
 1 

Universal Business Language (UBL) 2 

3 

4 

5 

6 

7 
8 

9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 

32 

33 

34 

35 

36 

37 
38 
39 

Code List Representation 
Version: 1.1 draft 17 January 2005 

Document identifier: 

wd-ublclsc-codelist-20050103.doc 

Location: 
http://www.oasis-open.org/committees/ubl/ 

Editor: 
Marty Burns for National Institute of Standards and Technology, NIST, burnsmarty@aol.com  

Contributors: 
Anthony Coates abcoates@londonmarketsystems.com  
Mavis Cournane mavis.cournane@cognitran.com   
Suresh Damodaran Suresh_Damodaran@stercomm.com  
Anne Hendry anne.hendry@sun.com  
G. Ken Holman gkholman@CraneSoftwrights.com   
Serm Kulvatunyou serm@nist.gov  
Eve Maler eve.maler@sun.com 
Tim McGrath tmcgrath@portcomm.com.au  
Mark Palmer mark.palmer@nist.gov  
Sue Probert sue.probert@dial.pipex.com   
Lisa Seaburg lseaburg@aeon-llc.com 
Paul Spencer paul.spencer@boynings.co.uk  
Alan Stitzer alan.stitzer@marsh.com   
Frank Yang Frank.Yang@RosettaNet.org  

Abstract: 
This specification provides rules for developing and using reusable code lists. This specification 
has been developed for the UBL Library and derivations thereof, but it may also be used by other 
technologies and XML vocabularies as a mechanism for sharing code lists and for expressing 
code lists in W3C XML Schema form. 

 

Note: This draft is an intermediate edit along the path of 
UBL 1.1. The present revision has only modified the 
front matter of the document and revised the 
requirements. The reader is directed to ignore the 
balance of the draft contained herein. 

Status: 
This document was developed by the OASIS UBL Code List Subcommittee [CLSC]. Your 
comments are invited. Members of this subcommittee should send comments on this 



specification to the ubl-clsc@lists.oasis-open.org list. Others should subscribe to and send 
comments to the ubl-comment@lists.oasis-open.org list.  

40 
41 

42 
43 
44 
45 

For information on whether any patents have been disclosed that may be essential to 
implementing this specification, and any offers of patent licensing terms, please refer to the 
Intellectual Property Rights (OASIS-IPR) section of the Security Services TC web page 
(http://www.oasis-open.org/who/intellectualproperty.php 



Table of Contents46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

1 Introduction...........................................................................................................................................5 

1.1 About the current version.............................................................................................................5 

1.2 Scope and Audience....................................................................................................................6 

1.3 Terminology and Notation............................................................................................................6 

1.3.1 Definitions................................................................................................................................6 

2 Requirements for Code Lists................................................................................................................9 

2.1 Overview......................................................................................................................................9 

2.2 Use and management of Code Lists ...........................................................................................9 

2.2.1 [R1] First-order business information entities..........................................................................9 

2.2.2 [R2] Second-order business information entities ....................................................................9 

2.2.3 [R3] Data and Metadata model separate from Schema representation..................................9 

2.2.4 [R4] XML and XML Schema representation..........................................................................10 

2.2.5 [R5 (Future)] Machine readable data model .........................................................................10 

2.2.6 [R6 (Future)] Conformance test for code lists .......................................................................10 

2.2.7 [R6a] Supplementary components or metadata available in instance documents ...............10 

2.3 Types of code lists .....................................................................................................................11 

2.3.1 [R7] UBL maintained Code List .............................................................................................11 

2.3.2 [R8] Identify and use external standardized code lists..........................................................11 

2.3.3 [R9] Private use code list.......................................................................................................11 

2.4 Technical requirements of Code Lists .......................................................................................11 

2.4.1 [R10] Semantic clarity ...........................................................................................................11 

2.4.2 [R11] Interoperability .............................................................................................................11 

2.4.3 [R12] External maintenance ..................................................................................................12 

2.4.4 [R13] Validatability.................................................................................................................12 

2.4.5 [R14] Context rules friendliness ............................................................................................12 

2.4.6 [R15] Upgradability / Extensibility without modifying underlying references.........................12 

2.4.7 [R16] Readability ...................................................................................................................12 

2.4.8 [R17] Code lists must be unambiguously identified ..............................................................12 

2.4.9 [R18 (Future)] Ability to prevent extension or modification ...................................................13 

2.5 Design Requirements of Code List Data Model ........................................................................13 

2.5.1 [R19] A set of the values (codes) forms each code list .........................................................13 

2.5.2 [R20 (Future)] Multiple lists of equivalent values (codes) for a code list...............................13 

2.5.3 [R21] Unique identifier(s) for a code list ................................................................................14 

2.5.4 [R22] Unique identifiers for individual entries in a code list...................................................14 

2.5.5 [R23] Names for a code list ...................................................................................................14 



2.5.6 [R24] Documentation for a code list ......................................................................................14 82 

83 

84 
85 

86 

87 

88 
89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

2.5.7 [R25] Documentation for individual entries on a code list .....................................................14 

2.5.8 [R26 (Future)] The ability to import, extend, and/or restrict values and elements of other 
code lists.............................................................................................................................................14 

2.5.9 [R27 (Future)] Support for describing code lists that cannot be enumerated .......................15 

2.5.10 [R28 (Future)] Support for references to equivalent code lists .........................................15 

2.5.11 [R29 (Future)] Support for individual values to be mapped to equivalent values in other 
code lists 15 

2.5.12 [R30 (Future)] Support for users to attach their own metadata to a code list ...................15 

2.5.13 [R31 (Future)] Support for describing the validity period of the values.............................15 

2.5.14 [R32] Identifier for UN/CEFACT DE 3055.........................................................................15 

3 Data and Metadata Model for Code Lists...........................................................................................16 

3.1 Data Model Definition ................................................................................................................16 

3.2 Supplementary Components (Metadata) Model Definition........................................................16 

3.3 Examples of Use........................................................................................................................17 

4 XML Schema representation of Code Lists........................................................................................19 

4.1 Data Model Mapping..................................................................................................................20 

4.2 Supplementary Components Mapping ......................................................................................22 

4.3 Namespace URN (Future) .........................................................................................................23 

4.4 Namespace Prefix .....................................................................................................................23 

4.5 Code List Schema Generation ..................................................................................................23 

4.5.1 Data model and example values...........................................................................................23 

4.5.2 Schema to generate ..............................................................................................................24 

4.5.3 Schema file name..................................................................................................................25 

4.6 Code List Schema Usage..........................................................................................................30 

4.7 Instance .....................................................................................................................................32 

4.8 Deriving New Code Lists from Old Ones (future) ......................................................................32 

4.8.1 Extending code lists ..............................................................................................................32 

4.8.2 Restricting code lists .............................................................................................................33 

5 Conformance to UBL Code Lists (future) ...........................................................................................34 

6 References .........................................................................................................................................35 

Appendix A. Revision History ................................................................................................................36 

Appendix B. Notices ..............................................................................................................................37 

 



1 Introduction 116 

117 
118 
119 
120 

121 
122 
123 
124 
125 
126 

127 
128 
129 
130 

131 
132 
133 
134 
135 

136 
137 
138 

139 
140 

141 
142 
143 
144 
145 

146 
147 

148 

149 

150 

151 

152 

153 

154 
155 
156 

Trading partners utilizing the Universal Business Language (UBL) must agree on restricted sets of coded 
values, termed "code lists", from which values populate particular UBL data fields.  Code lists are 
accessed using many technologies, including databases, programs and XML.  Code lists are expressed 
in XML for UBL using W3C XML Schema for authoring guidance and processing validation purposes. 

It is important to note that XML schema languages are not purely abstract data models.  They provide 
only a particular representation of the data. In addition, there are many roughly equivalent design choices 
(e.g. elements versus attributes).  The underlying logical model is obscured, and can be difficult to 
extract.  Therefore, XML schema languages are principally useful as a way of specifying rules to an XML 
validation engine.  Database schemas and programming language class models would have their own 
specific representations of the logical data models. 

A good logical data model format should allow the information about code lists to be expressed in a 
format that is as simple and unambiguous as possible. To maximize the abstraction on one hand, and the 
utility of the code list representations on the other, this document first derives an abstract data model of a 
code list, and then, an XMLSchema representation of that data model. 

Note that there are two major aspects of a model of code lists – the list of codes and descriptive 
information about the code list termed “supplementary components”. Supplementary components include 
information such as origin and version, for example. Supplementary components describe the metadata 
about the code lists and codes themselves. They appropriately describe the context within which 
individual codes can be understood. 

The document begins with a section expositing the requirements adopted by the committee in order to 
make certain that design follows requirements. These requirements were used to steer the design 
choices elected in the balance of the document.  

This specification was developed by the OASIS UBL Code List Subcommittee [CLSC] to provide rules for 
developing and using reusable code lists expressed using W3C XML Schema [XSD] syntax.  

The contents combine requirements and solutions previously developed by UBL’s Library, Naming, and 
Design Rules subcommittee [CL5], the work of the National Institute of Standards “eBusiness Standards 
Convergence Forum” [eBSC] with contributions from Frank Yang and Suresh Damodaran of Rosettanet 
[eBSCMemo], and position papers by Anthony Coates [COATES], Gunther Stuhec [STUHEC], and Paul 
Spencer [SPENCER]. 

The data model attempts to be sufficiently general to be employable with other technologies (e.g. non-
XML) and in other scenarios that are outside the scope of this committee's work.   

This specification is organized as follows: 

• Section 2 provides requirements for code lists; 

• Section 3 provides a data and metadata model (supplementary components) of code lists; 

• Section 4 is an XMLSchema representation of the model; 

• Section 5 is the recommendations for code producers and the compliance rules. 

1.1 About the current version 

The Code List model described in this paper for UBL 1.0 has laid much of the groundwork for extensible 
code lists.  It includes an extensibility mechanism based on XSD substitution groups that has not been 
adopted for UBL 1.0 but will serve as a starting point for work on a code list extension mechanism for 

[ABC] Marty, this document should provide rules for UBL usage of both XML Schema and the XML code list format.  I'm assuming here that the XML format will be documented separately, since it is really a generic piece of infrastructure, just as XML Schema is.  This document can then focus on defining how these formats are used, rather than on describing the formats themselves.



UBL 1.1.  The current specification places a priority on uniformity of code list metadata independent of the 
mechanism eventually adopted for code list extension. 

157 
158 

159 
160 
161 
162 
163 

164 
165 

166 

167 
168 
169 
170 
171 
172 
173 
174 

175 
176 
177 
178 

179 

180 
181 
182 

183 
184 

185 

The UBL team has embarked on an effort, in conjunction with NIST’s eBusiness Standards Convergence 
Forum (eBSC) to fulfill the goals of constructing a code list model that can be reused throughout industry. 
The current version contains an update to the descriptions of the requirements and some enhanced 
requirements discovered in the interim. For the time being, those features beyond the UBL1.0 are still 
labeled as FUTURE such designation to be removed further along in the version 1.1 process. 

Persons wishing to engage in the further evolution of this specification are urged to join the OASIS 
Universal Business Language Technical Committee (http://oasis-open.org/ ). 

1.2 Scope and Audience 

The rules in this specification are designed to encourage the creation and maintenance of code list 
modules by their proper owners as much as possible. It was originally developed for the UBL Library and 
derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML and 
non-XML vocabularies as a mechanism for sharing code lists. If enough code-list-maintaining agencies 
adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge 
for all XML vocabularies. In addition, it is anticipated that these common definitions will find use in other 
non-XML applications that need to store or otherwise represent the same data as it traverses from 
application to application.  

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core 
Components [CCTS2.01] concepts and ISO 11179 [ISO 11179] concepts that underlie it. While mastery 
of these concepts is not essential to the understanding and use of this document, they are useful in 
explaining the concepts behind the organization and structure of this material. 

1.3 Terminology and Notation 

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words 
must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this 
specification are to be interpreted as described in [RFC2119]. 

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional 
definitions of terms. 

Core Component names from ebXML are in italic. 

Example code listings appear like this. 186 

187 

188 
189 

190 

191 

192 
193 

194 

195 
196 

197 

Note: Non-normative notes and explanations appear like this. 

Conventional XML namespace prefixes are used throughout this specification to stand for their respective 
namespaces as follows, whether or not a namespace declaration is present in the example: 

The prefix xs: stands for the W3C XML Schema namespace [XSD]. 

The prefix xhtml: stands for the XHTML namespace. 

The prefix iso3166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-
1 country code list. 

1.3.1 Definitions 

[1/2/05 MJB] Need to substantially populate this list with all acronyms and terminology 
used in this paper. 

 



BIE Business Information Entities. 

code A group of contiguous text characters that together uniquely specify the 
name and/or attributes of a particular field or “element” embedded in a 
stream of data. 

code list A set containing one or more codes or code values that is associated 
with one or more elements of data stream. 

code list mechanism A term used to distinguish this specification from the instances of actual 
code lists based on it. 

code value See the definition for “code” above. 

core components A building block such as account identification data that contains pieces 
of business information associated with a single concept. Core 
components are sufficiently general to be used across several or many 
different business sectors. 

data model A technique, set of rules and/or methods used to organize information 
objects and thereby define a structure for data. Such models are created 
to streamline the storage/retrieval, manipulation, use or comprehension 
of data and/or to provide information about its interrelationships, 
meaning, function or usage. 

ebXML An acronym for Electronic Business using eXtensible Markup Language. 
ebXML is a modular suite of specifications that enables enterprises at 
disparate geographical locations to conduct business over the Internet. 
ebXML, provides standard methods for exchanging business messages, 
for conducting trading relationships, for communicating data in common 
terms and for defining and registering business processes. 

enumeration A list or set, usually containing two or more entries, of associated data 
elements. Entries have been logically grouped or associated, and 
possibly named as a set, permitting later selection of a single member or 
entry for a purpose such as specifying the characteristics of an object.  

ISO 11179 An International Organization for Standardization specification that 
provides rules and guidelines for the naming, definition, creation and 
registration of data elements. It also contains information about the type 
of metadata that should be specified for data elements. 

metadata Information, for example characteristics, content, context or structure, 
that is associated with a data object. In short, metadata is “data about 
data.”  

NDR Naming and design rules. 

OASIS An acronym for Organization for the Advancement of Structured 
Information Standards. OASIS is a not-for-profit, international consortium 
that drives the development, convergence, and adoption of e-business 
standards. It produces standards used for or by Web services, security, 
e-business, the public sector and application-specific markets.  

Perl The Practical Extraction and Report Language is an interpreted 
programming language that utilizes features from C, sed, awk, and sh. It 
scans arbitrary text files, extracts information from them and generates 
output based on the extracted information. As open source software its 
source code is available. 



supplementary components Supplementary components describe the metadata about the code lists 
and codes themselves. They appropriately describe the context within 
which individual codes can be understood. 

UBL A generic XML interchange format for business documents that can be 
extended to meet the requirements of particular industries. The UBL 
specification currently consists of a library of XML schemas for reusable 
data components (e.g. “address”, “payment”, etc.), a set of XML 
schemas for common business documents (e.g. “Order”, “Invoice”, etc.) 
and support for industry-specific extensions to the format. 

URI An acronym for Uniform Resource Identifier. Each URI is a unique 
identifier for a resource or object on the Internet. URIs are drawn from a 
universal set of names or addresses and the objects or resources to 
which they refer can be accessed with well-known protocols. Every URI 
is located in one or more registries of such names and/or addresses. A 
Uniform Resource Locator (URL) is one example of a URI. 

W3C An acronym for World Wide Web Consortium. This organization 
develops and distributes information, specifications, guidelines, software, 
and tools that enhance the operation of the Internet. It also acts as a 
forum for commerce, education and communication. 

XML An acronym for eXtensible Markup Language. XML is a set of rules for 
the creation of customized markup languages that are used in textual 
documents to name, describe the attributes of and specify the 
relationships between data elements contained in those documents. 
XML is derived from SGML (Standard Generalized Markup Language) 
and has been designed for the transport and sharing of data.. 

XML Schema A textual description of the appearance, interrelationships and valid 
value ranges for the data elements in an XML stream. 

 198 



2 Requirements for Code Lists 199 

200 

201 
202 
203 
204 

205 
206 
207 

208 

“There can be no solution without a requirement!” 

This section summarizes the requirements to be addressed by this paper. Requirements are identified in 
the heading for each one as: [Rn], where ‘n’ is the requirement number. This draft contains requirements 
that have been accumulated for code lists in general. In order to allow for the interim publishing of this 
specification, several of the requirements have been labeled as future requirements: [Rn (Future)] 

 [3/9/04 MJB] The requirements in this section need to be associated ultimately with the design in 
sections 3 and 4. This will be done by listing requirements addressed in each subsection below the 
subsection title line. 

2.1 Overview 

The goal of this document is to provide a representation model or mechanism for code lists that are 209 
extensible, restrictable, traceable, and cognizant of the need for code lists to be maintained by various 210 
organizations who are authorities on their content. Code lists developed bye this means will be infused 211 
with the requirements outlined in this section. 212 

Note that the code list mechanism of this specification needs to support all of the requirements in this 213 
section. However, any single code list based on this specification may not be required to meet all 214 
requirements simultaneously. The appropriate subset of requirements that a given code list must support 215 
is summarized in the use cases presented in the conformance section (5 Conformance to UBL Code 216 
Lists). 217 

218 

219 

220 

221 
222 
223 
224 

2.2 Use and management of Code Lists 

This section describes requirements for the use and management of code lists. 

2.2.1 [R1] First-order business information entities 

Code list values may appear as first-order business information entities (BIEs). For example, one property 
of an address might be a code indicating the country.  This information appears in an element, according 
to the Naming and Design Rules specification [NDR]. For example, in XML a country code might appear 
as: 

<Country>UK</Country> 225 

226 

227 
228 
229 
230 

2.2.2 [R2] Second-order business information entities 

Code list values may appear as second-order information that qualifies another BIE. For example, any 
information of the Amount core component type must have a supplementary component (metadata) 
indicating the currency code. For example, in XML a currency code might appear as an attribute – the 
value of element Currency is 2456000; the code EUR describes that these are in Euros: 

<Currency code=”EUR”>2456000</Currency> 231 

232 

233 
234 
235 

2.2.3 [R3] Data and Metadata model separate from Schema representation 

Since all uses of code lists will not be exclusively within the XML domain – ie. Databases, etc…, it is 
desirable to separate the description of the data model from its XML representative form. This will 
facilitate use for other purposes of the semantically identical information. 



Code list interoperability comes about when different specifications or applications use the same 
enumerated values (or aliases thereof) to represent the same things/concepts/etc.  Sharing XML 
schemas (or fragments) is one way of achieving this, but it is not a necessary method for achieving this 
goal. 

236 
237 
238 
239 

240 
241 
242 
243 
244 

245 
246 
247 

248 

249 
250 
251 

252 

253 
254 
255 
256 
257 
258 
259 

260 

261 
262 
263 
264 

265 

266 
267 
268 

269 

270 

271 
272 
273 
274 

275 
276 
277 

Broader interoperability can be achieved instead by defining a format which models code lists 
independently of any validation or representation mechanisms that they may be used with.  Such a data 
model should be able to be processed to produce the required XML Schemas, and should also be able to 
be processed to produce other artifacts, e.g. Java type-safe enumeration classes, database Schemas, 
code snippets for HTML forms or XForms, etc. 

The format should be appropriate for use across a range of standards activities, i.e. it should embody the 
most generic view of code lists, and not any particular group's specific view. It should also be useful for 
implementations of those standards, not just for the standards activity itself.  

2.2.4 [R4] XML and XML Schema representation 

The principal anticipated use of the code list model will be in XML applications – XML for usage, and 
XMLSchema for validation of instance documents. This paper should realize a proper XML / XMLSchema 
representation for the code list model. 

2.2.5 [R5 (Future)] Machine readable data model 

A data model is an abstraction and it must be converted to explicit representation for use. The principal 
such use anticipated by this effort is that of XML data exchange. A machine readable representation of 
the data model makes the lossless transfer of all meaning to the representation of choice easier since it 
can be automated.  It is therefore desirable that the data model be expressed in a machine-readable 
form. By lossless transfer it is intended that once a transfer of a code list model into an alternate form, all 
original information or semantics is contained in the alternate for so that the original could then be 
recreated solely from the contents of the original form.  

By way of a negative example, consider the following translation that is not lossless: 

Assume that a number represented in syntax A 98.6. Syntax B is restricted by its designers to 
only integral number representations. Thus the translation of 98.6 would result in 98. Clearly, the 
translation was not lossless since the fractional part (although not needed by applications using 
Syntax B) was truncated. There is no way to deduce 98.6 solely from the number 98. 

2.2.6 [R6 (Future)] Conformance test for code lists 

An abstract model for code lists requires a method to ensure conformance and consistency of the 
rendering of instance Schemas based on the model. There shall be a definition of this conformance to 
qualify the results of the usage of this specification. 

2.2.7 [R6a] Supplementary components or metadata available in instance 
documents 

Instance documents often have fiduciary requirements. This requirement is independent of the need to be 
able to validate contents according to a referenced schema. This requires that some meta-information be 
explicitly contained in the instance document, irrespective of its availability in a referenced document. 
Therefore: 

 The supplementary components of the code lists of code list values utilized in a UBL instance 
shall optionally be available in the XML instance proper without any processing from any external 
source including any schema expression. 



 The supplementary components shall be optionally available for all code-list-value information 
items even when two or more such information items are found in the set of data and attribute 
information items for any given element. 

278 
279 
280 

281 

282 

2.3 Types of code lists 

2.3.1 [R7] UBL maintained Code List 

UBL will make use of code lists that describe information content specific to UBL. Such code lists are 283 
intended to become part of the UBL Library of schemas. 284 

In some cases the UBL Library may have to be extended to meet specific business requirements. In other 285 
cases where a suitable code list does not exist in the public domain, that code list and all its values may 286 
have to be added to the UBL Library where it will be maintained. Both of these types of code lists would 287 
be considered UBL-internal code lists.  288 

289 2.3.2 [R8] Identify and use external standardized code lists 

Because the majority of code lists are expected to be owned and maintained by external agencies, UBL 290 
shall make maximum use of such external code lists where they exist. The UBL Library SHOULD identify 291 
and use external standardized code lists rather than develop its own UBL-native code lists.  292 

293 2.3.3 [R9] Private use code list 

This model must support the construction of private code lists where an existing external code list needs 294 
to be extended, or where no suitable external code list exists.  295 

296 

297 

298 

299 
300 
301 
302 

303 

304 

305 
306 
307 
308 
309 
310 

2.4 Technical requirements of Code Lists 

Following are technical quality requirements for code lists.  

2.4.1 [R10] Semantic clarity 

The ability to “de-reference” the ultimate normative definition of the code being used. The supplementary 
components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many 
ways to supply values for these components in XML, and it’s even possible to supply values in some non-
XML form that can then be referenced by the XML form.  

[1/1/05 MJB] Still need to elaborate this requirement. 

2.4.2 [R11] Interoperability 

Interoperability can be thought of as the sharing of a common understanding of the limited set of codes 
expected to be used. There is a continuum of possibilities here. For example, a schema datatype that 
allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. 
On the other hand, merely documenting the intended shared values is more flexible but somewhat less 
interoperable, since there are fewer penalties for private arrangements that go outside the standard 
boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness. 

This section is a bit too abstract for my taste. It also discusses each requirement in formal, almost academic fashion but does not explicitly state what is required and how each such requirement can be met.

This paragraph expounds on interoperability but never states explicitly that it is a requirement. It also does not define the tests to be used to determine whether code lists are interoperable. 



2.4.3 [R12] External maintenance 311 

312 
313 
314 

315 

316 
317 

318 

319 
320 

321 
322 

323 

324 

325 
326 
327 

328 
329 
330 
331 

332 

333 
334 
335 

336 

337 
338 
339 
340 
341 

342 
343 
344 

345 
346 

347 

The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that 
allows UBL to reuse them without modification on anyone’s part. Some standards bodies are already 
doing this, although we recognize that others may never choose to create such modules. 

2.4.4 [R13] Validatability 

The ability to use XSD (or correspondingly suitable tool if not an XML based representation of the code 
list) to validate that a code appearing in an instance is legitimately a member of the referenced code list.  

2.4.5 [R14] Context rules friendliness 

The code list mechanism shall use expected normal mechanisms of the UBL Naming and Design Rules 
(NDR) without unnecessarily adding custom features just for code lists.  

[1/3/05 MJB] Note: If any extension is necessary or agreed upon, changes in the NDR 
shall be required to evidence it. 

2.4.6 [R15] Upgradability / Extensibility without modifying underlying 
references 

The code list mechanism shall support the ability to begin using a new version of a code list without the 
need for upgrading, modifying, or customizing the source schema modules (or other original referenced 
material).  

It is therefore necessary to establish a mechanism by which a given code or code list can be extended for 
use without having to alter the underlying source material. When such a extension is made, it is also 
necessary to be able to determine unambiguously the nature and source of the modification so that its 
use can be validated. 

2.4.7 [R16] Readability 

A representation in the XML instance that provides code information in a clear, easily readable form.  For 
example, representing codes as a sequence of arbitrary number sequences would fail this test as there 
would be no contextual information. 

2.4.8 [R17] Code lists must be unambiguously identified 

The generation of multiple versions of a code list and the coexistence of more than one version shall be 
supported. The procedure used to generate each such revision from an earlier version shall be 
deterministic and thus repeatable and auditable. Publication of related code lists, for example either 
multiple versions of a single code list or other appropriate groupings, shall be accommodated to, for 
example, simplify configuration management tasks. 

In any instance of a document that uses codes from a code list, it must be unambiguous what the set of 
valid codes are and the origin and version of the code list. For example, presuming that version can be 
facilitated by the definition of a unique Uniform Resource Identifiers (URI), it is required that: 

1. Any two uses of the same namespace URI represent the use of the same code list 
definition  

2. No two differing code list definitions shall be represented by the same namespace URI 



3. When two trading partners identify the use of a code list, there must not be any 
ambiguity.   

348 
349 

350 
351 

352 

353 
354 
355 
356 

357 

358 

359 

360 
361 
362 

363 

364 

365 
366 
367 
368 

369 
370 
371 
372 
373 

374 

4. Should either partner create a code list or change an existing code list, the identification 
of the resulting code list must be distinct from that of its origin. 

2.4.9 [R18 (Future)] Ability to prevent extension or modification 

Certain code lists should not be extensible. For example, the traditional English list of colors in a rainbow, 
RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET. It should be possible to indicate that such a 
code list is not extensible so the users can be assured of this constancy in its usage. [ABC] I think this 
only applies to XML Schema, not to the generic XML model, for reasons we can discuss as required. 

2.5 Design Requirements of Code List Data Model 

What follows is a list of some of the features that a code list data model must and/or should provide. 

2.5.1 [R19] A set of the values (codes) forms each code list 

Each code list must contain zero or more valid codes. The codes represent the content of the code list. 
Some useful code lists have been designed that have no specific predefined codes. Support for such lists 
is required. 

2.5.2 [R20 (Future)] Multiple lists of equivalent values (codes) for a code 
list  

Multiple representations for each code value must be supported in order to account for individual 
business requirements. For example, both integer & mnemonic representations may be needed as well 
as versions in more than one language. Clearly each value in a particular set of code values must be 
unique. 

 Consider days of the week, for instance. In this case well-accepted names, abbreviations, and integers 
might be needed under different circumstance to represent the text strings “Sunday”, “Monday”, 
“Tuesday”, etc.  A number of different ways of identifying days are presented in the table below, and 
clearly the rightmost column is not acceptable since each value is no longer unique. This requirement 
means that there must be no impediments to adding columns to such a table of codes.  

 

Number Uppercase 
English  

Mixed Case 
English 

Mixed Case 
English Full 

French 
Uppercase 

Single 
Letter 

0 SUN Sun Sunday DIM S 

1 MON Mon Monday LUN M 

2 TUE Tue Tuesday MAR T 

3 WED Wed Wednesday MER W 

4 THU Thu Thursday JEU T 

5 FRI Fri Friday VEN F 

6 SAT Sat Saturday SAM S 

 375 



The format used to express each notional code or list entry should permit multiple values to be associated 
with or assigned to each such entry. List entries should be represented in a generic fashion that is 
appropriate both for all associated standards activities and for all conceivable code list implementations of 
the standard.  

376 
377 
378 
379 

380 
381 
382 
383 
384 

385 

386 
387 
388 
389 
390 

391 
392 

393 

394 
395 

396 

397 
398 

399 

400 

401 

402 
403 
404 

405 

406 

407 
408 

409 

410 
411 

412 
413 

The format used for code lists should support any required level of complexity for both list entries and the 
code lists containing them. This format should make provision for the rapid construction of simple code 
lists and minimize the complexity of this process without increasing the difficulty of generating more 
complex lists. Any format should be portable and thus able to be processed on a broad range of computer 
systems.  

2.5.3 [R21] Unique identifier(s) for a code list 

Each code list and each version of such a list must contain at least one unique identifier (or set of 
identifiers which are collectively unique) able to reference that entire code list. It is equivalent to a key for 
the entire code list that can distinguish it from other code lists. There should be no restrictions as to which 
set of codes in the list can be used for this purpose, how many such keys will be used or which key(s) 
have higher priorities than others.  

The unique identifier(s) for each code list shall support automated differentiation, i.e. by machine, of each 
code list or version thereof from all others. 

2.5.4 [R22] Unique identifiers for individual entries in a code list 

Each code within a code list must be represented by a unique identifier. This requirement means that no 
two codes within a single code list can have identical identifiers. 

2.5.5 [R23] Names for a code list 

Each code list must have a unique name. The same, as much as possible, should convey the content of 
the list.  

2.5.6 [R24] Documentation for a code list 

Each code list must contain documentation that describes, in detail, the business usage for that code list. 

2.5.7 [R25] Documentation for individual entries on a code list 

Each code entry on a code list shall support valid values,  optional index values, and an optional long 
description to convey, in detail, the business meaning (as presented from the context of the code list 
author) and usage for this code value .  

2.5.8 [R26 (Future)] The ability to import, extend, and/or restrict values and 
elements of other code lists 

The model for code lists must provide the ability to extend, restrict or import additional values and/or 
elements of other code lists. 

Each code list and the format used to represent it must support derivation of descendant code lists.  

Derivation in this context shall include adding and/or removing notional codes and/or sets of values 
associated with the list as well as adding and/or removing keys, descriptive information, etc.  

Any such derivation shall be done in a deterministic fashion that is repeatable and auditable (see [R17], 
[R21]). 

The phrase  “ . . . able to support valid values . . .” really doesn’t belong in a subsection covering documentation.



2.5.9 [R27 (Future)] Support for describing code lists that cannot be 
enumerated 

414 

415 

416 
417 

418 

419 
420 

421 
422 

423 

424 

425 
426 
427 

428 
429 

430 

431 

432 
433 

434 
435 

436 

437 

438 
439 
440 

441 

442 
443 
444 

Provision shall be made for the creation of code lists that cannot be enumerated either in part or in their 
entirety because of size, volatility, or proprietary restrictions. 

2.5.10 [R28 (Future)] Support for references to equivalent code lists 

Each code list must be able to refer to other code lists that may or may not be used in place of it.  These 
references are not necessarily exactly the same, but may be equivalent based on business usage.  

If there are two code lists that can substitute for each other in a transaction, there shall be a mechanism 
by which this relationship can be expressed. 

2.5.11 [R29 (Future)] Support for individual values to be mapped to 
equivalent values in other code lists 

Each code list value must be able to refer to other code list values that may or may not be used in place 
of it.  These references are not necessarily exactly the same, but may be equivalent based on business 
usage. 

For example, a country might change its name, and hence be assigned a different country code, which is 
effectively a replacement for the previous one. 

2.5.12 [R30 (Future)] Support for users to attach their own metadata to 
a code list 

Each code list shall accommodate the addition of descriptive information by an individual user to account 
for unique business requirements. 

Addition of such “metadata” to any combination of code lists, individual codes, and associated values 
shall be supported. 

2.5.13 [R31 (Future)] Support for describing the validity period of the 
values 

An effective date and expiration date should be established so that the code list can be scoped in time. 
See, for example, “Patterns for things that change with time”, 
http://martinfowler.com/ap2/timeNarrative.html.  

2.5.14 [R32] Identifier for UN/CEFACT DE 3055. 

Many code lists have been defined by UN/CEFACT. The code list model requires a representation of an 
identifier for this standard UNTDED 3055 [UNTDED 3055]. This identifier uniquely identifies UN/EDIFACT 
standard code lists. 

We need to define what is meant by “associated values.”



3 Data and Metadata Model for Code Lists 445 

446 
447 
448 

449 
450 
451 

452 

453 

454 

455 

456 

This section provides rules for developing and using reusable code lists. These rules were developed for 
the UBL Library and derivations thereof, but they may also be used by other code-list-maintaining 
agencies as guidelines for any vocabulary wishing to share code lists.  See section 5.0 Conformance. 

Since the UBL Library is based on the ebXML Core Components Version 2.01, 15 November 2003; see 
[CCTS2.01]), the supplementary components identified for the Code. Type core component type are 
used to identify a code as being from a particular list.  

Note that the model in this section is presented in two parts: 

A data model for the codes themselves, and, 

A metadata model for “supplementary components” that describe the entire list 

3.1 Data Model Definition 

The data model of codes in a code list is presented below. 

CCT UBL Name Object Class Property Term Represe
n-tation 
Term 

Primiti
ve 
Type 

Card.Remarks

Code. 
Content 

Content Code Content Text String 1..1 Required

Code. 
Name. 
Text  

CodeName Code Name Text String 0..n Optional 

N/A CodeDescription Code Description Description Text String 0..n Optional 

N/A CodeIndex (Future) Code Index Index Numeric Numb
er 

0..1 Optional 

3.2 Supplementary Components (Metadata) Model Definition 457 

458 The following model contains the supplementary components description of a code list. 

CCT UBL Name Object 
Class 

Property 
Term 

Represen-
tation 
Term 

Primitive 
Type 

Card.Remarks

N/A name Code Name Text String 0..1 Optional

Code List. 
Identifier 

CodeListID Code List IdentificationIdentifier String 0..1 Optional

Code List. 
Agency. Identifier 

CodeListAgencyID Code List Agency Identifier String 0..1 Optional



Code List. Agency 
Name. Text 

CodeListAgencyName Code List Agency 
Name 

Text String 0..1 Optional

Code List. Name. 
Text 

CodeListName Code List Name Text String 0..1 Optional

Code List. 
Version. Identifier 

CodeListVersionID 

 

Code List Version Identifier String 0..1 Optional

Code List. 
Uniform 
Resource. 
Identifier 

CodeListURI Code List Uniform 
Resource 

Identifier String 0..1 Optional

 

Code List 
Scheme. Uniform 
Resource. 
Identifier 

CodeListSchemeURI Code List 
Scheme 

Uniform 
Resource 

Identifier String 0..1 Optional

 

Language. 
Identifier 

LanguageID LanguageIdentifier Identifier String 0..1 Optional

Code List . 
Namespace . 
Prefix. Identifier 

CodeListNamespacePrefixID Code List Namespace 
Prefix 

Identifier String 0..1 Optional

N/A CodeListDescription Code List Description Text String 0..1 Optional

N/A CodeListCredits Code List Credits Text String 0..1 Optional

 459 

460 

461 
462 
463 
464 

465 
466 

467 

468 

3.3 Examples of Use 

The data type “Code“ is used for all elements that should enable coded value representation in the 
communication between partners or systems, in place of texts, methods, or characteristics. The list of 
codes should be relatively stable and should not be subject to frequent alterations (for example, 
CountryCode, LanguageCode, etc.). Code lists must have versions. 

If the agency that manages the code list is not explicitly named and is specified using a role, then this 
takes place in an element type’s name. 

The following types of code can be represented: 

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055. 

Code Standard 

CodeListID Code list for standard code 

CodeListVersionID Code list version 

CodeListAgencyID Agency from DE 3055 (excluding roles) 

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard. 469 

Code Proprietary 

CodeListID Code list for the propriety code 



CodeListVersionID Version of the code list 

CodeListAgencyID Standardized ID for the agency (normally the 
company that manages the code list) 

CodeListSchemeURI ID schema for the schemeAgencyId 

CodeListURI Agency DE 3055 that manages the standardized 
ID ‘listAgencyId’ 

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a 
standard. 

470 
471 

Code Proprietary 

CodeListID Code list for the proprietary code 

CodeListVersionID Code list version 

CodeListAgencyID Standardized ID for the agency (normally the 
company that manages the code list) 

CodeListSchemeURI ID schema for the schemeAgencyId 

CodeListURI ‘ZZZ’ (mutually defined from DE 3055) 

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that 
is not specified at all.  

472 
473 

474 
475 

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as 
attributes if there is more than one code list. If there is only one code list, no attributes are required. 

Code Proprietary 

CodeListID ID schema for the proprietary identifier 

CodeListVersionID ID schema version 



4 XML Schema representation of Code Lists 476 

477 
478 
479 

480 
481 
482 

[3/9/04 MJB] This section still needs correction to match the needs of the library content subcommittee 
when they settle on the specific set of supplementary components necessary when a code list is used as 
an element or as an attribute. 

This section describes how the data model is mapped to XML schema [XSD]. The code list mechanism 
described in this paper assumes that it will be used in the UBL context according to the following graphic 
that describes the type derivation hierarchy for code list and related schemas [UBL1-SD]: 

 483 

484 

485 
486 

487 
488 
489 
490 

491 

492 

493 

Figure 1 UML Diagram of UBL Schemas type hierarchy 

As shown in the figure, an abstract model of “any” UBL code list appears in a code list specific 
namespace.  

Note that an instance of a code list is derived in several pieces – a simpleType that contains the actual 
content of the code list, and, a complexType with simple content that attaches the optional supplementary 
components to the enumeration.  The following procedure describes the construction of a code list 
schema: 

 Define an abstract element for inclusion in extensible schemas  (future) 

 Define a simpleType to hold the enumerated values 

 Define a complexType to add the supplementary components 



 Define a global attribute to contain the enumerated values as an attribute and for supplementary 
components as needed. (future) 

494 
495 

496 
497 

498 
499 

500 

501 
502 

503 

504 

 Define an element that substitutes for the abstract type to enable usage in unextended schemas 
(future) 

 Define a comprehensive URN to hold supplementary components that can qualify uniqueness of 
usage (future) 

4.1 Data Model Mapping 

The following table summarizes the component mapping of the data model. Items in braces, “{}” are 
references to the data model components. For example:  

{code.name} represents the contents of the name of the code list, i.e. CountryCode; 

“{code.name} Type” represents the contents of the name of the code list, i.e. “CountryCodeType”; 

o UBL Name o XMLSchema Mapping 



o Code.Content o 1. Abstract element  (Future) 

  <xs:element name="{code.name}A" type="xs:token" 
abstract="true"/> 

o 2. Simple type to hold code list values and optional annotations 

  <xs:simpleType name="{code.name}Type"> 
     <xs:restriction base="xs:token"> 
     <xs:enumeration value="{code.content}" 
        <xs:annotation> 
          <xs:documentation> 
             {code.description} 
          </xs:documentation> 
        </xs:annotation> 
     </xs:enumeration> 
     <xs:enumeration value="{code.content}"/> 
     <xs:enumeration value="{code.content}"/> 
     . . . 
     </xs:restriction> 
  </xs:simpleType> 

o 3. Complex type to associate supplementary values with code 
list values that substitutes for the abstract type. 

<xs:complexType name="{code.name}"> 
   <xs:annotation> 
      <xs:documentation> 
        <ccts:Instance> 
          <!-- Data and values stored in this space  
          are meant for instance-processing  
          purposes, and are non-normative. --> 
          <ccts:Prefix>loc</ccts:Prefix> 
          <ccts:CodeListQualifier>{code.name} 
               </ccts:CodeListQualifier> 
          <ccts:CodeListAgency>{Code.listAgencyID} 
               </ccts:CodeListAgency> 
          <ccts:CodeListVersion>{Code.listVersionID} 
               </ccts:CodeListVersion> 
        </ccts:Instance> 
      </xs:documentation> 
   </xs:annotation> 
   <xs:simpleContent> 
      <xs:extension base="{Code.name}Type"> 
         <xs:attribute name="CodeListID"  
            type="xs:token" fixed="{CodeListID}"/> 
         <xs:attribute name="CodeListAgencyID"  
            type="xs:token" 
fixed="{CodeListAgencyID}"/> 
         <xs:attribute name="CodeListVersionID"  
            type="xs:string" 
fixed="{CodeListVersionID}"/> 
            . . . additional optional attributes 
      </xs:extension> 
   </xs:simpleContent> 
</xs:complexType> 

o 4. Attribute (Future) 

  <xs:attribute name="{Code.name}" 
         type="{Code.name}ContentType"/> 

o 5. Element to substitute for abstract element in non-exended 
schemas (Future) 

  <xs:element name="{Code.name}" 
type="{Code.name}Type"  
         substitutionGroup="{Code.name}TypeA"/> 



o Code.Description Xs:annotation/ xs:documentation/ 

o Code.Value Xs:annotation/ xs:documentation/ 

4.2 Supplementary Components Mapping 505 

506 
507 
508 

The following table shows all supplementary components of the code type. It also shows the current 
representation by using attributes and the recommended optional representation by using namespaces 
and annotations.  

UBL Name Optional 
XMLSchema 
Mapping 

Optional  

 URN mapping complex type attribute 
mapping                           

name xs:annotation/  
xs:documentation/ 
cc:codename 

o This is the default name of the 
implemented element and 
attribute above. 

CodeListID namespace (URN) 
1. position 
Mandatory 

<xs:attribute 
name="CodeListID" 
type="xs:normalizedStrin
g"/> 

CodeListName namespace (URN) 
2. position 
Optional 

<xs:attribute 
name="CodeListName" 
type="xs:string"/> 

CodeListVersionID namespace (URN) 
3. position 
Mandatory 

<xs:attribute 
name="CodeListVersionID" 
type="xs:normalizedStrin
g"/> 

CodeListAgencyID namespace (URN) 
4. position 
Optional 

<xs:attribute 
name="CodeListAgencyID" 
type="xs:normalizedStrin
g"/> 

 CodeListAgencyName namespace (URN) 
5. position 
optional 

<xs:attribute 
name="CodeListAgencyName
" type="xs:string"/> 

 CodeListURI namespace (URN) 
6. position 
optional 

<xs:attribute 
name="CodeListURI " 
type="xs:anyURI"/> 

 CodeListSchemeURI namespace (URN) 
7. position 
optional 

<xs:attribute name=" 
CodeListSchemeURI " 
type="xs:normalizedStrin
g"/> 

LanguageID  
<xs:attribute 
name=”LanguageID” 
type=”xs:language”/> 

CodeListNamespacePrefixID  
<xs:attribute name=” 
CodeListNamespacePrefixI
D” 
type=”xs:normalizedStrin
g”/> 

CodeListDescription  
<xs:attribute name=” 
CodeListDescription” 
type=”xs:string”/> 



CodeListCredits  
<xs:attribute name=” 
CodeListCredits” 
type=”xs:string”/> 

4.3 Namespace URN (Future) 509 

510 The following construct represents the construct for the URN of a code list, according OASIS URN: 

urn:oasis:tc:ubl:codeList:<CodeList.Identification.Identifier>:<CodeList.Name.511 
Text>:<CodeList.Version.Identifier>:<CodeList.AgencyIdentifier>:<CodeList.Agen512 
cyName.Text>:<CodeList.AgencyScheme.Identifier>:<CodeList.AgencySchemeAgency.I513 
dentifier> 514 

515 
516 

517 

518 

519 

520 

521 

522 
523 

524 

The first four parameters are fixed by Uniform Resource Name (URN) [see RFC 2141]  and OASIS URN 
[see RFC 3121]: 

o urn --> leading token of URNs 

o oasis --> registered namespace ID “oasis”  

o tc --> Technical Committee Work Products 

o ubl --> From Technical Committee UBL (Universal Business Language) 

o The parameter “codeList” identifies the schema type “code list”. 

o The following parameters from <Code List. Identifier> to <Code List. Agency Scheme Agency. 
Identifier> represents the specific code list supplementary components of the CCT codeType. 

o Example: 

urn:oasis:tc:ubl:codeList:ISO639:Language%20Code:3:ISO:International%20Standar525 
dization%20Organization:: 526 

527 

528 
529 

530 
531 
532 
533 

534 

4.4 Namespace Prefix 

REWORD THIS.  Namespace prefix could be freely defined. However, it is helpful for better 
understanding, to identity the code lists by a convention of namespace prefixes. 

The prefix provides the namespace prefix part of the qualified name of each code list. It is recommended 
that this prefix should contain the information of the supplementary component <Code List. Identification 
Identifier> and if it is necessary for separation, the information of the supplementary component <Code 
List. Version. Identifier> separated by a dash “-“. All letters should be lower case. 

Example: 

iso639 535 
iso639-3 (with version) 536 

537 

538 

539 

540 
541 
542 
543 

4.5 Code List Schema Generation 

This section describes how to generate complete code list schemas from the data model of section 4. 

4.5.1 Data model and example values 

The code list model and supplementary components are listed in the following table. The first column 
contains the UBL name and the second column contains an example of the value(s) for that name. It is 
assumed that the UBL name is the proposed name for the schema 
element/attribute/simpleType/complexType etc…. 



The expressions ValueOf(<UBL Name>), and, {UBL Name}refer to the contents for a specific code list. 
The latter representation is used so that a substitution can be shown within the schema fragments 
generated. 

544 
545 
546 

UBL Name Description  Sample ValueOf(<UBL 
Name>)  
≡  
{UBL Name} 

Content A character string (letters, figures or 
symbols) that for brevity and/or 
language independence may be used to 
represent or replace a definitive value 
or text of an Attribute. 

<enumerated values> 

Name <enumerated value definitions> (if 
Content=”USD” then Name = “US 
Dollars”) 

The textual name of the 
code content.  
 

CodeListID The identification of a list of codes. 
ISO4217 Alpha 

CodeListAgencyID An agency that maintains one or more 
code lists. 

6 

CodeListAgencyName The name of the agency that maintains 
the code list. 

United Nations Economic 
Commission for Europe 

CodeListName The name of a list of codes. 
Currency  

CodeListVersionID The Version of the code list. 
0.3 

CodeListURI The Uniform Resource Identifier that 
identifies where the code list is located. 

http://www.bsi-
global.com/Technical%2BI
nformation/Publications/
_Publications/tig90x.doc 

CodeListSchemeURI The Uniform Resource Identifier that 
identifies where the code list scheme is 
located. 

urn:oasis:names:tc:ubl:c
odelist:CurrencyCode:1:0
-draft-8-11 

LanguageID The identifier of the language used in 
the corresponding text string 

En 

CodeListNamespaceP
refixID 

The namespace prefix recommended 
for this code list.  Should be based on 
the CodeListID. 

 cur  

CodeListDescription Describes the set of codes 
The set of world 
currencies 

CodeListCredits Acknowledges the source and 
ownership of codes 

Derived from the ISO 
4217 currency code list 
and used under the terms 
of the ISO policy stated 
at 
http://www.iso.org/iso/e
n/commcentre/pressreleas
es/2003/Ref871.html. 

4.5.2 Schema to generate 547 

548 
549 

This section describes the specific steps required to generate a schema from the above model. Each step 
shows two schema fragments – one that is a template for generating the schema, and, the second one 



that is an example schema generated. In the template sections, the places where values from the 
spreadsheet model are inserted are shown in braces, and are colored green –  

550 
551 

 e.g. “{CodeListAgencyID}” means substitute the value “6”.  552 

553 

554 

4.5.3 Schema file name 

The name of this schema file should be: 

UBL-CodeList-{CodeListName}-{CodeListVersionID}.xsd  555 

556 For example: 

UBL-CodeList-CurrencyCode-1.0.xsd 557 

558 

559 

4.5.3.1 Generate XML header 

Template, Sample are the same: 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- 
  Universal Business Language (UBL) Schema 1.0-draft-10.1 
 
  Copyright (C) OASIS Open (2004). All Rights Reserved. 
 
  This document and translations of it may be copied and furnished to others, and 
  derivative works that comment on or otherwise explain it or assist in its 
  implementation may be prepared, copied, published and distributed, in whole or 
  in part, without restriction of any kind, provided that the above copyright 
  notice and this paragraph are included on all such copies and derivative works. 
  However, this document itself may not be modified in any way, such as by 
  removing the copyright notice or references to OASIS, except as needed for the 
  purpose of developing OASIS specifications, in which case the procedures for 
  copyrights defined in the OASIS Intellectual Property Rights document must be 
  followed, or as required to translate it into languages other than English. 
 
  The limited permissions granted above are perpetual and will not be revoked by 
  OASIS or its successors or assigns. 
 
  This document and the information contained herein is provided on an "AS IS" 
  basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 
  LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT 
  INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR 
  A PARTICULAR PURPOSE. 
 
  =============================================================================== 
 
  For our absent friend, Michael J. Adcock  - il miglior fabbro 
 
  =============================================================================== 
 
  Universal Business Language Specification 
      (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl) 
  OASIS Open (http://www.oasis-open.org/) 
 
  Schema generated by GEFEG EDIFIX v5.0-beta 
      (http://www.gefeg.com/en/standard/xml/ubl.htm) 
 
 
  Document Type:     CurrencyCode 
  Generated On:      Fri Mar 26 14:30:20 2004 
--> 

4.5.3.2 Generate XML Schema header 560 

561 Template: 



<xs:schema  

 targetNamespace=”{CodeListSchemeURI}”  
      xmlns=”{CodeListSchemeURI}”  
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”  
 elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”> 

Sample: 562 

<xs:schema  
 targetNamespace=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”  
               xmlns=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1” 
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”  
 elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”> 

4.5.3.3 Generate abstract element (Future) 563 

564 Template: 

<xs:element name="{CodeListName}Abstract" type="xs:string" abstract="true"/>  {i would prefer to make 
the meaning of this clear} 

Sample: 565 

<xs:element name="CurrencyCodeAbstract" type="xs:normalizedString" abstract="true"/> 

4.5.3.4 Generate simple type to contain the enumerated values 566 

567 Template: 

 <xs:simpleType name=”{CodeListName}ContentType”> 
  <xs:restriction base=”xs:string”> 
   <xs:enumeration value=”{first Content}” 
        <xs:annotation> 
             <xs:documentation> 
                  <CodeName>{first Name}”</CodeName> 
                             </xs:documentation> 
                        </xs:annotation> 
                   </xs:enumeration> 
              …  
   <xs:enumeration value=”{last Content}” 
                         <xs:annotation> 
                              <xs:documentation> 
                                   <CodeName>{last  Name}”</CodeName> 
                              </xs:documentation> 
                         </xs:annotation> 
                    </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 

Sample: 568 



 <xs:simpleType name=”CurrencyCodeContentType”> 
  <xs:restriction base=”xs:string”> 
   <xs:enumeration value=”AED”> 
    <xs:annotation> 
     <xs:documentation> 
      <CodeName>UAE Dirham</CodeName> 
     </xs:documentation> 
    </xs:annotation> 
   </ xs:enumeration>    
   <xs:enumeration value=”ALL”>  
    <xs:annotation> 
     <xs:documentation> 
      <CodeName>Albanian Lek</CodeName> 
     </xs:documentation> 
    </xs:annotation> 
   </xs:xs:enumeration> 
   <xs:enumeration value=”AMD” 
    <xs:annotation> 
     <xs:documentation> 
      <CodeName>Armenian Dram</CodeName> 
     </xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value=”ANG”/> 
   <xs:enumeration value=”AOA”/> 
   <xs:enumeration value=”XDR”/> 
              …  
   <xs:enumeration value=”ZAR”/> 
   <xs:enumeration value=”ZMK”/> 
   <xs:enumeration value=”ZWD”/> 
  </xs:restriction> 
 </xs:simpleType> 

4.5.3.5 Generate complex type to hold enumerated values and supplemental 
components 

569 

570 

571 Template: 



 <xs:complexType name="{CodeListName}Type"> 
  <xs:annotation> 
   <xsd:documentation> 
    <ccts:Component> 
     <ccts:ComponentType>DT</ccts:ComponentType> 
     <ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName> 
     <ccts:RepresentationTerm>Code</ccts:RepresentationTerm> 
     <ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier> 
     <ccts:DataType>Code. Type</ccts:DataType> 
    </ccts:Component> 
    <ccts:Instance> 

     <ccts:CodeListID>{CodeListID}</ccts:CodeListID> 

     <ccts:CodeListAgencyID>{CodeListAgencyID}</ccts:CodeListAgencyID> 

     <ccts:CodeListAgencyName>{CodeListAgencyName}</ccts:CodeListAgencyName> 

     <ccts:CodeListName>{CodeListName}</ccts:CodeListName> 

     <ccts:CodeListVersionID>{CodeListVersionID}</ccts:CodeListVersionID> 

     <ccts:CodeListUniformResourceID>{CodeListURI}</ccts:CodeListUniformResourceID> 

     <ccts:CodeListSchemeUniformResourceID>{CodeListSchemeURI} 
       </ccts:CodeListSchemeUniformResourceID> 

     <ccts:LanguageID>{LanguageID}</ccts:LanguageID> 
    </ccts:Instance> 
   </xsd:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 

   <xs:extension base="{CodeListName}ContentType"> 
    <xs:attribute name="name" type="xs:string" use="optional"/>  ????????? 

    <xs:attribute name="codeListID" type="xs:normalizedString" fixed="{CodeListID}"/> 
    <xs:attribute name="codeListAgencyID" type="xs:normalizedString"  

     fixed="{CodeListAgencyID}"/> 
    <xs:attribute name="codeListAgencyName" type="xs:normalizedString"  

     fixed="{CodeListAgencyName}"/> 

    <xs:attribute name="codeListName" type="xs:string" fixed="{CodeListName}"> 
    <xs:attribute name="codeListVersionID" type="xs:string"  

     fixed="{CodeListVersionID}"/> 

    <xs:attribute name="codeListURI" type="xs:anyURI" fixed="{CodeListURI}"> 
    <xs:attribute name="codeListSchemeURI" type="xs:anyURI" 

     fixed="{CodeListSchemeURI}"> 

    <xs:attribute name="languageID" type="xs:language" fixed="{LanguageID}"> 
   </xs:extension> 
  </xs:simpleContent> 
 </xs:complexType>  

Sample: 572 



 <xs:complexType name="CurrencyCodeType"> 
  <xs:annotation> 
   <xsd:documentation> 
    <ccts:Component> 
     <ccts:ComponentType>DT</ccts:ComponentType> 
     <ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName> 
     <ccts:RepresentationTerm>Code</ccts:RepresentationTerm> 
     <ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier> 
     <ccts:DataType>Code. Type</ccts:DataType> 
    </ccts:Component> 
    <ccts:Instance> 
     <ccts:CodeListID>ISO 4217 Alpha</ccts:CodeListID> 
     <ccts:CodeListAgencyID>6</ccts:CodeListAgencyID> 
     <ccts:CodeListAgencyName>United Nations Economic Commission for 
Europe</ccts:CodeListAgencyName> 
     <ccts:CodeListName>Currency</ccts:CodeListName> 
     <ccts:CodeListVersionID>0.3</ccts:CodeListVersionID> 
     <ccts:CodeListUniformResourceID> 
      http://www.bsi-global.com/Technical%2BInformation 

/Publications/_Publications/tig90x.doc </ccts:CodeListUniformResourceID> 
     <ccts:CodeListSchemeUniformResourceID> 
      urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1 
      </ccts:CodeListSchemeUniformResourceID> 
     <ccts:LanguageID>en</ccts:LanguageID> 
    </ccts:Instance> 
   </xsd:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="CurrencyCodeContentType"> 
    <xsd:attribute name="name" type="xsd:string" use="optional"/> 
    <xsd:attribute name="codeListID" type="xsd:normalizedString" use="optional"  
      fixed="ISO 4217 Alpha"/> 
    <xsd:attribute name="codeListAgencyID" type="xsd:normalizedString" use="optional" 
       fixed="6"/> 
    <xsd:attribute name="codeListAgencyName" type="xsd:string" use="optional"  
      fixed="United Nations Economic Commission for Europe"/> 
    <xsd:attribute name="codeListName" type="xsd:string" use="optional"  
      fixed="Currency"/> 
    <xsd:attribute name="codeListVersionID" type="xsd:normalizedString" use="optional" 
      fixed="0.3"/> 
    <xsd:attribute name="codeListURI" type="xsd:anyURI" use="optional"  
     fixed="http://www.bsi-global.com/ 
      Technical%2BInformation/Publications/_Publications/tig90x.doc"/> 
    <xsd:attribute name="codeListSchemeURI" type="xsd:anyURI" use="optional" 
     fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1"/> 
    <xsd:attribute name="languageID" type="xsd:language" use="optional" fixed="en"/> 
   </xs:extension> 
  </xs:simpleContent> 
 </xs:complexType>  

4.5.3.6 Generate global attributes to allow usage of code lists as an attribute 
(Future) 

573 

574 

575 Template: 



 <xs:attribute name=”{CodeListName}” type=”{CodeListName}ContentType”/> 

 <xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”{CodeListID}”/> 

 <xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”{CodeListAgencyID}”/> 
 <xs:attribute name=”codeListAgencyName” type=”xs:string”  

   fixed=”{CodeListAgencyName}”/> 

 <xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”{CodeListVersionID}”/>

 <xs:attribute name=”codeListName” type=”xs:string ” fixed=”{CodeListName}”/>  

 <xs:attribute name=”name” type=”xs:normalizedString ” fixed=”{name}”/> 

 <xs:attribute name=”codeListURI” type=”xs:anyURI” fixed=”{CodeListURI}”/> 

 <xs:attribute name=”codeListSchemeURI” type=”xs:anyURI” fixed=”{CodeListSchemeURI}”/>  

 <xs:attribute name=”languageID” type=”xs:normalizedString ” fixed=”{LanguageID}”/>  

Sample: 576 

 <xs:attribute name=”CurrencyCode” type=”CurrencyCodeContentType”/> 
 <xs:attribute name="name" type="xs:normalizedString" fixed="cur"/> 
 <xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”ISO 4217 Alpha”/> 
 <xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”6”/> 
 <xs:attribute name=”codeListAgencyName” type=”xs:string ”  
   fixed=”United Nations Economic Commission for Europe”/> 
 <xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”0.3”/> 
 <xs:attribute name="codeListName" type="xs:string" fixed="CurrencyCode"/> 
 <xs:attribute name="codeListURI" type="xs:anyURI"  
  fixed="http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc"/> 
 <xs:attribute name="codeListSchemeURI" type="xs:anyURI" 
   fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-1"/>  
 <xs:attribute name="languageID" type="xs:language" fixed="en"/> 

4.5.3.7 Generate global element to allow usage of code list as an element (Future) 577 

578 Template: 

<xs:element name=”{CodeListName}” type=”{CodeListName}Type” 

substitutionGroup=”{CodeListName}Abstract”/> 

Sample: 579 

<xs:element name=”CurrencyCode” type=”CurrencyCodeType”   
   substitutionGroup=”CurrencyCodeAbstract”/> 

4.5.3.8 End of schema 580 

581 Template: 

</xs:schema> 

Sample: 582 

</xs:schema> 

4.6 Code List Schema Usage 583 

584 
585 
586 

587 
588 

589 
590 
591 
592 
593 

For every code list, there exists a specific code list schema. This code list schema must have a 
targetNamespace with the UBL specific code list namespace and have a prefix with the code list identifier 
itself.  

The element in the code list schema can be used for the representation as a global declared element in 
the document schemas. The name of the element is the UBL tag name of the specific BIE for a code. 

The simpleType represents the possible codes and the characteristics of the code content. The name of 
the simpleType must be always ended with “. Content”. Within the simpleType is a restriction of the XSD 
built-in data type “xs:token”. This restriction includes the specific facets “length”, “minLength”, 
“maxLength” and “pattern” for regular expressions to describe the specific characteristics of each code 
list.  



Each code will be represented by the facet “enumeration” after the characteristics. The value of each 
enumeration represents the specific code value and the annotation includes the further definition of each 
code, like “Code. Name”, “Language. Identifier” and the description. 

594 
595 
596 

597 The schema definitions to support this might look as follows: 

<?xml version="1.0" encoding="UTF-8"?> 598 
<xs:schema  599 
 targetNamespace="urn:oasis:ubl:codeList:ISO3166:Locale%20Code:3:5:ISO::" 600 
 xmlns:iso3166="urn:oasis:ubl:codeList:ISO3166: Locale%20Code:3:5:ISO::" 601 
 xmlns:xs="http://www.w3.org/2001/XMLSchema"  602 
 elementFormDefault="qualified" attributeFormDefault="unqualified"> 603 
 604 
<xs:element name="LocaleCodeTypeA" type="xs:token" 605 
  abstract="true"> 606 
  <xs:annotation> 607 
    <xs:documentation> 608 
 An abstract place holder for a code list element 609 
    </xs:documentation> 610 
  </xs:annotation> 611 
</xs:element> 612 
 613 
<xs:simpleType name="LocaleCodeContentType"> 614 
  <xs:restriction base="xs:token"> 615 
    <xs:enumeration value="DE"/> 616 
    <xs:enumeration value="FR"/> 617 
    <xs:enumeration value="US"/> 618 
    . . . 619 
  </xs:restriction> 620 
</xs:simpleType> 621 
 622 
<xs:complexType name="LocaleCodeType"> 623 
   <xs:annotation> 624 
      <xs:documentation> 625 
        <ccts:Instance> 626 
          <!-- Data and values stored in this space  627 
          are meant for instance-processing purposes, and are  628 
          non-normative. --> 629 
          <ccts:Prefix>loc</ccts:Prefix> 630 
          <ccts:CodeListQualifier>LocaleCode</ccts:CodeListQualifier> 631 
          <ccts:CodeListAgency>ISO3166</ccts:CodeListAgency> 632 
          <ccts:CodeListVersion>0.3</ccts:CodeListVersion> 633 
        </ccts:Instance> 634 
      </xs:documentation> 635 
   </xs:annotation> 636 
   <xs:simpleContent> 637 
      <xs:extension base=" LocaleCodeType"> 638 
         <xs:attribute name="CodeListID" type="xs:token" fixed="ISO3166"/> 639 
         <xs:attribute name="CodeListAgencyID" type="xs:token" fixed="6"/> 640 
         <xs:attribute name="CodeListVersionID" type="xs:string" fixed="0.3"/> 641 
            . . . additional optional attributes 642 
      </xs:extension> 643 
   </xs:simpleContent> 644 
</xs:complexType> 645 
 646 
<xs:element name="LocaleCode" type="LocaleCodeType"  647 
   substitutionGroup="LocaleCodeTypeA"> 648 
    <xs:annotation> 649 
      <xs:documentation> 650 
  A substitution for the abstract element based  651 
  on aStdEnum 652 
      </xs:documentation> 653 
    </xs:annotation> 654 
</xs:element> 655 



 656 
<xs:attribute name="{Code.name}" type="{Code.name}ContentType"> 657 
    <xs:annotation> 658 
      <xs:documentation> 659 
  A global attribute for use inside an element 660 
      </xs:documentation> 661 
    </xs:annotation> 662 
< xs:attribute/> 663 
 664 
 665 
</xs:schema> 666 
 667 

668 

669 

4.7 Instance 

The enumerated list method results in instance documents with the following structures. 

<LocaleCode>US</LocaleCode> 670 
 671 
<iso3166:LocaleCode>US</iso3166:LocaleCode> 672 
 673 
<PostCode iso3166:LocaleCode="FQ">20878</PostCode> 674 
 675 
 676 

677 

678 
679 
680 

681 

682 

683 

4.8 Deriving New Code Lists from Old Ones (future) 

In order to promote maximum reusability and ease code lists maintenance, code list designers are 
expected to build new code lists from existing lists. They could for example combine several code lists or 
restrict an existing code list. 

These new code lists must be usable in UBL elements the same manner the “basic” code lists are used. 

4.8.1 Extending code lists 

The base schema shown above could be extended to support new codes as follows: 

<xs:schema targetNamespace="cust"  684 
  xmlns:std="std"  685 
  xmlns="cust"  686 
  xmlns:cust="custom"  687 
  xmlns:xs=http://www.w3.org/2001/XMLSchema 688 
  elementFormDefault="qualified" 689 
  attributeFormDefault="unqualified"> 690 
 691 
<xs:import namespace="std"  692 
  schemaLocation="D:\_PROJECT\NIST\XMLSchema\test0513\std.xsd"/> 693 
 694 
<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA"> 695 
  <xs:annotation> 696 
    <xs:documentation>A substitute for the abstract LocaleCodeA  697 
      that extends the enumeration 698 
    </xs:documentation> 699 
  </xs:annotation> 700 
  <xs:simpleType> 701 
    <xs:union memberTypes="std:aStdEnum"> 702 
      <xs:simpleType> 703 
        <xs:restriction base="xs:token"> 704 
         <xs:enumeration value="IL"/> 705 
         <xs:enumeration value="GR"/> 706 
        </xs:restriction> 707 
      </xs:simpleType> 708 



    </xs:union> 709 
  </xs:simpleType> 710 
</xs:element> 711 
</xs:schema> 712 

713 

714 

4.8.2 Restricting code lists 

The base schema shown above could be restricted to support a subset of codes as follows: 

<xs:import namespace="std"  715 
  schemaLocation="D:\_PROJECT\NIST\XMLSchema\test0513\std.xsd"/> 716 
<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA"> 717 
  <xs:annotation> 718 
    <xs:documentation> 719 
      A substitute for the abstract LocaleCodeA that restricts   720 
        the enumeration 721 
    </xs:documentation> 722 
  </xs:annotation> 723 
  <xs:simpleType> 724 
    <xs:restriction base="xs:token"> 725 
    <xs:enumeration value="DE"/> 726 
    <xs:enumeration value="US"/> 727 
    </xs:restriction> 728 
  </xs:simpleType> 729 
</xs:element> 730 



5 Conformance to UBL Code Lists (future) 731 

732 
733 

This section is for Producers of Code Lists outside of UBL.  These lists could be owned by a number of 
different types of organizations.   

We probably need a Conformance section in this document so that code list producers (who, in general, 734 
won’t be UBL itself) will know how/when to claim conformance to the requirements (MUST) and 735 
recommendations (SHOULD/MAY) in this specification.  This spec is not for the UBL TC, but for code list 736 
producers (which may occasionally include UBL itself). 737 



6 References 738 

739 

740 
741 

742 
743 
744 

745 
746 

747 

748 
749 

750 
751 

752 

753 
754 
755 

756 
757 
758 

759 
760 

761 
762 

763 
764 
765 

766 

767 

768 
769 

[3166-XSD] UN/ECE XSD code list module for ISO 3166-1,  

[CCTS2.01] UN/CEFACT Core Components Technical Specification – Part 8 of the ebXML 
Framework, 15 November 2003, Version 2.01. 

[CLSC] OASIS UBL Code List Subcommittee. Portal: http://www.oasis-
open.org/committees/sc_home.php?wg_abbrev=ubl-clsc . Email archive: 
http://lists.oasis-open.org/archives/ubl-clsc/. 

[SPENCER] http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/5195/Spencer-CodeList-PositionPaper1-0.pdf  

[STUHEC] <need reference> 

[COATES] http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/4522/draft-coates-codeListDataModels-0p2.doc  

[CLTemplate] OASIS UBL Naming and Design Rules code list module template, 
http://www.oasis-open.org/committees/ubl/ndrsc/archive/. 

[eBSC] “eBusiness Standards Convergence Forum”, http://www.nist.gov/ebsc.  

[eBSCMemo] M. Burns, S. Damodaran, F.Yang, “Draft Code List Implementation description”, 
http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/4503/nistTOUbl20031119.zip  

[NDR] M. Cournane et al., Universal Business Language (UBL) Naming and Design 
Rules, OASIS, 2002, http://www.oasis-
open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/. 

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 

[CL5] http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/4502/wd-ublndrsc-codelist-05_las_20030702.doc  

[ISO 11179]  
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHa
ndler?scope=CATALOGUE&keyword=&isoNumber=11179  

[UBL1-SD] http://ibiblio.org/bosak/ubl/UBL-1.0/art/UBL-1.0-SchemaDependency.jpg  

[UNTDED 3055] <need reference> 

[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May  2001. 
http://www.unece.org/etrades/unedocs/repository/codelist.htm. 



Appendix A. Revision History 770 

Revision Editor Description 

2004-01-13 Marty Burns First complete version converted from NDR revision 
05 

2004-01-14 Marty Burns Minor edit of chapter heading 3 & 4 

2004-01-20 Marty Burns Incorporated descriptions from AS and KH 

2004-02-06 Marty Burns Cleaned up requirements and other sections – 
removed some redundant content from merge of 
contributions. Explicitly identified Data Model and 
Metadata models separately from XML 
representations of the same. 

2004-02-11 Marty Burns Added comments from 2/11 conference call 

2004-02-29 Marty Burns Added resolutions from February Face to Face 
meeting 

2004-03-03 Marty Burns Incorporated Tim McGrath’s corrections of data 
model 

2004-03-09 Marty Burns Addressed Eve Maler’s comments 
Addressed Tony Coates comments 
Addressed 2004-03-03 telecon comments 
Added some elaboration of the model usage in ubl 

2004-03-15 Marty Burns Added example mapping schema paper to section 
4.6 

2004-03-23 Marty Burns Added data model for supplementary components, 
Marked future features for UBL 1.1 as (future) 
Added comment about UBL1.0 release vs. future. 

2004-04-01 Marty Burns Clean up for UBL version 1.0 

2004-04-14 Marty Burns Incorporated suggested edits from GKH 

2005-01-02 Marty Burns Incorporated elaborations of requirements for better 
clarity to kick off the UBL 1.1 revisions. Incorporated 
comments from Tony Coates. 



Appendix B. Notices 771 

772 
773 
774 
775 
776 
777 
778 
779 

780 
781 
782 

783 

784 
785 
786 
787 
788 
789 
790 
791 

792 
793 

794 
795 
796 
797 

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 
might be claimed to pertain to the implementation or use of the technology described in this document or 
the extent to which any license under such rights might or might not be available; neither does it 
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with 
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights 
made available for publication and any assurances of licenses to be made available, or the result of an 
attempt made to obtain a general license or permission for the use of such proprietary rights by 
implementors or users of this specification, can be obtained from the OASIS Executive Director. 

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, 
or other proprietary rights which may cover technology that may be required to implement this 
specification. Please address the information to the OASIS Executive Director. 

Copyright  © OASIS Open 2004. All Rights Reserved. 

This document and translations of it may be copied and furnished to others, and derivative works that 
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 
and this paragraph are included on all such copies and derivative works. However, this document itself 
does not be modified in any way, such as by removing the copyright notice or references to OASIS, 
except as needed for the purpose of developing OASIS specifications, in which case the procedures for 
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to 
translate it into languages other than English. 

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 
or assigns. 

This document and the information contained herein is provided on an “AS IS” basis and OASIS 
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 


