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Abstract

Among, and enabling, the breathtaking advances of modern cryptography is a methodology
for defining and proving security. Central to this methodology is the practice of circumscribing
all potential attacks with an “adversary” whose powers – computational and informational –
and goals (what does it mean to “break” the system?) are spelled out. Differential privacy, a
definition of privacy tailored to statistical data analysis, emerged from this intellectual tradition.

1 Introduction

Propose. Break. Propose Again. So Pre-Modern cryptography cycled. An encryption scheme was
proposed; a cryptanalyst broke it; a modification, or even a completely new scheme was proposed.
Nothing ensured that the new scheme would in any sense be better than the old. Among the
astonishing breakthroughs of modern cryptography is the methodology of rigorously defining the
goal of a cryptographic primitive – what it means to break the primitive – and providing a clear
delineation of the power - information or computational ability - of the adversary to be resisted.
Then, for any proposed method, one proves that no adversary of the specified class can break the
primitive. If the class of adversaries captures all feasible adversaries, the scheme can be considered
to achieve the stated goal.

This does not mean the scheme is invulnerable, as the goal may have been too weak to capture
the full demands placed on the primitive. For example, when the cryptosystem needs to be secure
against a passive eavesdropper the requirements are weaker than when the cryptosystem needs
to be secure against an active adversary that can determine whether or not a ciphertext is well-
formed (such an attack was successfully launched [1] against PKCS#1). In this case the goal may
be reformulated to be strictly more stringent than the original goal, and a new system proposed
(and proved). This strengthening of the goal converts the propose-break-propose again cycle into
a path of progress.

1.1 Toward Articulating a Privacy Goal

This is often best approached by articulating what it means to “break” a system. Let us look at
some examples.

Linkage Attacks. The litany of these attacks includes re-identifying the medical records of Gov-
ernor William Weld among anonymized medical encounter data by linkage with voter registration
records [34] and identifying a Netflix user among anonymized training data for a competition on
recommendation systems by linkage with the Internet Movie Database (IMDb) [28].
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The Statistics Masquerade. Privacy problems do not disapper if we give up on a release of
“anonymized” microdata and turn to the release of statistics. For example, the differencing attack
exploits the relationships between certain pairs of statistics, such as:

1. The number of Microsoft Employees with the sickle cell trait; and

2. The number of Microsoft Employees, other than the director of the Silicon Valley Laboratory,
with the sickle cell trait.

When taken together, these two statistics, each of which covers a very large set of individuals,
reveal the sickle cell status of the director. Such dangerous pairs of queries are not always so easy
to spot; indeed, if the query language is sufficiently rich the question of whether two queries pose
such a threat is undecidable.

A more general adversarial strategy may be called the “Big Bang” attack. Given a large data
set, the attacker focuses on a relatively small subset, say, members of his extended family, of some
size k. For concreteness, let us set k = 128. The attacker’s goal is to learn a single private bit – not
necessarily the same bit – about each member of the extended family. For example, the attacker
may wish to know if Aunt Wilma, who has two children, has had more than two pregnancies, and
to know if Uncle William has a history of depression, and so on. Clearly, by asking k “counting
queries,” each describing exactly one member of the extended family and the property in question,
eg, “How many people with the following identifying characteristics [description of Aunt Wilma
and only Aunt Wilma] have had at least three pregnancies?” the attacker can learn the desired
bits. But suppose the attacker does not receive perfectly accurate answers. Can introducing
small inaccuracies to the query responses protect the family’s privacy? Intuitively this approach
seems perfect: it renders useless any query about an individual, while not significantly distorting
“statistical” queries whose answers are expected to be fairly large.

The degree to which small distortions can protect against arbitrary counting query sequences
depends on the size of “small” compared to the number of queries. For example, there is a se-
quence of 128 counting queries with that following property: If the errors introduced are always of
magnitude at most 1, then the adversary can reconstruct at least 124 of the 128 private bits. If
the errors have magnitude bounded by 3, the number accurately reconstructed is still at least 92.
With these same bounds on E, taking k = 256, the adversary can correctly reconstruct at least 252
and 220 bits, respectively.

The general form of the bound is: If the mangitudes of the errors are all bounded by E, then
at least k− 4E2 bits can be correctly reconstructed [12]1. As we will see, this is approximately the
“right” answer, in that noise of magnitude E >

√
k, correctly generated, is protective (and satisfies

differential privacy).
The Big Bang attack is concrete. It gives a simple and computationally very efficient method

by which information released by a disclosure control method that yields accurate answers to a
relatively small number of apparently statistical queries can be abused to compromise privacy. The
basic result is also very robust; with slight changes in bounds other attacks with similar outcomes
can be launched using random queries, even if more than one fifth of the responses are completely
arbitrary [9]. In some cases the attack can be launched against the enitre database (i.e., k = n).

The Kindness of Strangers. Now that the era of “Big Data” is upon us, personal information –
our searching, traveling, purchasing, entertainment histories – flows from one individual to another

1The attack involves computation of a Fourier transform and does not require knowledge of E.
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via statistical learning systems. The set of search hits that receive clicks from one user affects
which hits are shown to the next user; our presence on the road affects congestion which in turn
affects route recommendations; recommendation systems suggest products based on observed paired
purchases; Netflix recommends movies based on preferences of “similar” viewers. Can these flows
be used to compromise privacy?

Astonishingly, despite any potential adversary’s tremendous uncertainty regarding the data
set, such attacks are known. The currently known examples require a small amount of auxiliary
information, that is, information known to an attacker from a source – in this case something as
simple as the purchaser’s public blog – other than the data set. For example, a blog about a recent
purchase, taken together with the vendor’s (e.g., Amazon’s) continually changing public lists of
“similar items,” can reveal purchases not disclosed in the blog.

Smoking Causes Cancer. Defining a query to be a function mapping data sets to some output
range, we can view everything discussed so far – the production of microdata, statistics, predictors,
classifiers, and so on – as queries. A user’s interaction with a data set can be viewed as receiving
responses to queries, and a natural attempt to articulate a privacy goal tries to relate what is known
about a member of the data set before, versus after, obtaining the response to a query or sequence
of queries. Ideally, nothing would be learned about an individual from such an interaction.

This turns out to be unachievable if the responses are useful, in that they teach us things we
did not know [6, 13]. We would like to learn facts such as “smoking causes cancer,” but in doing
so, our views and beliefs about individuals whom we know to smoke will change; for example, we
will revise our predictions about their health. On the other hand, statistical analysis is meaningless
without this type of generalizability – the whole point of a statistical database is to learn useful
facts like “smoking causes cancer,” not just for the participants in the study but for human beings
in general. Our definition of privacy must take into account this desired utility.

Framing Our Goal: In/Out vs Before/After The “Smoking Causes Cancer” example shows
the technical difficulty of the “Before vs. After” approach to framing a privacy goal.

The key insight is that, if the database teaches that smoking causes cancer, the bad (higher
insurance premiums) and good (joins smoking cessation program) consequences for an individual
smoker will be incurred independent of whether or not the particular smoker is in the database. This
suggests a new privacy goal: to ensure that, by participating in a data set, one will be no worse off
than one would be had one declined to participate. This is the heart of differential privacy.

Informed by our examples of attacks, we want this “In vs.Out” privacy guarantee to hold
regardless of the sources of auxiliary information – detailed information about family members and
co-workers, blogs, other data sets, product recommendations, etc. – to which an attacker may have
access. Differential privacy will be such a guarantee.

1.2 An Ideal Scenario

Most of the literature on differential privacy assumes an ideal scenario in which the data are all
held by a trusted and trustworthy curator, who carries out computations on the entire data set and
releases the results to the data analyst. Not to put too fine a point on it, the data remain secret,
the responses are published.
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In reality, the data may not all reside in the same place – for example, the analyst may wish
to study the combined medical records of multiple hospitals (and the hospitals don’t want to share
their data with one another), or the data may reside, encrypted, in a semi-trusted cloud, where the
cloud is trusted to keep data intact and to run programs, but it is desired that the cloud operator
not have access to unencrypted data. For these situations, cryptography comes to the rescue. For
example, the first may be addressed through secure multiparty computation [31], and the second
through functional encryption [4]. The role of cryptography in these cases is to abstract away the
details and ensure that the system looks just like, or emulates, the ideal scenario.

Privacy-preserving data analysis is difficult even in the ideal scenario, but of course any real
implementation of differential privacy – whether in differentially private generation of synthetic
data that are released to the public or in differentially private query/response systems – questions
of physical security of the data do not go away and must be addressed with additional other
technology.

1.3 Adversaries

Who are the “adversaries” and what motivates them? To what kind of information do they have
access? Do they collude, intentionally or accidentally? Here it seems we are limited only by our
imagination. We list a few examples.

An abusive and controlling partner has enormous auxiliary information about the victim, in-
cluding dates and details of abuse. Privacy of medical and police records may be a question of life
or death in such a situation.

Snake oil salesmen who prey on the desperate are financially motivated to find very sick indi-
viduals. Purchasing, through an online advertising system, the ability to track individuals based
on the issuing of certain search queries could be very lucrative, and very easy.

Blackmailers are motivated to find the unfaithful, for example, by analysis of telelphony and
mobility records.

Learning the reading preferences of an employee or a perspective employee, via recommendation
systems, can enable discrimination, or can inhibit intellecutal exploration.

A thief, observing patterns of power consumption through poorly anonymized smartgrid data,
learns good times to break into homes.

Medical insurance companies wish to charge higher rates for customers with less healthy, or more
risky, eating, exercise, and sexual habits, which may revealed by purchase, search, and advertising
click histories.

A member of a middle-class community might find her relationships with her neighbors sig-
nificantly altered were they to learn that despite her modest living style she has a seven-figure
income.

2 Differential Privacy

In English, differential privacy says that the distribution on the outcome of any analysis is essen-
tially unchanged independent of whether any individual opts in to or opts out of the data set.
“Essentially” is formalized by parameter, usually called epsilon (ε), measuring privacy loss. Here,
the distribution is taken over the coin tosses of the algorithm that is protecting privacy.
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Before formalizing the definition, we note some properties of the guarantee. First and foremost,
it says that the property of being differentially private depends only on the algorithm for carrying
out the analysis – something that the data curator, or “good guy,” controls. Thus, if an algorithm
is differentially private then it remains differentially private no matter what an adversarial data
analyst knows – including to which other data sets he or she has access. So differentially private
algorithms automatically protect against linkage attacks. Differential privacy even guarantees that,
if the analyst knows that the data set is either D or D′ = D∪{p}, the outcome of the analysis will
give at most an ε advantage in determining which of D,D′ is the true data set. More precisely, if the
adversary begins with a prior distribution in which the two data sets are equally likely, the posterior
probabilities can change by at most an eε factor. (When ε ≪ 1, eε ≈ (1 + ε); e1/10 ≈ 1.1052).

2.1 Formal Definition of Differential Privacy

A database is modeled as a collection of rows, with each row containing the data of a different
individual. Differential privacy will ensure that the ability of an adversary to inflict harm (or good,
for that matter) – of any sort, to any set of people – should be essentially the same, independent of
whether any individual opts in to, or opts out of, the dataset. This is done indirectly, simultaneously
addressing all possible forms of harm and good, by focusing on the probability of any given output
of a privacy mechanism and how this probability can change with the addition or deletion of any
one person. Thus, we concentrate on pairs of databases (D,D′) differing only in one row, meaning
one is a subset of the other and the larger database contains just one additional row. (Sometimes
it is easier to think about pairs of databases of the same size, say, n, in which case they agree on
n − 1 rows but one person in D has been replaced, in D′, by someone else.) We will allow our
mechanisms to flip coins (in fact, it is required); such algorithms are said to be randomized.

Definition 1. [6, 8] A randomized mechanism M gives (ε, 0)-differential privacy if for all data sets
D and D′ differing on at most one row, and all S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ eε × Pr[M(D′) ∈ S],

where the probability space in each case is over the coin flips of M .

In other words, consider any possible set S of outputs that the mechanism might produce. Then
the probability that the mechanism produces an output in S is essentially the same – specifically,
to within an eε factor – on any pair of adjacent databases. This means that, from the output
produced by M , it is hard to tell whether the database is D which, say, contains my data, or the
adjacent database D′, which does not contain my data. The intuition for privacy is: if you can’t
even tell whether or not the database contains my data, then you can’t learn anything about my
data.

2.2 Properties of Differential Privacy

In addition to immunity against linkage attacks, differential privacy offers several other benefits.
We briefly describe a few of these.

Addresses Arbitrary Risks. Any data access mechanism satisfying differential privacy should
satisfy all concerns one might have about the leakage of her personal information, regardless of any
auxiliary information – other databases, newspapers, websites, and so on – known to an adversary:
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even if the participant removed her data from the data set, no outputs (and thus consequences of
outputs) would become significantly more or less likely. For example, if the database were to be
consulted by an insurance provider before deciding whether or not to insure a given individual,
then the presence or absence of any individual’s data in the database will not significantly affect
her chance of receiving coverage. Protection against arbitrary risks is, of course, a much stronger
promise than the often-stated goal in sanitization of protection against re-identification. And so it
should be! Without re-identifying anything, an adversary could still learn that a neighbor, observed
to have been taken to the emergency room (the ambulance was seen), has one of only, say, three
possible complaints2.

Quantification of Privacy Loss. Differential privacy is not binary; rather, privacy loss is quan-
tified by the maximum, over all C ⊆ Range(M), and all adjacent databases D,D′, of the ratio

ln

[

Pr[M(x) ∈ C]

Pr[M(x′) ∈ C]

]

. (1)

In particular, (ε, 0)-differential privacy ensures that this privacy loss is bounded by ε. This quan-
tification permits comparison of algorithms: given two algorithms with the same degree of accuracy
(quality of responses), which one incurs smaller privacy loss? Or, given two algorithms with the
same bound on privacy loss, which permits the more accurate responses?

Automatic and Oblivious Composition. Given two differentially private computations, on the
same or on different, possibly overlapping, databases, where one is (ε1, 0)-differentially private and
the other is (ε2, 0)-differentially private, the cumulative privacy loss incurred by participating in
(or opting out of) (both) database(s) is at worst ε1 + ε2. This is true even if the responses are
generated obliviously of one another. This also teaches us one way to cope with high demand;
for example, to ensure a cumulative loss bounded by ε∗ over k computations, it is enough to
ensure that each computation is (ε∗/k, 0)-differentially private. Composition bounds are what
allow us to reason about cumulative privacy loss of complex differentially algorithms built from
simple differentially private primitives (see [2] et sequelae). This “programmability” enables the
construction of differentially private programming platforms [25, 33].

Group Privacy. Every (ε, 0)-differentially private algorithm is automatically (kε, 0)-differentially
private for groups of size k, for all k. This automatically protects small groups, such as families.
It will not necessarily offer protection for large groups, and indeed it should not! If two databases
differ significantly, their statistics are expected to change, and this should be observable if the
databases are to be useful.

2.3 Achieving Differential Privacy

The differential privacy literature contains many astonishingly beautiful and powerful algorithmic
techniques, some of which have given impressive results even on data sets as small as 70 records [18].
For the most part, we will confine ourselves in this chapter to some simple techniques that, nonethe-
less, have non-trivial applications; the power of these techniques is illustrated in Section 3.

Differentially private algorithms hide the presence or absence of a single row. Consider a real-
valued function f . The (worst-case, or global) sensitivity of f is the maximum absolute value by

2two of which, say, a broken limb and heart attack, might be ruled out when the neighbor is seen the next day,
leaving only “panic attack.”
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which the addition or deletion of a single database element can change the value of f :

∆f = max
D,D′

|f(D)− f(D′)|

where the maximum is taken over all pairs of adjacent databases. For vector-valued functions we
extend this to the L1-norm:

∆f = max
D,D′

||f(D)− f(D′)||1.

Speaking intuitively, ∆f is the worst case difference that a differentially private algorithm for the
function f will have to “hide” in order to protect the presence or absence of an individual.

Definition 2 (The Laplace Distribution). The Laplace Distribution (centered at 0) with scale b is
the distribution with probability density function:

Lap(x|b) = 1

2b
exp

(

−|x|
b

)

.

The variance of this distribution is σ2 = 2b2. We will sometimes write Lap(b) to denote the Laplace
distribution with scale b, and will sometimes abuse notation and write Lap(b) simply to denote a
random variable X ∼ Lap(b).

The Laplace distribution is a symmetric version of the exponential distribution.
We will now define the Laplace Mechanism. As its name suggests, the Laplace mechanism will

simply compute f , and perturb each coordinate with noise drawn from the Laplace distribution.
The scale of the noise will be calibrated to the sensitivity of f (divided by ε).

Definition 3 (The Laplace Mechanism). Given any function f : N|X | → R
k, the Laplace mechanism

is defined as:
M(D, f(·), ε) = f(D) + (Y1, . . . , Yk)

where Yi are i.i.d. random variables drawn from Lap(∆f/ε).

Theorem 4. The Laplace mechanism preserves (ε, 0)-differential privacy.

Example 5. Counting Queries Queries of the form “How many people in the database are over six
feet tall?” have sensitivity ∆f = 1, since the presence or absence of any individual in D can affect
the true answer by at most 1. Thus, the Lapalce mechanism will return the true count perturbed by
a random draw from Lap(1/ε).

One way to handle k > 1 counting queries is via composition: by running each individual query
with parameter ε/k we ensure that the cumulative privacy loss due to k queries is bounded by
k · ε/k = ε.

A second approach permits us to take advantage of the special properties of the particular set of
counts we wish to compute, which may have lower senstivity than the worst case ∆f = k, leading
to better accuracy for the same privacy loss. An extreme case is illustrated in Example 6 described
next.

Example 6. Histograms In a histogram query, the universe of possible database rows is parti-
tioned into a fixed set of bins, say k, so that every database row belongs it exactly one bin. The
true answer to the histogram query H when the database is D is, for each of the k bins in H,
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the number of rows in D that are in the given bin. For example, the bin may be income ranges
[0, 25K), [25K, 50K), . . . , [≥ 1, 000, 000] for the year 2011, so the query is asking about the distri-
bution on incomes for the sample of the population that comprises database D. The sensitivity is
a histogram query is 1, since the addition or deletion of one individual can change the count of at
most one bin, and that change will have magnitude at most 1. Thus ||H(D)−H(D′)||1 ≤ 1 for all
adjacent D,D′. Theorem 4 says that (ε, 0)-differential privacy can be achieved by adding indepen-
dently generated draws from Lap(1/ε) to each output of H(D). Compare this to the accuracy we
would have obtained naively, by viewing the histogram query as k independent counting queries (one
per bin) and applying the composition result mentioned in Section 2.2, which would have suggested
adding noise drawn from Lap(k/ε) to the count for each bin – a factor of k worse than what we get
by thinking carefully about sensitivity!

The Laplace Mechanism provides one method for ensuring (ε, 0)-differential privacy for any
value of ε > 0. It does not necessarily give the best method for every setting. For example, the
method gives poor responses if we seek answers to a superlinear (in the size of the database) number
of queries, but other algorithms [3, 32, 20, 15, 18] give meaningful responses even for a number
of queries that grows exponentially in the size of the database! In Section 3 we briefly mention
experimental results for computation of marginals using one of these algorithms.

Differentially private algorithms will typcially be composed of several steps, and the Laplace
mechanism is frequently employed at one or more of these individual steps. It is therefore an
important primitive, or building block. We will see an example of extensive use of this primitive in
constructing differentially private probability distributions in Section 3.

The Exponential Mechanism. Differential privacy can be ensured for discrete output ranges
by the Exponential Mechanism [26]. This mechanism uses a computation-specific quality function
mapping (data set, output) pairs to a real number. The exponential mechansim assigns probabilities
to outputs that grow exponentially in the quality, and then selects an output according to the
resulting probability distribution. To ensure that the resulting distribution is not too sensitive to
the presence or absence of any individual, before computing the output distribution the quality is
divided by the sensitivity of the quality function – that is, the maximum over all outputs o and all
pairs of adjacent databases D,D′, of |q(o,D) − q(o,D′)|. The exponential mechanism is another
very important primitive. We will see an example of its use in Section 3 in selecting a “best” (or
perhaps just sufficiently good) distribution from a family of distributions.

The Gaussian Mechanism. What about Gaussian noise? This distribution may be preferable
to the Laplace distribution, due to its higher concentration. The addition of Gaussian noise yields
a relaxation, called (ε, δ)-differential privacy, described in the next section. Roughly speaking,
(ε, δ)-differential privacy ensures that with probabiltiy 1− δ the privacy loss is bounded by ε. By
taking δ to be “cryptographically small3” we get a very strong and robust guarantee enjoying all
the properties described in Section 2.2.

Redefining sensitivity to be the maximum L2 difference ||f(D)− f(D′)||2 on adjacent database
D,D′ (rather than the L1 difference ||f(D)−f(D′)||1 we have discussed until this point), we obtain
the following theorem for the Gaussian Mechanism:

3That is, δ grows more slowly than the inverse of any polynomial in the size of the database.
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Theorem 7. Let f be a function mapping databases to R
k, and let ∆ denote the L2-sensitivity

of f . The “Gaussian Mechanism” that adds i.i.d. noise drawn from N (0, (ln 1/δ)/ε2) to each of the
k coefficients of f is (ε, δ)-differentially private.

Like the Laplace Mechanism, the Gaussian Mechanism is an important primitive, especially in
geometric algorithms for ensuring differential privacy [19, 29].

2.4 Relaxations

The literature also contains several relaxations of differential privacy. Roughly speaking, (ε, δ)-
differential privacy permits the condition in Definition 1 to fail with probability δ. Definition 1 is
just the special case of Definition 8 in which δ = 0, explaining the presence of the second parameter.

Definition 8. [5, 11, 2, 7] A randomized mechanism M gives (ε, δ)-differential privacy if for all
data sets D and D′ differing on at most one row, and all S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ exp(ε)× Pr[M(D′) ∈ S] + δ,

where the probability space in each case is over the coin flips of M .

Example 9. Understanding the subtleties of a definition is important, so let us consider what
would happen if we allowed δ to be large, say, 1/100? This would be a foolish choice: for a database
of size n it would permit an algorithm that releases, with no modification whatsoever, a randomly
selected n/100, or 1%, of all database rows!

Beyond supporting the addition of Gaussian noise, this relaxation is also useful in differentially
private programming. For example, suppose we have two methods for differentially private release
of a given statistic, say, the median income. The first method, A, always maintains (ε, 0)-differential
privacy, but has poor accuracy on some inputs; the second method, B, has excellent accuracy, but
its privacy loss exceeds ε on pathological inputs of a certain type, and only on these pathological
inputs. We can use a differentially private test to determine whether it is safe to use Algorithm B
on the given data set; but even if designed correctly there will be some very small probability, say, γ,
that the test will erroneously indicate it is safe to use method B, potentially yielding probability γ
of a large privacy loss. The best we can do in this case is to acheive (ε, γ)-differential privacy. We
can make γ suitably small by designing the test with an extremely small probability of error.

A more advanced composition analysis than that mentioned in Section 2.2 shows that the
composition of k mechanisms, each of which is (ε, δ′)-differentially private, is, for all δ > 0, at most
(
√

2k ln(1/δ)ε+ kε(eε− 1), kδ′+ δ)-differentially private [15]. When ε ≤ 1/
√
k, this replacing of kε

by roughly
√
kε can represent a very large savings, translating into much improved accuracy.

The proof of this advanced composition result exploits the fact that privacy loss is a random
variable whose expectation is small. In particular, the expected loss of an (ε, 0)-differentially pri-
vate algorithm, for ε < 1, is less than 2ε2. Further exploration of this observation leads to an
incomparable relaxation, Concentrated Differential Privacy [14]. Roughly speaking, concentrated
differential privacy ensures that privacy loss is tightly concentrated about its expectation. For the
case of k counting queries, the addition of noise drawn from N (0, 1/kε2) ensures that the expected
cumulative privacy loss is ε2/2 and, for all m, the probability of privacy loss mε is bounded by
e−m2/2.
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This, then, is the sense in which the Big Bang attack gave us the right answer: ensuring some
form of ε-differential privacy for k counting queries can be achieved with an expected

√
k noise

per query; matching, up to a constant factor, the lower bounds learned from the Big Bang attack.
In fact, by careful coordination of noise values we can answer many, many more queries at little
additional cost in accuracy [3, 32, 20, 18].

Both (ε, δ)-differential privacy and Concentrated Differential Privacy enjoy all the properties of
differential privacy listed in Section 2.2.

2.5 An Aside.

Randomized Response [37], a well-known technique from the social sciences used to survey respon-
dents about embarassing or illegal behavior, also provides differential privacy4. It is instructive to
compare Randomized Response to the Laplace mechanism. For a single query “How many people
in the data set ingested a controlled substance in the past week?” Randomized Response will yield
an error on the order of

√
n, while the Laplace mechanism will yield an error on the order of 1/ε,

which is a constant independent of n.
What about multiple queries? Suppose we have a database with a single “sensitive” binary

attribute, and that attribute is recorded using Randomized Response. In this case the population
can be sliced and diced at will, and privacy of this single attribute will be maintained. In contrast,
the Laplace and Gaussian mechanisms appear to cease to give meaningful responses after just
under n2 queries5. In this special case, randomized response is preferable once we require answers
to a linear number of queries. Unfortunately, Randomized Response generalizes poorly to multiple
attributes; it does not give a solution to the problem of answering many arbitrary counting queries
on multi-attribute data.

3 Two Experimental Results

Since its inception, differential privacy has been the subject of intensive algorithmic research. On-
TheMap, a differentially private US Census bureau web-based mapping and reporting application
that shows where people work and where workers live, and provides companion reports on age,
earnings, industry distributions, and local workforce indicators, satisfies probabilistic differential
privacy [24]. While interactive, responding to queries issued by users of the site, the system gives
exact answers computed from a differentially privately generated synthetic data set constructed
from US census data. We can think of a synthetic data set as a collection of records with the same
structure as real records, so that, for example, off-the-shelf software running on the original data
set could also run on the synthetic data set. Given a (public) set Q of queries and a (private)
database D, the goal is to produce a synthetic data set y with the property that for all q ∈ Q, q(y)
yields a good approximation to q(D).

As one might (by now) expect, it is impossible to simultaneously preserve any reasonable notion
of privacy and to release a synthetic data set that answers “too many” queries with “too much”

4One version of randomized response goes as follows. Fix a specific yes/no question. The subject is told to flip a
coin. If the outcome is heads, the subject answers the (yes/no) question honestly. If the outcome is tails, the subject
flips a second coin and answers yes or no depending on the outcome of the second coin. This version of Randomized
Response is (ε, 0)-differentially private for ε = ln 3.

5In fact, correlations between noisy responses can be exploited to extract surprisingly accurate approximate
answers on average, even for a superpolynomial number of queries [29].
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accuracy. There are also considerations of computational complexity, that is, the computational
difficulty of creating a synthetic data set with the desired properties. Two factors come into play
here: the size of the set Q of queries for which the curator promises correct answers, and the size of
U , the universe of possible data items. For example, if we wish to describe humans by their DNA
sequences, the size of the universe is exponential in the length of the DNA sequence; if instead we
describe the humans in our data sets by 6 binary attributes, the size of the universe is only 26 = 64.
Although theoretical results suggest formidable computational barriers to building synthetic data
sets for certain large Q or a large U cases [10, 36], the literature also contains some counterpoints
with very encouraging experimental validation. We give two examples.

3.1 The MWEM Algorithm

The MWEM algorithm [18] optimizes an offline variant [17] of the Private Multiplicative Weights
update technique [20]. A description of the techniques involved in these works is, unfortunately,
beyond the scope of this book. Given a (public) set Q of queries and a (private) database D, the
algorithm produces a synthetic data set y with the property that for all q ∈ Q, q(y) yields a good
approximation to q(D).

Tables of Marginals are tables that answer counting queries of a special form. The universe
U of possible database elements are d-bit strings, representing, for each individual, the values of d
binary attributes. A k-way marginal is specified by a set S of k of these d attributes. There are
(

d
k

)

k-way marginals. MWEM was evaluated on the sets of all 3-way marginals for three datasets

discussed in [16], for several values of ε ∈ [0, 1]. That is, Q is the set of all
(

d
3

)

3-way marginals.
The smallest dataset consisted of only 70(!) six-attribute records. Of the 26 = 64 possible settings
of these bits, 22 appeared in the data set (so the continency table had 22 non-zero entries).

In each case, the synthetic dataset was evaluated by computing the relative entropy, or Kullback-
Leibler (KL) divergence with the real data set. The resulting measurements were compared with re-
ports in the literature [16] that, roughly speaking, capture the best that can be done non-privately6.

Remarkably, even on the smallest data set the relative entropy closely approaches the ideal
when ε reaches about 0.7. For two of the other datasets (665 records, 8 attributes, 91 non-zero
cells; 1841 records, 6 attributes, 63 non-zero cells), the differentially private algorithms beat the
non-private bounds once ε ≈ 0.7 and ε ≈ 0.5 respectively.

3.2 DP-WHERE

In this section we describe DP-WHERE [27], a differentially private version of the WHERE (Work
and Home Extracted REgions) approach to modelling human mobility based on cellphone Call
Detail Records [23]. For each individual, simultaneously, DP-WHERE protects all Call Detail
Records in the data set; this is known in the literature as user level privacy (here “user” refers to
a telephone user, not the data analyst)7.

6Any set of marginals determines the maximum likelihood estimator (MLE) p̂, which is the unique probability
distribution in the model encoded by the given set of marginals that makes the observed data set D the “most likely”
sample to have been observed. The bounds on KL divergence for the non-private case come from the KL divergence
between p̂ and D.

7This is in contrast to event level privacy, which would only hide the presence or absence of a single (or small
number of) call records.
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Example uses of synthetic Call Detail Records include estimating daily ranges (the maximum
distance a person travels in one day), modeling epidemic routing, and the modeling of hypothetical
cities, in which the analyst creates a paremterized model of a city and user behavior patterns
that cannot be observed in the real world, yielding the power to experiment with the effects of
modifications to reality such as telecommuting [23].

3.3 A Sketch of DP-WHERE

Each Call Detail Record corresponds to a single voice call or text message. Users making more
than 120 calls in any hour are filtered out8, and it is assumed that the number of remaining users,
denoted n, is known. Each of the n users is identified by an integer in {1, . . . , n}. The calls were
made in a metropolitan area divided into smaller geographic areas according to a d× d grid. Each
Call Detail Record is augmented with inferred home and work locations obtained by a combination
of clustering and regression [22]9. Thus, in DP-WHERE each element in the data set contains an
id (number between 1 and n), date, time, latitude, longitude, and the inferred home and work
locations.

The general approach is to create several distributions, all in a differentially private manner
(Section 3.3.1). The synthetic Call Detail Records are generated by appropriate sampling from
these distributions (Section 3.3.2).

3.3.1 DP-WHERE: Decription of the Distributions

Home and Work. For each of Home and Work, DP-WHERE computes a probability distribu-
tion on a square grid covering the metropolitan area in question, with a simple histogram query
(Example 6 in Section 2.3 above). For example, for the Home distribution, the histogram reports,
for each grid cell, the approximate (that is, noisy) number of users in the data set whose Home
location is in this grid cell. In order to be able to transform this to a probability distribution –
for example, to remove negative counts – post-processing techniques are applied that require no
additional access to the true data [21]. The procedure is the same for differentially private release
of the distribution on Work locations.

Commute Distance DP-WHERE uses a coarser grid for this computation, called the commute
grid, obtained by merging neighboring cells in the original d× d grid. For each cell in the commute
grid, DP-WHERE computes an empirical distribution on commute distances for people whose home
location falls in this cell. This yields a cumulative distribution function on commute distances for
each “home” grid cell.

We briefly describe the construction of one of these CDFs, say, for the ith grid cell. The
algorithm creates a data-dependent histogram of commute distances for the residents in this cell.
Each histogram bin is a range of distances, and the (true, non-noisy) count in bin j is the number
of users living in the ith grid cell whose true commute distance is in the range associated with the
jth bin. As above, the histogram is converted to a distribution via post-processing.

The subtlety is in determining the “right” set of bins for this histogram. This is done by
assuming the commute distances for the residents of grid cell i are modeled by an exponential

8These are assumed to be auto-dialers.
9Since the clustering uses only information specific to the given user, together with global information about the

locations of cell towers, the determination of these fields will not affect the privacy guarantee.
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distribution of the form η(x) = λe−λx (each grid cell has its own distribution on commute distances,
i.e., its own λ). The exponential mechanism (Section 2.3) is used to approximate the median of
this distribution: assuming the inputs x1, x2, . . . , are sorted, Ik is selected (but not revealed) with
probability proportional to (xk+1−xk)e

|k−m|; the algorithm then selects an element uniformly from
Ik and releases this value. Finally, λ is set at ln 2 divided by this approximate median.

Once λ has been chosen, the histogram bins are defined according to the deciles of the expo-
nential distribution with parameter λ.

Summarizing to this point, DP-WHERE finds, in a differentially private fashion, distributions
on home locations and, independently, on work locations. For each cell in the commute grid, it
finds a distribution on commute distances for residents in this cell. The techniques used include the
Laplace mechanism for histogram queries, a post-processing algorithm (for turning noisy counts
into a probability distribution), and the exponential mechanism (for selecting the median of a set
of numbers, used to infer λ under the assumption that the distribution is exponential).

Calls per Day per User In this step, for a fixed, discrete, set of potential means µ ∈ {µ1, µ2, ...µm}
and standard deviations σ ∈ {σ1, σ2, . . . , σs}, the algorithm computes a noisy count of the number
of users whose (rounded) mean number of calls per day is µ with a (rounded) standard devia-
tion of σ. Note that this is again a histogram query – the cells of the histogram correspond to
(mean,deviation) pairs (µi, σj). Post-processing is again invoked to obtain a distribution.

2-Means Clustering. DP-WHERE runs a privacy-preserving 2-means clustering algorithm [2]
to classify users based on a 24-dimensional probability vector describing their daily calling patterns.
In a little more detail, consider a specific user i. Based on the Call Detail Records, DP-WHERE
first constructs a non-private probability vector Pi for user i, using only the call records for user i,
describing for each hour j ∈ [24] the fraction of i’s calls made in the jth hour of the day. These
Pi’s are not released. Instead, DP-WHERE clusters these 24-dimensional vectors into two clusters,
using a differentially private algorithm. k-means clustering involves iteratively assigning an input to
the kth nearest cluster center and then averaging the points assigned to each center in order to find
the new center. They key points for doing this with privacy are (1) not revealing the assignment
of points to centers and (2) privately carrying out the averaging by computing a noisy sum and
dividing by a noisy count. In each iteration the algorithm applies post-processing to ensure that
the new centers represent probability vectors, i.e., that their entries are non-negative and sum to 1.
The output at this step is a pair of cluster centers – probability vectors representing calling patterns
– together with their approximate sizes. These sizes yield a distribution on the clusters.

Hourly Calls Per Location. The last set of probability distributions generated by DP-WHERE
yield, for each hour of the day, a probability distribution over grid cells, intuitively describing where
the population as a whole is likely to be during the given hour. That is, the Hourly Location
distribution for hour j ∈ [24] yields a probability distribution on locations (grid cells) for the
population as a whole during the jth hour of every day covered by the data set. Ideally, this would
be done by counting, for each grid cell and hour, the number of calls made from that grid cell during
that hour of the day, summed over the different days covered by the data set. The difficulty is that
these counts are highly sensitive, as only users making more than 120 calls in a single hour have
been filtered out. For each hour, the total sensitivity of this computation is 120 times the number
of days. Thus, even though, for a fixed j ∈ [24], DP-WHERE builds something like a histogram,
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with one cell for each cell of the d × d geographic grid, the L1-sensitivity of this data structure is
120 times the number of days. Applying the Laplace mechanism would add noise of this magnitude
to each of the d2 cells, which makes for too much distortion over all.

This difficulty is addressed using a grouping and smoothing technique [30], in which geograph-
ically close grid cells are “merged,” essentially coarsening the geographic grid, to give a data
structure with fewer elements, but the same L1-sensitivity. Since the number of cells in the data
structure is reduced, the total distortion is reduced, even though the distortion per (fat) cell re-
mains unchanged. Now, each merged cell contains the (noisy) sum, S, of the number of calls during
hour j in some number m of the original grid cells. DP-WHERE assigns to each of these m cells
the value S/m. (The number m is fixed, public, and part of the algorithm.) Finally, as in all the
other steps, post-processing is applied to convert the noisy counts to a probability distribution.

This completes the description of the (differentially privately generated distributions) used in
generating synthetic Call Detail Records. No further access is made to the real data.

3.3.2 DP-WHERE: Generation of Synthetic CDRs

DP-WHERE, having found differentially private versions of the same distributions found byWHERE,
creates records exactly as is done in WHERE. The first step is to generate synthetic users:

1. Sample from the (differentially privately generated) distribution on home locations, yiedling
a geographic grid cell c;

2. Sample from the (differentially privately generated) distribution on commute distances for
residents of geographic grid cell c, yielding a commute distance d.

3. Weight the cells at distance d according to their densities under the (differentially privately
generated) Work distribution, normalize, and sample from the resulting probability distribu-
tion to obtain a work location.

4. Randomly assign the user a mean and standard deviation for the number of calls it will
make per day, according to the (differentially privately generated) distribution on pairs (µ, σ)
described in the paragraph above labeled Calls Per Day Per User.

5. Randomly assign the synthetic user to one of the two calling patterns learned in the differ-
entially private 2-means clustering algorithm, according to the distribution on the clusters,
released by that algorithm.

In the second step, the synthetic users are “moved” between their home and work locations.
Fix i ∈ {1, 2, . . . , n}. The procedure described next generates a day in the life of synthetic user i.

1. Generate a number N of calls to be made during the day by sampling from a normal distri-
bution with mean µ and variance σ2.

2. Allocate the total number N of calls to be made in this day to the 24 different hours of this
day, according to the calling pattern (cluster) to which synthetic user i was assigned. Assign
the exact time within the hour by interpolating between the beginning and end of the hour.

3. Finally, for each call made by user i during hour j, choose the location – select between user i’s
Home and Work location – by sampling according to the (differentially privately generated)
hourly calls per location densities for these two locations during hour j.
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location at
The generation of synthetic Call Detail Records relies only on differentially privately computed

distributions. Not only does this mean that generation requires no further access to the original
data, but also that the generated records provide no information beyond what is revealed by these
distributions. Thus, the algorithm could release these differentially private distributions and allow
the data analyst to generate synthetic data sets at will.

3.3.3 Exprimental Validation of DP-WHERE

Experiments were carried out using Call Detail Records from actual cellphone use over 91 con-
secutive days. The dataset contains over one billion records involving over 250,000 unique phones
chosen at random from phones billed to ZIP codes within 50 miles of the center of New York City.

As in WHERE, accuracy of DP-WHERE is measured by a “normalized” Earth Mover Distance.
The results vary according to the coarseness of the commute grid (in both WHERE and DP-
WHERE) and the choice of the total, cumulative privacy loss (in DP-WHERE). For a commute
grid cell size of 0.01o, (non-private) WHERE yields an average hourly error of 3.2150; when ε = 0.33
(respectively, 0.23 and 0.13) this quantity is 3.5136 (respectively, 3.4066 and 5.3391). A coarser
grid cell size of 0.05o yields 3.0871 for WHERE and, respectively for these same values of ε, 4.5687,
5.1691, and 5.2754 for DP-WHERE. Even with 10,000 synthetic users moving across more than
14,000 square miles, the distance between the synthetic and real population density distributions
for DP-WHERE differed by only between 0.17 and 2.2 miles from those of WHERE.

Experiments on (non-private) WHERE using public information, such as US census data, (and
not Call Detail Records) were also carried out [23]. In all cases, DP-WHERE with Call Detail
Records performed better than WHERE using public data. Thus, if the choice is between unfettered
access to public data and differentially private access to the Call Detail Records, these experiments
show that differential privacy, even with ε = 0.13, has better utility.

Experiments were also carried out to measure the daily range, or the maximum distance between
any two points visited by an individual in a day. The boxplots for daily range in DP-WHERE
(ε = 0.23), WHERE, and the real Call Detail Records are qualitatively similar, with differences of
0.5− 1.3 miles across the middle two quartiles (the smallest IQR of the three sets is 5.2 miles).

4 Challenges for Differential Privacy

The greatest scientific challenge is that, for a given computational task and a given value of ε, finding
a low-error, differentially private algorithm can be hard. An analogy may be made to numerical
analysis. Suppose, in the non-private world, we wish to compute a matrix decomposition. A naive
algorithm for the decomposition may be numerically unstable, so we first consult a textbook on
numerical algorithms and write our program based on the stable algorithm in the text. It is easy
now – but quite possibly the algorithm in the text was a PhD thesis when it was developed in the
1970’s.

A different sort of challenge is posed by “non-algorithmic” thinking in data analysis. From data
cleaning through detailed investigation, many researchers who work with data do not, indeed can
not, provide an algorithmic description of their interactions with the data. With no algorithm for
the non-private case, there is essentially no hope of finding a differentially private alternative. This
is less of an issue in machine learning and the VLDB (Very Large DataBases) communities, where
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the sheer volume of data rules out non-algorithmic approaches.
Differential privacy requires a new way of interacting with data, one that attempts to minimize

privacy loss by reducing the explicit viewing, not to mention publication, of intermediate results.
But query minimization is a completely foreign concept to data analysts. A good analogy might be
to running an industrial scale database without the benefit of query planning, leading to (literally)
prohibitive computational costs.

By far the hardest to grapple with are the social challenges of a changing world, in which highly
detailed research data sets are expected to be shared and re-used, and all manner of information
exploited for commercial gain, seemingly without limit. That this is fundamentally incompatible
with privacy is proved by a host of lower bounds and attacks10. What are we to make of this
state of affairs? To paraphrase Latanya Sweeney [35], computer science got us into this mess, can
computer science get us out of it?

One thing seems certain: complexity of this type requires a mathematically rigorous theory of
privacy and its loss. Other fields – economics, ethics, policy – cannot be brought to bear without a
“currency,” or measure of privacy, with which to work. In this connected world, we cannot discuss
tradeoffs between privacy and statistical utility without a measure that captures cumulative harm
over multiple releases.

Publish the Loss, and Pay a Fine for Infinity. Whatever the measure of privacy loss on
which the community ultimately settles, we should take a page from environmental law and require
measurements of privacy loss to be made public. In differential privacy, simply ensuring that the loss
is finite helps to protect against many common avenues of attack. Although the field of differentially
private algorithms has many exciting results, provided by researchers from an increasingly broad
array of disciplines, much remains to be done. Perhaps publication of privacy losses will lead to
competition, deploying the talents of an even larger set of researchers and other marketers and
consumers of data in the search for private algorithms.
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