 1 69 6)� � �  (70 9 70 4)� � �  (72 2 71 7)� � �  (74 0 73 5)� � �  

0.9 (229 9 229 4)� � �  (231 3 230 8)� � � (233 6 233 1)� � � (236 7 236 2)� � �  

1.1 (95 8 95 3)� � �  (96 9 96 4)� � �  (98 8 98 3)� � �  (101 3 100 8)� � �  

1.2 (25 0 24 5)� � �  (25 5 25 0)� � �  (26 3 25 8)� � �  (27 5 27 0)� � �  

1.5 (3 0 2 5)� � �  (3 1 2 5)� � �  (3 2 2 7)� � �  (3 4 2 9)� � �  

2.0 (1 2 0 5)� � �  (1 2 0 5)� � �  (1 2 0 5)� � �  (1 3 0 6)� � �  

2.5 (1 0 0 2)� � �  (1 0 0 2)� � �  (1 0 0 2)� � �  (1 1 0 2)� � �  
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Table 2. Optimal chart parameter
 2 3K  

�  and corresponding
 1 1( )ARL SDRL�  of the 

RR 2 3 �� �
 
chart, for {5n 
 , 7 , 10 , 15} ,

 0 {0 05� 
 � , 0 1� , 0 15� , 0 2}� , {0 5� 
 � , 0 6� , 
0 7� , 0 8� , 0 9}�  (i.e. decreasing case) and {1 1� 
 � , 1 2� , 1 5� , 2 , 2 5}�  (i.e. increasing 

case). The in-control ARL  is 0 370 4ARL 
 � . 

 5n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  2 3 1 934K  
� 
 �

 2 3 1 936K  
� 
 �

 2 3 1 942K  
� 
 �

 2 3 1 949K  
� 
 �

 
0.5 �( )39.7 38.0  ( , )43.8 42.1  ( , )52.2 50.5  (68 7 67 0)� � �  
0.6 (118 9 117 1)� � �  (132 6 130 7)� � � (161 0 159 1)� � � (217 7 215 8)� � �  
0.7 (329 4 327 5)� � �  (369 5 367 6)� � � (453 2 451 3)� � � (621 3 619 4)� � �  
0.8 (825 4 823 5)� � �  (925 9 924 0)� � � (1134 4 1132 4)� � � (1547 1 1545 2)� � �  
0.9 (1179 5 1177 5)� � �  (1251 4 1249 5)� � � (1376 9 1375 0)� � � (1558 5 1556 6)� � �  
1.1 �( )101.6 99.8  ( , )101.5 99.7  ( , )101.5 99.7  ( , )101.7 99.9  
1.2 ( , )39.1 37.4  ( , )39.3 37.6  ( , )39.6 37.8  ( , )40.0 38.3  
1.5 ( , )8.3 6.8  ( , )8.4 6.8  ( , )8.5 7.0  ( , )8.8 7.2  
2.0 (3 4 1 9)� � �  (3 4 1 9)� � �  (3 5 2 0)� � �  (3 6 2 1)� � �  
2.5 (2 6 1 0)� � �  (2 6 1 0)� � �  (2 6 1 0)� � �  (2 7 1 1)� � �  

 7n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  
2 3 1 930K  
� 
 �

 2 3 1 932K  
� 
 �

 2 3 1 935K  
� 
 �

 2 3 1 940K  
� 
 �

 
0.5 ( , )8.2 6.7  ( , )8.6 7.1  ( , )9.3 7.8  ( , )10.5 9.0  
0.6 ( , )24.1 22.5  ( , )25.6 23.9  ( , )28.4 26.7  ( , )33.2 31.5  
0.7 ( , )76.8 75.0  ( , )82.3 80.5  ( , )92.7 90.9  ( , )110.9 109.0  
0.8 (245 0 243 1)� � �  (263 5 261 6)� � � (299 1 297 2)� � � (361 2 359 3)� � �  
0.9 (651 1 649 2)� � �  (690 6 688 7)� � � (763 1 761 2)� � � (880 1 878 1)� � �  
1.1 ( , )88.4 86.7  ( , )88.3 86.5  ( , )88.2 86.4  ( , )88.2 86.4  
1.2 ( , )30.3 28.6  ( , )30.4 28.8  ( , )30.7 29.0  ( , )31.1 29.4  
1.5 ( , )6.0 4.5  ( , )6.1 4.6  ( , )6.2 4.7  ( , )6.4 4.9  
2.0 (2 7 1 2)� � �  (2 8 1 2)� � �  (2 8 1 2)� � �  (2 9 1 3)� � �  
2.5 (2 2 0 5)� � �  (2 2 0 6)� � �  (2 3 0 6)� � �  (2 3 0 7)� � �  

 10n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  
2 3 1 930K  
� 
 �

 2 3 1 931K  
� 
 �

 2 3 1 933K  
� 
 �

 2 3 1 936K  
� 
 �

 
0.5 ( , )3.4 1.8  ( , )3.4 1.9  ( , )3.6 2.0  ( , )3.7 2.2  
0.6 ( , )7.9 6.3  ( , )8.2 6.6  ( , )8.7 7.1  ( , )9.5 7.9  
0.7 ( , )25.0 23.4  ( , )26.2 24.6  ( , )28.4 26.7  ( , )31.9 30.2  
0.8 ( , )95.0 93.2  ( , )100.1 98.3  ( , )109.6 107.7 ( , )125.0 123.2  
0.9 (368 8 366 9)� � �  (387 6 385 7)� � � (421 8 419 9)� � � (476 6 474 7)� � �  
1.1 ( , )73.9 72.2  ( , )73.9 72.2  ( , )74.0 72.2  ( , )74.1 72.3  
1.2 ( , )22.4 20.7  ( , )22.5 20.9  ( , )22.8 21.2  ( , )23.3 21.6  
1.5 ( , )4.4 2.9  ( , )4.4 2.9  ( , )4.5 3.0  ( , )4.6 3.1  
2.0 (2 3 0 7)� � �  (2 3 0 7)� � �  (2 4 0 7)� � �  (2 4 0 8)� � �  
2.5 (2 1 0 3)� � �  (2 1 0 3)� � �  (2 1 0 3)� � �  (2 1 0 4)� � �  

 15n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  
2 3 1 929K  
� 
 �

 2 3 1 930K  
� 
 �

 2 3 1 931K  
� 
 �

 2 3 1 933K  
� 
 �

 
0.5 ( , )2.2 0.5  ( , )2.2 0.5  ( , )2.2 0.6  ( , )2.3 0.6  
0.6 ( , )3.5 2.0  ( , )3.6 2.1  ( , )3.7 2.2  ( , )3.8 2.3  
0.7 ( , )9.2 7.7  ( , )9.5 8.0  ( , )10.0 8.5  ( , )10.8 9.2  
0.8 ( , )37.4 35.7  ( , )38.9 37.2  ( , )41.6 39.9  ( , )45.9 44.1  
0.9 ( , )200.6 198.7  ( , )208.9 207.1 ( , )223.8 221.9 ( , )247.0 245.1  
1.1 ( , )57.4 55.6  ( , )57.6 55.8  ( , )57.8 56.1  ( , )58.3 56.5  
1.2 ( , )15.3 13.7  ( , )15.4 13.8  ( , )15.7 14.1  ( , )16.1 14.5  
1.5 (3 2 1 7)� � �  (3 2 1 7)� � �  (3 3 1 8)� � �  (3 4 1 9)� � �  
2.0 (2 1 0 3)� � �  (2 1 0 3)� � �  (2 1 0 4)� � �  (2 1 0 4)� � �  
2.5 (2 0 0 1)� � �  (2 0 0 1)� � �  (2 0 0 1)� � �  (2 0 0 1)� � �  
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Table 3. Optimal chart parameter 3 4K  
�  and corresponding 1 1( )ARL SDRL�  of the 

RR 3 4 �� �  chart, for {5n 
 , 7 , 10 , 15} , 0 {0 05� 
 � , 0 1� , 0 15� , 0 2}� , {0 5� 
 � , 0 6� , 

0 7� , 0 8� , 0 9}�  (i.e. decreasing case) and {1 1� 
 � , 1 2� , 1 5� , 2 , 2 5}�  (i.e. increasing 

case). The in-control ARL  is 0 370 4ARL 
 � . 

 5n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  3 4 1 392K  
� 
 �

 3 4 1 390K  
� 
 � 3 4 1 387K  

� 
 � 3 4 1 381K  
� 
 �

 
0.5 ( , )8.3 6.0  ( , )8.4 6.1  ( , )8.7 6.3  ( , )9.0 6.6  
0.6 ( , )19.9 17.4  ( , )20.3 17.8 ( , )21.0 18.5 ( , )22.1 19.6  
0.7 ( , )53.7 51.1  ( , )55.0 52.3 ( , )57.2 54.5 ( , )60.4 57.7  
0.8 ( , )151.0 148.2  ( , )154.7 151.9 ( , )161.0 158.2 ( , )170.4 167.6  
0.9 ( , )388.7 385.8 ( , )396.3 393.4 ( , )409.2 406.3 ( , )427.9 424.9
1.1 ( , )120.9 118.1  ( , )120.9 118.1 ( , )120.8 118.0 ( , )120.9 118.1  
1.2 ( , )46.0 43.4  ( , )46.2 43.6 ( , )46.5 43.9 ( , )47.0 44.4  
1.5 ( , )10.0 7.6  ( , )10.1 7.7  ( , )10.3 7.9 ( , )10.5 8.1  
2.0 (4 5 2 1)� � �  (4 5 2 2)� � �  (4 6 2 2)� � �  (4 7 2 3)� � �  
2.5 (3 6 1 0)� � �  (3 6 1 1)� � �  (3 6 1 1)� � �  (3 7 1 2)� � �  

 7n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  3 4 1 393K  
� 
 �

 3 4 1 392K  
� 
 � 3 4 1 389K  

� 
 � 3 4 1 386K  
� 
 �

 
0.5 ( , )4.5 2.1  ( , )4.5 2.1  ( , )4.6 2.2  ( , )4.7 2.3  
0.6 ( , )8.8 6.5  ( , )9.0 6.6  ( , )9.2 6.9  ( , )9.5 7.2  
0.7 ( , )23.5 21.0  ( , )24.0 21.5 ( , )24.8 22.3 ( , )26.1 23.5  
0.8 ( , )76.3 73.6  ( , )78.1 75.3 ( , )81.0 78.3 ( , )85.3 82.6  
0.9 ( , )265.5 262.6 ( , )270.7 267.8 ( , )279.6 276.7 ( , )292.4 289.5
1.1 ( , )101.0 98.2  ( , )101.1 98.4 ( , )101.5 98.7 ( , )102.0 99.2  
1.2 ( , )33.8 31.2  ( , )34.0 31.4 ( , )34.5 31.9 ( , )35.1 32.5  
1.5 ( , )7.1 4.8  ( , )7.2 4.9  ( , )7.4 5.0  ( , )7.6 5.2  
2.0 (3 7 1 2)� � �  (3 7 1 2)� � �  (3 8 1 3)� � �  (3 9 1 4)� � �  
2.5 (3 2 0 5)� � �  (3 2 0 6)� � �  (3 2 0 6)� � �  (3 3 0 7)� � �  

 10n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  3 4 1 393K  
� 
 �

 3 4 1 392K  
� 
 � 3 4 1 391K  

� 
 � 3 4 1 388K  
� 
 �

 
0.5 ( , )3.3 0.7  ( , )3.3 0.7  ( , )3.3 0.8  ( , )3.4 0.8  
0.6 ( , )5.0 2.6  ( , )5.0 2.7  ( , )5.1 2.7  ( , )5.2 2.9  
0.7 ( , )11.4 9.0  ( , )11.6 9.2 ( , )11.9 9.5 ( , )12.4 10.0  
0.8 ( , )38.8 36.2  ( , )39.7 37.1 ( , )41.1 38.5 ( , )43.1 40.5  
0.9 ( , )174.6 171.7  ( , )178.0 175.1 ( , )183.7 180.9 ( , )192.1 189.2  
1.1 ( , )80.1 77.4  ( , )80.5 77.7 ( , )81.1 78.4 ( , )82.0 79.2  
1.2 ( , )23.7 21.2  ( , )24.0 21.5 ( , )24.4 21.9 ( , )25.1 22.5  
1.5 (5 3 2 9)� � �  (5 3 3 0)� � �  (5 4 3 1)� � �  (5 6 3 2)� � �  
2.0 (3 3 0 6)� � �  (3 3 0 7)� � �  (3 3 0 7)� � �  (3 4 0 8)� � �  
2.5 (3 1 0 2)� � �  (3 1 0 3)� � �  (3 1 0 3)� � �  (3 1 0 3)� � �  
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Table 3. (Continued). 

 15n 
  
 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  
�  3 4 1 393K  

� 
 �
 3 4 1 393K  

� 
 � 3 4 1 391K  
� 
 � 3 4 1 390K  

� 
 �
 

0.5 (3 0 0 2)� � �  (3 0 0 2)� � �  (3 0 0 2)� � �  (3 0 0 2)� � �  
0.6 ( , )3.5 1.0  ( , )3.5 1.0  ( , )3.5 1.0  ( , )3.6 1.1  
0.7 ( , )6.1 3.7  ( , )6.1 3.8  ( , )6.3 3.9  ( , )6.5 4.1  
0.8 ( , )19.0 16.6  ( , )19.4 16.9 ( , )20.0 17.5 ( , )20.9 18.4  
0.9 ( )105.5,102.8 ( , )107.6 104.8 ( , )111.0 108.3 ( , )116.0 113.2
1.1 ( , )58.6 55.9  ( , )59.1 56.4 ( , )59.9 57.2 ( , )61.0 58.3  
1.2 ( , )15.7 13.2  ( , )15.9 13.5 ( , )16.2 13.8 ( , )16.7 14.3  
1.5 (4 0 1 6)� � �  (4 1 1 7)� � �  (4 1 1 7)� � �  (4 2 1 8)� � �  
2.0 (3 1 0 3)� � �  (3 1 0 3)� � �  (3 1 0 3)� � �  (3 1 0 4)� � �  
2.5 (3 0 0 1)� � �  (3 0 0 1)� � �  (3 0 0 1)� � �  (3 0 0 1)� � �  

 

 

Table 4. Optimal chart parameter 4 5K  
�  and corresponding 1 1( )ARL SDRL�  of the 

RR 4 5 �� �  chart, for {5n 
 , 7 , 10 , 15} , 0 {0 05� 
 � , 0 1� , 0 15� , 0 2}� , {0 5� 
 � , 0 6� , 

0 7� , 0 8� , 0 9}�  (i.e. decreasing case) and {1 1� 
 � , 1 2� , 1 5� , 2 , 2 5}�  (i.e. increasing 

case). The in-control ARL  is 0 370 4ARL 
 � . 

 5n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  4 5 1 051K  
� 
 �

 4 5 1 049K  
� 
 � 4 5 1 046K  

� 
 � 4 5 1 041K  
� 
 �

 
0.5 ( , )6.2 3.0  ( , )6.2 3.0  ( , )6.3 3.1  ( , )6.3 3.1  
0.6 ( , )11.8 8.6  ( , )11.8 8.7  ( , )12.0 8.8  ( , )12.2 9.0  
0.7 ( , )28.4 25.1  ( , )28.6 25.3 ( , )29.0 25.7 ( , )29.5 26.2  
0.8 ( , )80.0 76.4  ( , )80.6 77.1 ( , )81.6 78.1 ( , )83.0 79.4  
0.9 ( , )236.5 232.7  ( , )237.5 233.8 ( , )239.3 235.5 ( , )241.6 237.8  
1.1 ( , )144.5 140.8  ( , )145.3 141.6 ( , )146.6 142.9 ( , )148.4 144.7  
1.2 ( , )54.4 50.9  ( , )54.9 51.4 ( , )55.8 52.3 ( , )57.0 53.5  
1.5 (11 8 8 7)� � �  (12 0 8 8)� � �  (12 2 9 1)� � �  (12 6 9 4)� � �  
2.0 (5 6 2 4)� � �  (5 7 2 4)� � �  (5 7 2 5)� � �  (5 9 2 7)� � �  
2.5 (4 6 1 1)� � �  (4 6 1 2)� � �  (4 7 1 2)� � �  (4 7 1 3)� � �  

 
7n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  4 5 1 049K  
� 
 �

 4 5 1 048K  
� 
 � 4 5 1 045K  

� 
 � 4 5 1 041K  
� 
 �

 
0.5 ( , )4.6 1.1  ( , )4.6 1.2  ( , )4.6 1.2  ( , )4.6 1.2  
0.6 ( , )6.9 3.8  ( , )7.0 3.8  ( , )7.1 3.9  ( , )7.2 4.0  
0.7 ( , )15.2 12.0  ( , )15.3 12.1 ( , )15.6 12.4 ( , )15.9 12.7  
0.8 ( , )45.9 42.5  ( , )46.3 42.9 ( , )47.1 43.7 ( , )48.2 44.8  
0.9 ( , )172.5 168.8  ( , )173.7 170.0 ( , )175.7 172.0 ( , )178.4 174.7  
1.1 ( , )114.8 111.1  ( , )115.6 112.0 ( , )117.1 113.4 ( , )119.1 115.5  
1.2 ( , )37.8 34.4  ( , )38.3 34.9 ( , )39.0 35.7 ( , )40.1 36.7  
1.5 (8 4 5 2)� � �  (8 5 5 3)� � �  (8 6 5 5)� � �  (8 9 5 8)� � �  
2.0 (4 7 1 3)� � �  (4 7 1 3)� � �  (4 8 1 4)� � �  (4 9 1 5)� � �  
2.5 (4 2 0 5)� � �  (4 2 0 6)� � �  (4 2 0 6)� � �  (4 3 0 7)� � �  
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Table 4. (Continued). 

 
10n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  4 5 1 047K  
� 
 �

 4 5 1 046K  
� 
 � 4 5 1 045K  

� 
 � 4 5 1 042K  
� 
 �

 
0.5 ( , )4.1 0.4  ( , )4.1 0.4  ( , )4.1 0.4  ( , )4.1 0.4  
0.6 ( , )5.0 1.6  ( , )5.0 1.7  ( , )5.0 1.7  ( , )5.1 1.8  
0.7 ( , )8.9 5.8  ( , )9.0 5.9  ( , )9.1 6.0  ( , )9.3 6.2  
0.8 ( , )26.1 22.8  ( , )26.4 23.1 ( , )26.9 23.6 ( , )27.6 24.3  
0.9 ( , )119.1 115.5  ( , )120.3 116.6 ( , )122.1 118.5 ( , )124.6 121.0  
1.1 ( , )86.9 83.3  ( , )87.7 84.2 ( , )89.2 85.6 ( , )91.2 87.7  
1.2 ( , )25.6 22.3  ( , )26.0 22.7 ( , )26.6 23.3 ( , )27.5 24.2  
1.5 (6 2 3 1)� � �  (6 3 3 1)� � �  (6 4 3 3)� � �  (6 6 3 4)� � �  
2.0 (4 2 0 6)� � �  (4 3 0 7)� � �  (4 3 0 7)� � �  (4 3 0 8)� � �  
2.5 (4 0 0 2)� � �  (4 1 0 2)� � �  (4 1 0 3)� � �  (4 1 0 3)� � �  

 15n 
  

 0 0 05� 
 �  0 0 10� 
 �  0 0 15� 
 �  0 0 20� 
 �  

�  4 5 1 046K  
� 
 �

 4 5 1 045K  
� 
 � 4 5 1 044K  

� 
 � 4 5 1 042K  
� 
 �

 
0.5 (4 0 0 1)� � �  (4 0 0 1)� � �  (4 0 0 1)� � �  (4 0 0 1)� � �  
0.6 ( , )4.2 0.6  ( , )4.2 0.6  ( , )4.2 0.6  ( , )4.2 0.6  
0.7 ( , )5.8 2.6  ( , )5.8 2.6  ( , )5.9 2.7  ( , )6.0 2.8  
0.8 ( , )14.4 11.3  ( , )14.6 11.5 ( , )14.9 11.7 ( , )15.3 12.2  
0.9 ( , )75.3 71.8  ( , )76.2 72.6 ( , )77.6 74.1 ( , )79.6 76.1  
1.1 ( , )60.9 57.4  ( , )61.6 58.2 ( , )62.9 59.4 ( , )64.7 61.2  
1.2 ( , )16.6 13.4  ( , )16.8 13.6 ( , )17.3 14.1 ( , )17.9 14.7  
1.5 (4 9 1 6)� � �  (5 0 1 7)� � �  (5 0 1 7)� � �  (5 1 1 8)� � �  
2.0 (4 1 0 2)� � �  (4 1 0 3)� � �  (4 1 0 3)� � �  (4 1 0 3)� � �  
2.5 (4 0 0 1)� � �  (4 0 0 1)� � �  (4 0 0 1)� � �  (4 0 0 1)� � �  

 

     In Tables 2, 3 and 4, the couples 1 1( )ARL SDRL�  in bold characters are the ones for 

which 1ARL  is smaller than for the SH ��  chart. As it can be immediately noticed, the cases 

where the SH ��  chart outperforms the RR 2 3 �� � , RR 3 4 �� �  and RR 4 5 �� �  charts are 

confined to large values (i.e. increasing case) of � , say 1 5� � � . When [0 5 1 5)� � � � � , the 

RR 2 3 �� � , RR 3 4 �� �  and RR 4 5 �� �  charts always outperform the SH ��  chart. In order to 

have an overall evaluation of these charts, Table 5 summarizes which chart has the smaller 

1ARL  values for different combinations of {5n 
 , 7 , 10 , 15} , 0 {0 05� 
 � , 0 1� , 0 15� , 

0 2}� , {0 5� 
 � , 0 6� , 0 7� , 0 8� , 0 9}�  (i.e. decreasing case) and {1 1� 
 � , 1 2� , 1 5� , 2 , 2 5}�  

(i.e. increasing case). Some conclusions can be drawn from Table 5:  

�� when 1� 	  and n  is small (i.e. {5 7}n 
 � ) the RR 4 5 �� �  chart tends, in general, to 

outperform the other charts,  

�� when 1� 	  and n  is larger (i.e. {10 15}n 
 � ) the RR 2 3 �� �  or RR 3 4 �� �  chart 

tends to be more efficient,  

�� when [1 1 5)� � � � , the RR 2 3 �� �  chart outperforms the other charts.  

�� when 1 5� � �  the best choice is the SH ��  chart.  
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Table 5. Best control charts for {5n 
 , 7 , 10 , 15} , 0 {0 05� 
 � , 0 1� , 0 15� , 0 2}� , 
{0 5� 
 � , 0 6� , 0 7� , 0 8� , 0 9}�  (i.e. decreasing case) and {1 1� 
 � , 1 2� , 1 5� , 2 , 

2 5}�  (i.e. increasing case). 

 5� 
  

�  0 0 05� 
 � 0 0 1� 
 � 0 0 15� 
 � 0 0 2� 
 �
0.5 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.6 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.7 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.8 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.9 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
1.1 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
1.2 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
1.5 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
2.0 SH ��  SH ��  SH ��  SH ��  

2.5 SH ��  SH ��  SH ��  SH ��  

 7� 
  

�  0 0 05� 
 � 0 0 1� 
 � 0 0 15� 
 � 0 0 2� 
 �
0.5 RR 3 4 �� � RR 3 4 �� � RR 4 5 �� � RR 4 5 �� �
0.6 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.7 RR

4 5 �� � RR
4 5 �� � RR

4 5 �� � RR
4 5 �� �

0.8 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.9 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
1.1 RR

2 3 �� � RR
2 3 �� � RR

2 3 �� � RR
2 3 �� �

1.2 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
1.5 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
2.0 SH ��  SH ��  SH ��  SH ��  

2.5 SH ��  SH ��  SH ��  SH ��  

 10� 
  

�  0 0 05� 
 � 0 0 1� 
 � 0 0 15� 
 � 0 0 2� 
 �
0.5 RR 3 4 �� � RR 3 4 �� � RR 3 4 �� � RR 3 4 �� �
0.6 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.7 RR

4 5 �� � RR
4 5 �� � RR

4 5 �� � RR
4 5 �� �

0.8 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.9 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
1.1 RR

2 3 �� � RR
2 3 �� � RR

2 3 �� � RR
2 3 �� �

1.2 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
1.5 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
2.0 SH ��  SH ��  SH ��  SH ��  

2.5 SH ��  SH ��  SH ��  SH ��  

 15� 
  

�  0 0 05� 
 � 0 0 1� 
 � 0 0 15� 
 � 0 0 2� 
 �
0.5 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
0.6 RR

3 4 �� � RR
3 4 �� � RR

3 4 �� � RR
3 4 �� �

0.7 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.8 RR 4 5 �� � RR 4 5 �� � RR 4 5 �� � RR 4 5 �� �
0.9 RR

4 5 �� � RR
4 5 �� � RR

4 5 �� � RR
4 5 �� �

1.1 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
1.2 RR 2 3 �� � RR 2 3 �� � RR 2 3 �� � RR 2 3 �� �
1.5 SH ��  SH ��  SH ��  SH ��  

2.0 SH ��  SH ��  SH ��  SH ��  

2.5 SH ��  SH ��  SH ��  SH ��  
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As we already stressed in the Introduction section, the use of supplementary run rules is 

clearly an intermediate solution between pure Shewhart type charts (easy and well accepted 

in industry) and more advanced charts like EWMA (or CUSUM) and synthetic type charts 

(viewed as more complex and not so spread in industry). The consequence is that the results 

in terms of out-of-control 1ARL  values are globally not in favor of the RR ��  charts. 

Concerning the EWMA-CV 2
 chart, a comparison between Tables 2–4 and Tables 1 and 2 in 

Castagliola et al. [7] clearly demonstrates that the EWMA-CV 2 chart outperforms the 

RR �� charts for any shift [0 5 2 5]� � � � � . Concerning the SynCV chart, the results are more 

contrasted. In the case of an increasing shift, based on Tables 5 and 6 in Calzada and Scariano 

[5], the SynCV chart also outperforms the RR ��  charts for any shift 1� � . But, in the case of 

a decreasing shift [0 5 1)� � � �  (not evaluated in Calzada and Scariano [5]), the computations 

we conducted demonstrate that the RR ��  charts outperform the SynCV chart. For instance, 

if we consider the case 5n 
 , 0 0 05� 
 �  and 0 5� 
 � , 1ARL  for the SynCV chart is 74 7�  (the 

control limits are 0 01222LCL 
 �  and 0 08183UCL 
 � ) while, for the RR 2 3 �� �  chart 

1 39 7ARL 
 �  (for the same conditions, 1 8 3ARL 
 � for the RR 3 4 �� �  chart and 1 6 2ARL 
 �  

for the RR 4 5 �� �  chart, i.e. even better).  

 

Table 6. Phase I and phase II datasets from a sintering process. 

Phase I Phase II 

k  kX  kS  �̂ k
 k kX  kS  �̂ k

 

1  664.2  268.9 0.405  1 906.4 476.0 0.525   
2  705.6  308.6 0.437  2 805.1 493.9 0.614   
3  1051.5  539.9 0.513  3 1584.7 1050.8 0.663   
4  1047.3  359.0 0.343  4 663.4 304.8 0.459   
5  618.2  136.3 0.221  5 1012.1 367.4 0.363   
6  781.4  446.4 0.571  6 863.2 350.4 0.406   
7  797.8  342.5 0.429  7 1068.3 150.8 0.141   
8  678.9  275.4 0.406  8 697.1 253.2 0.363   
9  848.3  320.5 0.378  9 1024.6 120.9 0.118   

10  1015.3  453.7 0.447  10 355.3 235.2 0.662   
11  777.4  276.4 0.356  11 485.6 106.5 0.219   
12  813.9  170.7 0.210  12 1224.3 915.4 0.748   
13  716.9  397.4 0.554  13 1365.0 1051.6 �����   
14  937.6  421.2 0.449  14 704.0 449.7 �����   
15  915.1  331.9 0.363  15 1187.2 1105.9 ����	   
16  873.2  285.0 0.326  16 1130.0 680.6 0.602   
17  984.3  573.7 0.583  17 824.7 393.5 0.477   
18  819.3  156.2 0.191  18 921.2 391.6 0.425   
19  839.0  244.0 0.291  19 870.3 730.0 0.839   
20  585.8  322.3 0.550  20 1561.0 1652.2 1.058   

 

5. An Illustrative Example 

The proposed example considers actual data from a sintering process (an operation of 

powder metallurgy whereby compressed metal powder is heated to a temperature that allows 

bonding of the individual particles) kindly provided by an Italian company that manufactures 

sintered mechanical parts. The process manufactures parts which are required to guarantee a 

pressure test drop time pdT  from 2 bar to 1.5 bar larger than 30 sec as a quality characteristic 

related to the pore shrinkage. Using molten copper to fill pores during the sintering process 

allows the drop time to be significantly extended. In fact, the larger the quantity CQ  of 
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molten copper absorbed within the sintered compact during cooling, the larger is the expected 

pressure drop time pdT . A preliminary regression study relating pdT  to the quantity CQ  of 

molten copper has demonstrated the presence of a constant proportionality pd pd pd� � �
 �  

between the standard deviation of the pressure drop time and its mean. To perform SPC by 

means of control charts the quality practitioner decided to monitor the coefficient of variation 

pd pd pd� � �
 �  in order to detect changes in the process variability. Given the nominal 

quantity of copper CQ , a Phase I dataset of 20m 
  sample data, each having sample size 

5n 
 , have been collected; they are listed in Table 6 (left side). The analysis of the Phase I 

data resulted in an estimate 0
ˆ 0 417� 
 �  based on a root-mean-square computation and 

proved that the sintering process is perfectly in-control. 

To design the charts, the assumed increase in the coefficient of variation was set equal to 

1 25� 
 � . In fact, accordingly to the process engineer experience, a shift of 25% in the 

coefficient of variation should be interpreted as a signal that something is going wrong in the 

production of the parts. The parameters of the RR 2 3 �� � , RR 3 4 �� �  and RR 4 5 �� �  charts 

which are optimal for detecting a shift from 0 0 417� 
 �  to 1 0 1 25 0 521� �
 � � 
 �  (i.e. 

increase of 25%) when 5n 
  are found by the optimizing algorithm to be 2 3 2 017K  
� 
 � , 

3 4 1 325K  
� 
 �  and 4 5 0 989K  

� 
 � , respectively. The corresponding couples 1 1( )ARL SDRL�  

are (32 8 31 1)� � � , (36 7 34 1)� � �  and (47 4 44 0)� � � , respectively (to be compared with 

(58 8 58 3)� � �  for the SH ��  chart). The most efficient chart in this case seems to be the 

RR 2 3 �� �  chart. Using (5) and (6) we have 0
ˆ( ) 0 4074� � 
 � , 0

ˆ( ) 0 1733� � 
 �  and the warning 

limits of the RR 2 3 �� �  chart are  

0 4074 2 017 0 1733 0 0579

0 4074 2 017 0 1733 0 7569

LWL

UWL


 � � � � � 
 �


 � � � � � 
 �
 

A second set of data collected during Phase II of the chart implementation are presented 

in Table 6 (right side). These data consist of 20 new samples taken from the process after the 

occurrence of a special cause increasing process variability. The ˆ
k� , the warning limits 

0 0579LWL 
 �  and 0 7569UWL 
 �  of the RR 2 3 �� �  chart and the “ 3� ” upper control limit 

0 4074 3 0 1733 0 9273UCL 
 � � � � 
 �  are plotted in Figure 2 (remark: the “ 3� ” lower control 

limit 0 4074 3 0 1733 0 1125LCL 
 � � � � 
 � �  is not used). As it can be noticed, the RR 2 3 �� �  

chart detects an out-of-control situation (in bold in Table 6), at the 15th sample, confirming 

the occurrence of a special cause as it was expected by the engineers.  

 

  

Figure 2. RR 2 3 �� �  chart applied to the sintering process (Phase II). 
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6. Conclusions 

Monitoring the coefficient of variation CV by means of a control chart is receiving 

growing attention in the context of SPC. There are many situations in which the sample mean 

and standard deviation vary naturally in a proportional manner when the process is in-control, 

in which case X  and S  control charts cannot be implemented. In this paper several run 

rules type control charts are proposed to monitor the CV. An ARL  computation based on a 

Markov Chain approach has been performed and optimal chart parameters K  
 (i.e. in our 

case 2 3K  
� , 3 4K  

�  and 4 5K  
� ) have been proposed in order to detect specific shift size 

conditions. A comparison with the SH ��  chart highlighted the following recommendations: 

when 1� 	  and n  is small (i.e. {5 7}n 
 � ) the RR 4 5 �� �  chart tends, in general, to 

outperform the other charts, when 1� 	  and n  is larger (i.e. {10 15}n 
 � ) the RR 2 3 �� �  or 

RR 3 4 �� �  chart tends to be more efficient, when [1 1 5)� � � � , the RR 2 3 �� �  chart outperforms 

the other charts and, finally, when 1 5� � �  the best choice is the SH ��  chart. The 

implementation of the proposed charts on a real set of data gathered from an industrial field 

showed how to implement the CV monitoring.   

Future research should firstly be focused on extending the study to other strategies like 

the synthetic chart, adaptive type control charts (VSI and VSS) and the CUSUM chart. Since 

the value of the in-control CV 0�  is rarely perfectly known, it is usually estimated from an 

in-control historical data set (Phase I). It is well known that when in-control parameters are 

estimated, the performance of control charts differs from the known parameters case due to 

the variability of the estimators used during the Phase I. A second research direction will be 

focused on evaluating the statistical performances of CV type charts when the in-control CV 

0�  is estimated, in order to provide guidelines about the number of Phase I samples to be 

used in practice and to suggest new specific chart parameters to be used in the estimated 

parameter case allowing similar in-control ARL ’s as for the known parameter case. Finally, 

a systematic study of the relation between a shift in the process mean and/or dispersion and 

the shift of the coefficient of variation would provide a deeper understanding about how the 

charts monitoring CV are expected to react to out of control conditions originated by different 

special causes. 
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