STUDENT NAME: _____

TEACHER: _____

THE HILLS GRAMMAR SCHOOL

TASK 4 Trial Examination 2015

YEAR 12

MATHEMATICS

Time Allowed:

Three hours (plus five minutes reading time)

Weighting:

40%

Instructions:

- Approved calculators may be used
- Attempt all questions
- Start all questions on a new sheet of paper
- The marks for each question are indicated on the examination
- Show all necessary working

MCQ	Question 11	Question 12	Question 13	Question 14	Question 15	Question 16	TOTAL
10	15	15	15	15	15	15	100

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1 What is the value of $\frac{(1.49)^2 1.98}{\sqrt{11.62 + 8.34 \times 2.72}}$ correct to three significant figures?
 - (A) 0.040
 - (B) 0.0410
 - (C) 0.0409
 - (D) 0.041

2 Which graph best represents $y = \sqrt{4 - x^2}$?

(B)

(C)

3 What is the correct expression for *AC* in triangle *ABC*?

(A)
$$\frac{15\sin 80^{\circ}}{\sin 40^{\circ}}$$

(B)
$$\frac{15\sin 80^{\circ}}{\sin 60^{\circ}}$$

(C)
$$\frac{15\sin 40^{\circ}}{\sin 60^{\circ}}$$

(D)
$$\frac{\sin 40^{\circ}}{15\sin 80^{\circ}}$$

4 The line 6x - ky = 2 passes through the point (3,2). What is the value of k?

(A)
$$\frac{10}{3}$$

(B) $-\frac{10}{3}$
(C) -8
(D) 8

5 In the diagram below, AB is parallel to FD, $\angle ABC = 100^{\circ}$ and $\angle CEF = 130^{\circ}$

What is the value of $\angle BCE$?

- (A) 100°
- (B) 110°
- (C) 120°
- (D) 130°

6 What is the value of f'(3) if $f(x) = 3x - x^3$?

- (A) f'(3) = -18
- (B) f'(3) = -24
- (C) f'(3) = 0
- (D) f'(3) = 9

7 The diagram below shows part of the graph of $y = x^2 - 2x - 8$.

What is the correct expression for the area bounded by the *x*-axis and the curve $y = x^2 - 2x - 8$ between $0 \le x \le 6$?

(A)
$$A = \int_0^5 x^2 - 2x - 8dx + \left| \int_5^6 x^2 - 2x - 8dx \right|$$

(B)
$$A = \int_0^4 x^2 - 2x - 8dx + \left| \int_4^6 x^2 - 2x - 8dx \right|$$

(C)
$$A = \left| \int_{0}^{5} x^{2} - 2x - 8dx \right| + \int_{5}^{6} x^{2} - 2x - 8dx$$

(D)
$$A = \left| \int_{0}^{4} x^{2} - 2x - 8dx \right| + \int_{4}^{6} x^{2} - 2x - 8dx$$

8 What is the solution to the inequation $x^2 + 4x + 3 \ge 0$?

(A) $x \le 1 \text{ or } x \ge 3$

(B)
$$x \leq -1 \text{ or } x \geq -3$$

(C)
$$x \ge 1 \text{ or } x \le 3$$

(D)
$$x \ge -1 \text{ or } x \le -3$$

9 The sector below has an area of 10π square units.

Not to scale

What is the value of *r*?

10 An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the common ratio?

Section II

90 marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Question 11-16, your responses should include relevant mathematical reasoning and /or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.

_

(a) Find the natural domain of the function
$$f(x) = \sqrt{3} - x$$
.

(b) Find
$$\int x^2 + 1dx$$
 1

(c) Solve $x^2 - x - 1 = 0$ writing your answer in simplest surd form. 2

(d) Differentiate
$$y = \sqrt{9 - 2x^3}$$
.

(e) Evaluate
$$\int_{0}^{3} x^2 - 3dx$$
. 2

(f) Evaluate
$$\lim_{x \to 3} \frac{5x-15}{x^2+4x-21}$$
. 2

(g) Fully simplify
$$(3\sqrt{5} - 2\sqrt{3})^2$$
. 2

(h) Simplify
$$\frac{x-3y}{x^3y} \div \frac{3y-x}{xy^3}$$
. 3

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.

(a) If
$$f'(x) = 6x^2 + 5x - 1$$
 and $f(-1) = 5$, find an expression for $f(x)$. 2

(b) (i) Show that
$$\frac{d}{dx}(x \ln x - x) = \ln x$$
.
(ii) Hence, or otherwise, evaluate $\int_{1}^{e^3} \ln(x) dx$. Leave your answer in exact form. 2

- (c) A particle moves so that its displacement from the origin is given by $x = -t^2 + 7t + 8$ (where x is displacement in metres and t is time in seconds).
 - (i) Show that the initial displacement of the particle is 8 metres. 1
 - (ii) At what time will the particle be at the origin? 2

(d) The line l_1 makes an angle of 135° at the point *B* (3,0). It cuts the *y*-axis at *A*. The line l_2 is parallel to the line l_1 . Its *y*-intercept is *D* (0,1) and its *x*-intercept is *C*.

(i)	Show that the equation of the line l_1 is $x + y - 3 = 0$	2
(ii)	Hence, or otherwise, find the equation of the line l_2 .	1
(iii)	Find the perpendicular distance between the lines l_1 and l_2 .	2
(iv)	Find the area of the quadrilateral ABCD.	2

End of Question 12

2

Question 13 (15 marks) Use the Question 13 Writing Booklet.

- (a) What is the derivative of $\frac{e^x}{x^2}$?
- (b) In the diagram, the line FC bisects AE at F and AD at B. The line AE is parallel to CD.

- (i) Explain why ED = 2BF. 1
- (ii) Prove that $\triangle ABF \equiv \triangle DBC$. 3
- (c) A population of a country grows over time according to $P = P_0 e^{kt}$. The population grew from 350 000 in 2001 to 460 000 in 2005. The rate of population growth is proportional to the population size.

(i) Find the growth rate per year, correct to 3 decimal places.	2
(ii) Find the population of the country in 2015, correct to the nearest person.	1
(iii) Calculate the rate of change of the population in 2021.	2

2

2

- (d) The area enclosed between the curve $y = 4-x^2$ and the line y = 4-2x is rotated about the *x*-axis.
 - (i) Sketch the region between the two graphs.
 - (ii) Find the volume of the solid generated between these two graphs, leaving your answer in terms of π .

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.

(a) Let α and β be roots of the equation $x^2 - 8x + 5 = 0$. Find the value of $\alpha^2 + \beta^2$. 2

(b)	For the function $y = xe^{2x}$,	
	(i) Find the stationary point and determine its nature.	3
	(ii) Find any points of inflection.	3
	(iii) Sketch the function in the domain $-3 \le x \le 0.5$.	2
(c)	Madison is learning to drive. Her first lesson is 10 minutes long. Her second lesson is 15 minutes long. Each subsequent lesson is 5 minutes longer than the previous lesson.	
	(i) How long will Madison's fifteenth lesson be?	1
	(ii) How many minutes of lessons will Madison have completed after her fifteenth lesson?	2
	(iii) During which lesson will Madison have completed a total of 1150 minutes of driving lessons?	2

End of Question 14

Question 15 (15 marks) Use the Question 15 Writing Booklet.

- (a) What are the exact solutions to the equation $e^{6x} 7e^{3x} + 6 = 0$? 3
- (b) Find the equation of the parabola which has its vertex at (2,0) and its directrix is given by x = 5.
- (c) Shown below is a graph of the derivative function y = g'(x).

- (i) If the function y = g(x) were to be drawn using information from the graph above, what feature would exist on the graph at x = 2? Justify your answer.
- (ii) In your answer booklet, draw a neat sketch of a possible function for y = g(x) given that g(0) = 0. 2

(d) Alex borrowed \$60 000 to buy a small business. He was charged 6% p.a. compounding monthly on the balance owing and he repaid the loan plus interest in equal monthly repayment over 5 years.

(i) Show that Alex owed \$ (60 300 – M) immediately after making his first monthly repayment of \$ M .	1
(ii) Show that Alex owed \$ $[60\ 000(1.005)^3 - M(1.005^2 + 1.005 + 1)]$ immediately after he made three monthly repayments.	2
(iii) Calculate his monthly repayment, M to the nearest five cents.	2
(iv) Calculate the total amount of interest paid.	1

End of Question 15

2

Question 16 (15 marks) Use the Question 16 Writing Booklet.

(a)For the curve
$$y = \ln(x-2)$$
,(i)Sketch the curve.(ii)State its domain and range.2

(b) Sketch the function
$$y = -3\sin\frac{x}{2}$$
 in the domain $-2\pi \le x \le 4\pi$ 2

(i) Find the area between the curve and the lines $x = \frac{\pi}{2}$ and $x = 2\pi$. 3

- (ii) Use one application of Simpson's Rule to find an approximation for the area between the curve and the lines $x = -\pi$ and $x = \pi$.
- (iii) What is the percentage error of your approximation from (ii) compared with the actual area between the curve and the lines $x = -\pi$ and $x = \pi$? 1

(d) The area enclosed by the curve $y = \sqrt{r^2 - x^2}$ is rotated about the *x*-axis.

- (i) What is the name given to the solid that is generated? 1
- (ii) Explain why the volume of the solid of revolution between x = -r and

$$x = r$$
 is **twice** the integral $\pi \int_{0}^{r} (r^{2} - x^{2}) dx$. 1

(iii) Show that the volume of the solid formed is $\frac{4}{3}\pi r^3$ 2

End of paper

ANSWER SHEET FOR MULTIPLE CHOICE SECTION

Student Exam number:______ Teacher:

1.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
2.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
3.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
4.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
5.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
6.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
7.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
8.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
9.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

10. $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

STANDARD INTEGRALS

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$ NOTE : $\ln x = \log_e x$, x > 0

•

Suggested solution(s)	comments
Maltiple Choice	`
1) and = 0.04099 = 0.0410 (3sf) -> B	
2) (D)	
$\frac{3)}{\sin 80} = \frac{15}{\sin 40}$	
AC = 155in 80 sin 40 -> (A)	
4) 6(3) - (2)K = 2 -2k = -16 K = 8 -> D	
5) (D)	
6) $f'(x) = 3 - 3x^2$	
$f'(3) = 3 - 3(3)^2$	
= 3 - 27 = -24 -> (B)	₹
7) $\chi^2 - 2\chi - 8 = 0$	
(x-4)(x+2)=0 x=(4),-2 -> (0)	

-

.

Suggested Solutions, Marking Scheme and Markers' comments

.

Suggested solution(s)	comments
8) x2+4)x+370	
(x+1)(x+3)70	
x = -3, x = -1 (5)	
$\begin{array}{c} 9 \end{array} A = \frac{1}{2}r^{2} \\ 10T = \frac{1}{2}r^{2} \\ \frac{7}{3} \end{array}$	
$\frac{f^{2}}{2} = 30$ = 60 r = .60 - 7 (A)	
$\begin{array}{c} 12 \end{array} \right) \int_{ab} = \frac{a}{1-r} \end{array}$	
$12 = \frac{8}{1-r}$	*
12 - 12r = 8	j,
$-12r = -4$ $r = \frac{1}{3} \rightarrow \bigcirc$	Å
*	

.

.

Suggested solution(s)		comments
Question 11		· • •
a) $f(x) = \sqrt{3-x}$		Some students
3-x 70		Failed to realise
- 2e 7/ - 3	/	you cannot take
$3C \leq 3$	1	the square root
b) $\int \kappa^2 + 1 d\kappa$		of a regelie.
$=\chi^{3}$, $\chi + \zeta$		j-e 3-x 20.
3 7 10 10	1	,
c) $x^2 - x - 1 = 0$		
$\chi = -6 \pm \sqrt{6^2 - 4ac}$		
$= 1 \pm \sqrt{1 - 4(1)(-1)}$		
$= \frac{1 \pm \sqrt{5}}{2}$	/2	gord.
d) $y = \sqrt{9 - 2x^3} - (9 - 2x^3)^{\frac{1}{2}}$		
$y' = \frac{1}{2} \left(9 - 2x^{5} \right)^{-\frac{1}{2}} \cdot -6x^{2}$		
$= -3x^{2}(9-2x^{3})^{-\frac{1}{2}}$		500d
OR = 3K		
J9-2x ³	2	
•		

.

Suggested solution(s)	comments
$e) \int x^2 - 3 dx$	
$= \begin{bmatrix} x^3 - 3x \end{bmatrix}_{0}^{3}$	
$= \frac{(3)^3}{3} - 3(3) - 0$	
= 9-9	good.
(+) (-2) (-2) (-2)	- many failed
= $1: - 5(x-3)$ x->3 $(x+7)(x=3)$	La first factorise Men sub in x = 3.
$= \frac{5}{3+7}$ $= \frac{1}{2}$	4
$(3)(3)(3)(5-2)(3)^2$	l'
$= (3\overline{5})^{2} + 2 \times (3\overline{5})(-2\overline{3}) + (-2\overline{3})^{2},$	gove
$= 45 - 12\overline{15} + 12$ = $57 - 12\overline{15}$	

My Zu Comments THGS Exam Feedback

THGS Exam Feedb.

uggested Solutions, Marking Scheme and Markers' comments

, a a

Suggested solution(s)		comments
c) the i) initial displacement is x when $\therefore x = -(0)^2 + 7(0) + 8$ = 8m	~ +=0	well answered.
$- \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = 0$ - $(\frac{1^{2}-7+8}{7}) = 0$ $(\frac{1}{7}-8)(\frac{1}{7}+1) = 0$ $\frac{1}{7} = 8, -1 (\frac{1}{7}0)$	2.	many failed to state t 70.
i. at the origin when $t = 8 s$ d) i) $m_{l_1} = tan s$ = tan 135	ecords.	co-and geom very poorly
= -1 $l_{1}: y - y_{1} = m(x - x_{1})$ y - 0 = -1(x - 3) y = -x + 3 x + y - 3 = 0	屯	answered, shudents failed to recall formulaie + relate grad
ii) $m_{l_1} = m_{l_2} = -($ $l_2: y - y_1 = m(x - x_1)$ y - 1 = -1(x - 0)	¥ (of 11 eines!
y - 1y = -x x + y - 1 = 0 (or $y = -x + 1$)	, *	

.

CARGO CONTRACTOR OF CONTRACTON

gested Solutions, Marking Scheme and Markers' comments

Suggested solution(s)	comments
$\begin{array}{r} \hline 111) \\ d = \left[\begin{array}{c} ax_{1} + by_{1} + c \\ \hline \\ \sqrt{a^{2} + b^{2}} \\ \end{array} \right] \\ \hline \\ and \\ l_{1} \\ \hline \\ \hline \\ \hline \\ \hline \\ \sqrt{a^{2} + b^{2}} \\ \end{array} \\ \hline \\ and \\ l_{1} \\ \hline \\ $	poor use of correct formula
$F = \frac{2}{\sqrt{2}}$ $= \sqrt{2} \text{ units}$ $iv) A = \frac{1}{2}h(a+6)$ $d_{DL} = \sqrt{2}$ $d_{DL} = \sqrt{2}$ $d_{AB} = \sqrt{18} = 3\sqrt{2}$ $\therefore A = \frac{1}{2} \times \sqrt{2} (\sqrt{2} + 3\sqrt{2})$ $= \sqrt{2} (\sqrt{2} + 3\sqrt{2}) \div 2$ $= \sqrt{2} (\sqrt{2} + 3\sqrt{2}) \div 2$ $= \sqrt{2} \times 4\sqrt{2} \div 2$ $= \sqrt{2}$	Answered. OK with exception of a few who failed to use connect founda
= 4 units ²	

.

THGS Exam Feedb,

Suggested Solutions, Marking Scheme and Markers' comments

•

Suggested solution(s)	comments
Question 13	3 x
a) $\frac{\mathcal{A}}{d\kappa}\left(\frac{e^{\kappa}}{\kappa^{2}}\right) = \frac{u^{\prime}v - v^{\prime}u}{v^{2}}$	Several students wrote this as a product, but were unsuccessful
- exx2 - 2xexc	i the derivative of
)e 4	a product => learn
$= e^{\frac{x}{x}} (x - 2)$	the rules.
$= \frac{e^{\chi}(\chi-2)}{\chi^{2}}$	
b)i) AAFBIII SAED (equiangular)	
$\frac{AF}{AE} = \frac{AB}{AD} = \frac{1}{2}$	accepted.
ED = 2BF	
11) A: LABF = LCBD (vort. opp. L's) A: LAFR = LRCD (alt. L's equal)	
S! AB = BD (given)	and other serious
. AABF = ADBC (AAS)	ť
(or SAS, FB=BC)	

Suggested solution(s)	comments
c) i) P= Poekt	•
Po= 350,000. When t= 4, P= 460,000	
460,000 = 350,000 e	
$e^{-\frac{46}{35}}$	Usually well done, although some
$loge e^{4k} = loge\left(\frac{46}{35}\right)$	Students used t=5.
$4K = \ln \frac{46}{35}$	
$K = 1n \frac{46}{35} - 4$	
= 0.068 (3dp)	
(i) $(i \in A \cap A$	
11) i.e. front & when F= 14 14K	
P = 350,000 e	ECF
= 910, 924 (recrept person)	-
iii) i.e. find dP when += 20 df	ť
$\frac{dP}{dt} = KP$	ECF.
$= k P e^{-20k}$	
= 93,774 people / yr	
accept 92220 1	- using 11-0-068
la la people to	KEU UDD .

Suggested solution(s) comments d) i) x $ii) \quad V = \pi \int y^2 dx$ $= \pi \int_{-\infty}^{2} (4-\chi^{2})^{2} d\mu - \pi \int_{-\infty}^{2} (4-\chi)^{2} d\mu$ Expansions = $\pi \int_{16}^{2} 16 - 8x^{2} + x^{4} - (16 - 16x + 4x^{2}) dx$ were badly done and $\int_{16}^{2} \frac{1}{16} = 0$, $\frac{1}{4} \int_{16}^{2} \frac{1}{16} = \frac{1}{16} \int_{16}^{2} \frac{1}{16} \int_{16}^{16} \frac{1}{16} \int_{16}^$ - T / 16 - 9x2 + x4 - 16 + 16x - 4x2 dx = M (x 4 - 12x2 + 16x dx $= \pi \left[\frac{x^{5}}{5} - \frac{12x^{3}}{3} + \frac{16x^{2}}{7} \right]^{2}$ $= \mathcal{T}\left(\frac{(2)^{5}}{5} - 4(2)^{3} + 8(2)^{2}\right)$ = 32 T units3

Suggested solution(s) Question 14	<u>comments</u>
a) $x^2 - 8x + 5 = 0$	P x
$\mathcal{L}^2 + \mathcal{B}^2 = (\mathcal{L} + \mathcal{B})^2 - 2\mathcal{A}\mathcal{B}$	Mostly well done,
$=\left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right)$	but students must
$=\left(-\frac{-9}{1}\right)^2 - 2\left(\frac{-9}{1}\right)^2$	Ats and 2B.
= 64 - 10	
= 54	
$b) y = x e^{2x}$	
$\frac{y'=\alpha' + v'\alpha}{2\kappa + 2\kappa}$	
= e + 2e +	This part was
sp's exist when y'=0.	done
$e^{2x}((+2x) = 6$	
e2x=0 or 1+2x=0	Enon here with the
(nosoln.)	negative beig smitted
x -0.6 -0.5 -0.4	
y'-0.06 0 +0.09	¥
when $x = \frac{1}{2}$, $y = -\frac{1}{2}e^{2x - \frac{1}{2}}$	
	Some students did
. Minimum turning point at $\left(\frac{1}{2}, -\frac{1}{20}\right)$	or determine max/
, , , , , , , , , , , , , , , , , , , ,	min value.

Suggested solution(s) comments 41 d) i) granding x $ii) \quad V = \pi \int y^2 dx$ $= \pi \int_{-\infty}^{2} (4-\chi^{2})^{2} d\mu - \pi \int_{-\infty}^{2} (4-2\pi)^{2} d\mu$ = $\pi \int (4-\dot{x})^2 dx - \pi \int (4-2\dot{x})^2 dx$ Expansions were badly = $\pi \int 16 - 8\dot{x}^2 + \dot{x}^4 - (16 - 16\dot{x} + 4\dot{x}^2) dx$ compared = T 16 - Px2 + x4 - 16 + 16x - 4x2 dx error. - - M / x 4 - 12x2 + 16x dx $= \pi \left[\frac{x^{5}}{5} - \frac{12x^{3}}{3} + \frac{16x^{2}}{7} \right]^{2}$ $= \mathcal{T}\left(\frac{(2)^{5}}{5} - 4(2)^{3} + 8(2)^{2}\right)$ = 32 JT units 3

THGS Exam Feedb,

Suggested Solutions, Marking Scheme and Markers' comments

.

Suggested solution(s)	comments
$ii) y' = e^{2x} (1+2x)$	^
q'' = u'v + v'u	
$= 2e^{2k}(1+2k) + 2e^{2k}$	
$= 2e^{2x}(1+2x+1)$	
$= 2e^{2x}(2+2)c)$	
$= 4e^{2\times}(1+\times)$	- some very bad
POI's exist when y"=0 and concavity changes.	errorshere.
$4e^{2x}(1+x)=0$	- change a concarry went inchecked.
402x =0 or 1+x=0	
ro solve. $rc = -1$	Minus sign left out.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
when $x = -1$, $y = -e^{-2} = -\frac{1}{e^2}$	110 1 1 a privat a
. POI exists at (-1, - t=)	of -ve
iii) when: $x = -3$, $y = -0.007$	
x = 0.5, y = 1.36	ť
5	Not well answered
1 endpourbetout.	generally
-3 -2 -1 -0.5 0.5 1	
$F_{1,-\frac{1}{e^{2}}}$, $F_{1,-\frac{1}{2e}}$, $F_{1,-\frac{1}{2e}}$, $F_{2,-\frac{1}{2e}}$, $F_{2,-$	

Suggested solution(s)	comments
c) 10, 15, 20,	•
i) AP with a=10, d=5	
$T_{15} = a + (n-1) \mathcal{L}$	
= 10 + 5 (15 - 1) $= 80 mins.$	Good
ii) i.e. Find Sis	
$Sn = \frac{n}{2} \left(a + l \right)$	
$S_{15} = \frac{15}{2} (10 + 80)$	
= 675 min -> 11 h Ismin	Gaad.
iii) i.e. find a when Sn = 1150	
$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$	
$1150 = \frac{1}{2}(20 + 5(n-1))$	Erroringuesting
$=\frac{1}{2}\left(20+5n-5\right)$	1150 is in minutes,
$=\frac{n}{2}(15+5n)$	not hours.
23.00 = 15n + 5n2	ananded for this
$5n^2 + 15n - 2300 = 0$	Version of working
$x^{2} + 3n - 460 = 0$	and also for
(n+23)(n-20)=0	Students working on
in = 20 (i.e. the 20th lesson)	units worked through
	as best as possible.
,	

THGS Exam Feedl

suggested Solutions, Marking Scheme and Markers' comments

. •

Suggested solution(s)	
_Suggested solution(s)	comments
a) $e^{6x} - 7e^{3x} + 6 = 0$	
let $c = e^{3x}$	Many Students
(u-6)(u-1)=0	got to 1+6
ce = 1, 5 (3)	go further,
$e^{3x} = 1$, $e^{3x} = 6$	
$lne^{3x} = ln(l) lne^{3x} = ln6$	
$3x = \ln 1$ $x = \frac{\ln 6}{3}$ $x = \frac{\ln 6}{3}$	
= 0 = 0 $= 1 + \frac{1}{2} + \frac{3}{4} + $	e few mixed $zc^2 = 4a(y-b)!$

THGS Exam Feed

Suggested Solutions, Marking Scheme and Markers' comments

<u>Suggested solution(s)</u>	comments
d) $r = 0.06 \div 12 = 0.005$ i) $A_1 = P(1+r)^n - m$ = 60000 (1.005)' - m = \$(60300 - m)	
$\begin{array}{l} 11) A_{3} = (P+I) - (R+I) \\ P+I = 60000 \left(1.005\right)^{3} \\ R+I = M + M \left(1.005\right)^{2} + M \left(1.005\right)^{2} \\ = M \left(1.005^{2} + 1.005 + 1\right) \\ \vdots A_{3} = 4 \left(60000 \left(1.005\right)^{3} - M \left(1.005^{2} + 1\right) \\ 1.005 + 1\right) \end{array}$	
iii) $A_{60} = 0$ $0 = 60000(1.005)^{60} - \frac{M(1.005^{60}-1)}{0.005}$ $M(1.005^{60}-1) = 60000(1.005)^{60} + 0.005$ M = 41159.95 M = 41159.95 $M = 41159.95 \times 60 - 60000$ = 49597.	most ans v. mell. Poorly answed
· · · · ·	

OR

Suggested solution(s) comments $y = \frac{1}{2}\cos\frac{x}{2}$ c) i) $A = \int \frac{1}{2} \cos \frac{x}{2} dx + \int \frac{1}{2} \cos \frac{x}{2} dx \int \frac{1}{2} \cos \frac{x}{2} dx \int \frac{1}{2} \cos \frac{x}{2} dx$ for which 1 $= \left[\sin \frac{\chi}{2} \right]_{T_{1}} + \left[\left[\sin \frac{\chi}{2} \right]_{T_{1}} \right]$ walgeted correct $= \left(\sin\frac{\pi}{2} - \sin\frac{\pi}{2}\right) + \left(\sin\pi - \sin\frac{\pi}{2}\right)$ $= \left(1 - \frac{1}{\sqrt{2}}\right) + \left(0 - 1\right)$ = 1 - 52 + = 2 - 1 $= \frac{4-52}{2} units^2$ ii) $A \doteq \frac{T}{2} \left(\frac{1}{2} \cos -\frac{T}{2} + 4x \frac{1}{2} \cos \frac{9}{2} + \frac{1}{2} \cos \frac{7}{2} \right) - Since failed to$ use \$ TT as the $=\frac{\pi}{2}\left(0+2+0\right)$ width of the strip. - 257 units2 2 iii) $\frac{2\pi}{3} - 2$ $\frac{2\pi}{2} \times 100 = 4.7\% (1kp)$ off mele warded it above area wed.

i) 1. 22. ii) 2.09

Suggested solution(s) comments some saids circle. d) i) Splere ii) y= / z= is even / symmetrical. about y-axis Needed to state the curve is en J produces heri-sphere S produces a splee. iii) $\pi \int \left(r^2 - \kappa^2\right) d\kappa$ Le variable Lere $= \pi \left[\frac{r^2 \chi}{3} - \frac{\chi^3}{3} \right]$ is x not r. i.e fr2 7 13 $= \pi \left(r^{3} - \frac{r^{3}}{3} - \left(-r^{3} - \frac{-r^{3}}{3} \right) \right)$ $= \mathcal{T}\left(\frac{2}{3}r^{3} - -\frac{2}{3}r^{3}\right)$ = T (4 13) = 4 Tr's as regid. 2