

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording of the form be changed. This form is

intended for original material submitted to the IEEE and must accompany any such material in order to be published by the IEEE. Please read the form carefully and keep a

copy for your files.

TITLE OF PAPER/ARTICLE/REPORT, INCLUDING ALL CONTENT IN ANY FORM, FORMAT, OR MEDIA (hereinafter, “the Work”):

COMPLETE LIST OF AUTHORS:

IEEE PUBLICATION TITLE (Journal, Magazine, Conference, Book):

COPYRIGHT TRANSFER

1. The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the “IEEE”) all rights under copyright that may exist in and to:

(a) the above Work, including any revised or expanded derivative works submitted to the IEEE by the undersigned based on the Work; and (b) any associated written or

multimedia components or other enhancements accompanying the Work.

CONSENT AND RELEASE

2. In the event the undersigned makes a presentation based upon the Work at a conference hosted or sponsored in whole or in part by the IEEE, the undersigned, in

consideration for his/her participation in the conference, hereby grants the IEEE the unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit,

record, digitize, broadcast, reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation and comments at the

conference; (b) any written materials or multimedia files used in connection with his/her presentation; and (c) any recorded interviews of him/her (collectively, the

“Presentation”). The permission granted includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and live or

recorded broadcast of the Presentation during or after the conference.

3. In connection with the permission granted in Section 2, the undersigned hereby grants IEEE the unlimited, worldwide, irrevocable right to use his/her name, picture,

likeness, voice and biographical information as part of the advertisement, distribution and sale of products incorporating the Work or Presentation, and releases IEEE from

any claim based on right of privacy or publicity.

4. The undersigned hereby warrants that the Work and Presentation (collectively, the “Materials”) are original and that he/she is the author of the Materials. To the extent

the Materials incorporate text passages, figures, data or other material from the works of others, the undersigned has obtained any necessary permissions. Where necessary,

the undersigned has obtained all third party permissions and consents to grant the license above and has provided copies of such permissions and consents to IEEE.

 Please check this box if you do not wish to have video/audio recordings made of your conference presentation.

See reverse side for Retained Rights/Terms and Conditions, and Author Responsibilities.

GENERAL TERMS

• The undersigned represents that he/she has the power and authority to make and execute this assignment.

• The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the event of a breach of any of the warranties set forth

above.

• In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before acceptance by the IEEE, the foregoing copyright transfer

shall become null and void and all materials embodying the Work submitted to the IEEE will be destroyed.

• For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the others.

(1)___ ___________________________________

 Author/Authorized Agent for Joint Authors Date

U.S. GOVERNMENT EMPLOYEE CERTIFICATION (WHERE APPLICABLE)

This will certify that all authors of the Work are U.S. government employees and prepared the Work on a subject within the scope of their official duties. As such, the Work

is not subject to U.S. copyright protection.

(2)___ ___________________________________

Authorized Signature Date

(Authors who are U.S. government employees should also sign signature line (1) above to enable the IEEE to claim and protect its copyright in international jurisdictions.)

CROWN COPYRIGHT CERTIFICATION (WHERE APPLICABLE)

This will certify that all authors of the Work are employees of the British or British Commonwealth Government and prepared the Work in connection with their official

duties. As such, the Work is subject to Crown Copyright and is not assigned to the IEEE as set forth in the first sentence of the Copyright Transfer Section above. The

undersigned acknowledges, however, that the IEEE has the right to publish, distribute and reprint the Work in all forms and media.

(3)___ ___________________________________

Authorized Signature Date

(Authors who are British or British Commonwealth Government employees should also sign line (1) above to indicate their acceptance of all terms other than the

copyright transfer.) rev. 020711

Ademola Fawibe, Oghenekarho Okobiah, Oleg Garitselov, Krishna Kavi, Izuchukwu Nwachukwu, Mohana Asha Latha Dubasi, Vinay R. Prahbu

May 7th, 2011

Parabilis: Speeding up Single-Threaded Applications by Extracting Fine-Grained Threads for Multi-Core Execution

The 10th International Symposium on Parallel and Distributed Computing (ISPDC 2011)

IEEE COPYRIGHT FORM (continued)

RETAINED RIGHTS/TERMS AND CONDITIONS

General

1. Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

2. Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or derivative works for the

author’s personal use or for company use, provided that the source and the IEEE copyright notice are indicated, the copies are not used in any way that

implies IEEE endorsement of a product or service of any employer, and the copies themselves are not offered for sale.

3. In the case of a Work performed under a U.S. Government contract or grant, the IEEE recognizes that the U.S. Government has royalty-free

permission to reproduce all or portions of the Work, and to authorize others to do so, for official U.S. Government purposes only, if the contract/grant

so requires.

4. Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party requests for reprinting,

republishing, or other types of re-use. The IEEE Intellectual Property Rights office must handle all such third-party requests.

5. Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates from that funding

agency.

Author Online Use

6. Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own

personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently

displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE

Xplore. Authors shall not post the final, published versions of their papers.

7. Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her own IEEE-

copyrighted articles on the author’s personal web site or the servers of the author’s institution or company in connection with the author’s teaching,

training, or work responsibilities, provided that the appropriate copyright, credit, and reuse notices appear prominently with the posted material.

Examples of permitted uses are lecture materials, course packs, e-reserves, conference presentations, or in-house training courses.

8. Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their own web site, their

employer’s site, or to another server that invites constructive comment from colleagues. Upon submission of an article to IEEE, an author is required to

transfer copyright in the article to IEEE, and the author must update any previously posted version of the article with a prominently displayed IEEE

copyright notice. Upon publication of an article by the IEEE, the author must replace any previously posted electronic versions of the article with either

(1) the full citation to the IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version

only (not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article in IEEE Xplore.

INFORMATION FOR AUTHORS

Author Responsibilities

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its publications is properly

available to the readership of those publications. Authors must ensure that their Work meets the requirements as stated in section 8.2.1 of the IEEE

PSPB Operations Manual, including provisions covering originality, authorship, author responsibilities and author misconduct. More information on

IEEE’s publishing policies may be found at http://www.ieee.org/publications_standards/publications/rights/pub_tools_policies.html. Authors are

advised especially of IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE PSPB Operations

Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of the authors."

Author/Employer Rights

If you are employed and prepared the Work on a subject within the scope of your employment, the copyright in the Work belongs to your employer as

a work-for-hire. In that case, the IEEE assumes that when you sign this Form, you are authorized to do so by your employer and that your employer has

consented to the transfer of copyright, to the representation and warranty of publication rights, and to all other terms and conditions of this Form. If

such authorization and consent has not been given to you, an authorized representative of your employer should sign this Form as the Author.

IEEE Copyright Ownership

It is the formal policy of the IEEE to own the copyrights to all copyrightable material in its technical publications and to the individual contributions

contained therein, in order to protect the interests of the IEEE, its authors and their employers, and, at the same time, to facilitate the appropriate re-use

of this material by others. The IEEE distributes its technical publications throughout the world and does so by various means such as hard copy,

microfiche, microfilm, and electronic media. It also abstracts and may translate its publications, and articles contained therein, for inclusion in various

compendiums, collective works, databases and similar publications.

THIS FORM MUST ACCOMPANY THE SUBMISSION OF THE AUTHOR’S MANUSCRIPT.

Questions about the submission of the form or manuscript must be sent to the publication’s editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966 (telephone)

Parabilis: Speeding up Single-Threaded Applications by Extracting

Fine-Grained Threads for Multi-Core Execution

Ademola Fawibe1, Oghenekarho Okobiah2, Oleg Garitselov3, Krishna Kavi4, Izuchukwu Nwachukwu5,

Mohana Asha Latha Dubasi6, and Vinay R. Prabhu7

Department of Computer Science and Engineering,

University of North Texas, Denton, TX 76203, USA.

Email: {aof00061, oo00322, omg00063, Krishna.Kavi4, iun00015, md02196, vbr00047}@unt.edu

Abstract

The trend in architectural designs has been towards

using simple cores for building multicore chips, instead

of a single complex out-of-order (OOO) cores, due to the

increased complexity and energy requirements of out of

order processors. Multicore chips provide better perfor-

mance when compared with OOO cores while executing

parallel applications. However, they are not able to ex-

ploit the parallelism inherent in single threaded appli-

cations. To this end, this paper presents a compiler opti-

mization methodology coupled with minimal hardware

extensions to extract simple fine-grained threads from

a single-threaded application, for execution on multi-

ple cores of a chip multiprocessor (CMP). These fine-

grained threads are independent and eliminate the need

for communication between cores, reducing costly com-

munication latencies. This approach, which we call

Parabilis is scalable for up to eight cores, and does not

require complex hardware additions to simple multicore

systems. Our evaluation shows that Parabilis yields an

average speedup of 1.51 on an 8-core CMP architecture.

1 Introduction and Motivation

Powerful out-of-order (OOO) and superscalar pro-

cessors have dominated the traditional computing space

until recently. The complexity of these out-of-order de-

signs significantly increases the transistor count. As the

number of transistors on the processor chips increases

and moves past beyond the billion mark, some inher-

ent concerns are exposed; including power dissipation,

memory capacity limitations and delays due to global

wire communication across elements on the processing

chip. The complexity of hardware structures needed to

extract implicit parallelism in out-of-order (OOO) pro-

cessors increases power dissipation and the overall com-

plexity of processor design. Therefore, the trend of in-

creasing single processor frequency and complexity of

processing elements present in an OOO processor is

seen as a not viable option. But there is still a need

to provide solutions which address improving the per-

formance of single-threaded applications. Current re-

search efforts are focused on building chip multipro-

cessors. These multicore chips consist of several sim-

pler cores, with less complex hardware structures. The

inherent nature and configurations of CMPs naturally

lend themselves to improved performance for multi-

threaded and parallel applications. In addition, there

has been a large increase in multithreaded and paral-

lel programming to take advantage of the multiple data

stream processing power of CMPs. However, a ma-

jority of applications available are single-threaded, and

single-threaded execution performance is not explicitly

addressed by multicore designs. While some compiler

techniques exist for extracting parallelism in program

loops, the level of parallelization available in some ap-

plications is limited. In order to fully extract parallelism

from these applications, significant time and effort by

programmers would be required. More recently there

have been several efforts [1, 2] to improve, adapt or

modify CMP hardware for single-threaded performance

improvement. Most of these schemes show limited im-

proved performance compared to single core OOO exe-

cution, and often require significant extensions to hard-

ware structure in CMPs (thus defeating the purpose of

using simple cores).

In this research we take an approach that relies

heavily on compilers to extract fine-grained parallelism

from single-threaded applications, and executing these

threads on several simple cores. This approach requires

minimal extensions to the hardware. We call our system

1

.

Parabilis. Parabilis extracts fine-grained threads through

the use of compiler optimization algorithms that stat-

ically schedules independent instructions on different

cores in a CMP configuration. However the problem of

data dependency limits the number of threads that can be

extracted. This can either be overcome by inter-thread

communication or instruction replication. We choose

to replicate instructions to avoid the overhead of inter-

thread communication. We believe that exploiting par-

allelism at the basic block level results in improved per-

formance for ”single-threaded” applications. Parabilis

is implemented with minimal hardware modification of

a conventional CMP configuration. We add a cross-

register communication network, based on idea of the

operand network seen in [3], and new state bit to reg-

isters to track data dependence and assure program cor-

rectness for replicated instructions executed on differ-

ent cores. We show that Parabilis significantly improves

the speed of ”single-threaded” applications running on a

CMP, and approaches the performance of OOO proces-

sors.

The rest of this paper is organized as follows: Sec-

tion 2 surveys related research in this area. The algo-

rithm and additional hardware modifications needed for

Parabilis are discussed in Section 3. Section 4 presents

the simulation methodology and experimentation results

of our scheme. The results and analysis are presented

in Section 5. In Section 6, we highlight factors on the

limitations of this work and detail future work needed to

overcome these limitations. Finally, Section 7 concludes

this paper.

2 Prior Related Research

The prohibitive power consumption and increasing

hardware complexity, coupled with the increasing dif-

ficulty in improving instruction level parallelism has led

to renewed interest in research for alternative solutions.

The adoption of CMPs over SMT processors by in-

dustry supports this notion. The limitations of CMPs

for sequential or single thread based applications have

continued to drive the need to adapt CMPs for such

applications. The native configuration of CMPs natu-

rally lends itself to improved performances for parallel

applications. However, OOO processors still provide

better performance than CMPs when executing single-

threaded applications. To this end, there has been a sig-

nificant amount of research on what configuration is best

to adopt.

One approach utilized by several proposals employs

primarily hardware modifications to explore single-

thread performance improvement. In [1], a dual config-

uration architecture is proposed, in which groups of in-

dependent CMPs can be dynamically fused into a more

powerful single core. This approach aims to accommo-

date software diversity by using independent CMPs for

parallel applications and fused cores for sequential ap-

plications. Similar configurations are also explored in

[2, 3]. These approaches tend to ease the constraint of

power consumption and simplify the design of complex

cores by using multiple simpler in-order cores. While

fusing cores does yield performance approaching single

OOO processor performance, fusing of cores introduces

several additional hardware complexities.

There has also been published research which uti-

lizes the approach of thread decomposition. The sin-

gle stream of instructions present in a single-threaded

applications can be split into smaller threads at vary-

ing levels of granularity. In [4], a scheme is proposed

where a sequential application is speculatively decom-

posed into fine-grained threads for execution on CMPs.

Since the threads are speculatively decomposed at com-

pile time, threads incur data dependencies, which may

be addressed by inter-thread communication or instruc-

tion replication. Parabilis is largely inspired by this

scheme, however we seek to present an approach to ex-

tract finer-grained threads which we claim achieve more

thread level parallelism in sequential applications. In

addition, [5] presents a work very similar to our pa-

per. Their simulation results are similar to our work, and

serve as further justification of the ideas presented. The

work in [6] utilizes execution profiling to select candi-

dates from potential mini-threads which have been ex-

tracted from single-threaded applications, which may

subsequently be compiled into the application itself.

In general, this approach introduces the challenges of

thread scheduling in addition to load balancing across

the cores. Managing data dependencies across threads

is another key issue, which is further complicated by the

cost of inter-core communication to handle data depen-

dencies across the threads. The research in [7] presents

a scheme to address data dependencies across threads by

utilizing compiler and hardware support to deduce and

insert synchronization instructions into threads created

from a single-threaded application.

Loop iterations present another prospective target

for thread partitioning, however optimal thread extrac-

tion still presents some challenges for loops with loop-

carried data dependencies. In addition, pointer refer-

ences may prevent a compiler from statically extracting

loop-level parallelism inherent in an application. The

work in [8] is a related scheme in which loops are parti-

tioned into fine-grained threads for execution on mul-

tiple cores, while using speculation to handle depen-

dences. Loops which are resistant to compiler opti-

mization due dynamic references can be decomposed

2

.

into component threads, akin to a producer-consumer

model. Using appropriate synchronization, these com-

ponent threads can be set to execute on different cores.

In [9], an algorithm that overcomes the problems of

load balancing and inter-core communication is pre-

sented. For each loop iteration, [10] speculative threads

are spawned, which are squashed if they are dependent

on previous iterations. The research in [11, 12] present

a Java-based run-time system consisting of a hardware

profiler to dynamically profile loops to determine opti-

mal iteration candidates for parallelization. In [11], a

dynamic compiler is also used to re-compile selected

speculative thread loops for parallel execution.

Instruction replication can be used to further exploit

parallelism, which may be employed in concert with

thread decomposition to reduce or eliminate inter-core

communication and data dependencies. In [13], the

authors present an approach utilizing modulo schedul-

ing and instruction replication for loops on clustered

micro-architectures while [14] presents an approach that

optimizes instruction replication to minimize the over-

heard of inter-core communication. This approach spec-

ulatively decomposes single-threaded applications and

employs a balanced min-cut approach that minimize

load imbalances while keeping communication over-

heard low. In [15], a technique for duplicating instruc-

tions for execution in VLIW architectures is presented.

The work in [9] presents a scheme to selectively repli-

cate instructions in multi-clustered architectures. The

clusters are connected through an interconnect to sup-

port inter-cluster communication. Both of these tech-

niques primarily utilize compiler support, but additional

hardware is needed to enforce instruction dependencies.

Speculative CMPs [16, 17], provide hardware structures

for this purpose, in addition to temporary storage for,

and the ability to roll back speculative execution.

Our work explores finer-grained threads than [4] and

we use recursive thread decomposition. In addition,

we attempt to minimize load imbalances by examin-

ing latency costs while selecting candidate threads, at

the same time eliminating inter-thread dependencies by

replicating instructions.

3 Parabilis:Algorithm and Hardware

Support

Our proposed scheme is called Parabilis, which uti-

lizes compiler support in combination with minimal

hardware modifications. The following subsections de-

tail the methodology and hardware modifications neces-

sary for implementing Parabilis.

3.1 Compiler Algorithm Optimizations

The static compile time algorithm extracts fine grain

threads through the use of graph traversals. The instruc-

tions and data dependencies in a basic block can be rep-

resented as a directed acyclic graph (DAG) [18] (an ex-

ample is shown in figure 1).

i

i

i

i

i

i5

i

i

i

i

i

i1

2

3

46
i

ii 8 79

i

i

i9

8

1

2

3

4

5

6

7

Figure 1. Example of Basic Block and

Schedule

Paths from the root node(s) to the leaf nodes represent

potential fine-grained threads for parallel execution. The

number of leaf nodes dictates the maximum number of

parallel threads that can be extracted from a basic block.

The figure 2 shows a possible thread extraction of the

basic block in figure 1.

The set of vertices and edges representing a path is

an incomplete representation of a fine-grained thread.

The goal is to obtain a set of edges and vertices such

that no edges cross the sub-graph boundary. Therefore,

the vertices representing additional instructions are in-

corporated into the set (i.e., replicated) until this goal is

accomplished, which forms a complete thread subgraph.

These subgraphs, represented as fine-grained threads,

can be scheduled to execute concurrently on different

cores. Instructions may appear in multiple subgraphs.

The replication of instruction in multiple threads elimi-

nates data dependencies among the threads.

Using replicated instructions, the need to exchange

data in registers (corresponding to dependent variables)

is eliminated - the each thread will compute its own reg-

ister values for the dependent variables. However, the

replication of instructions may lead to load-imbalance

(some threads may have more more instructions to ex-

ecute), and the need to merge the computed values in

registers. We analyze the load imbalances and merging

3

.

.

of registers in scheduling fine-grained threads on avail-

able cores. Our thread generation algorithm is detailed

below 1.

Algorithm 1 Algorithm that implements Parabilis

1: Parse the assembly code.

2: Extract the basic block.

3: Find dependencies within instructions within each

basic block

4: Each thread starts from each leaf nodes including all

dependent instructions

5: Keep the longest thread and combine the short

threads that give the most repetition to fit under the

longest limit

6: for do

7: If too many threads force merge with smallest

cost

8: Longest Thread + Comm Overhead =

BB Latency

9: end for

10: while Basic Block not finished do

11: Move to the next basic block.

12: end while

The algorithm starts by identifying and then extract-

ing basic blocks from the code generated by a compiler.

After the basic blocks have been extracted, dependent

instructions are found. All basic fine-grained threads are

extracted by exploring all dependent paths from the leaf

nodes to the root. The initial number of fine-grained

threads extracted is only limited by the available leaf

nodes and not based on the number of cores, creat-

ing more fine-grained threads than the number of cores

available. We then combine the fine-grained threads in

such way that the execution time (or execution latency)

of the larger thread does not adversely increase the par-

allel execution of the fine-grained threads. Note that the

execution time of the basic block is limited by the fine-

grained thread with maximum number of instructions.

We also considered using the number of replicated in-

struction as criteria for merging threads.

If the number of threads remaining is still more than

the available cores, we employ a cost minimizing tech-

nique to determine which threads to combine. We ex-

haustively search for pair-wise thread combinations that

yield the best overall execution times (or execution la-

tencies). We repeat this process of pair-wise merging

of threads until the number of threads is equal to the

number of cores. Figure 3 shows an example using the

threads generated in figure 2 with 2 cores. An exhaus-

tive search for merging T1, T2, T3 is done to find which

thread combinations yield the best latencies. There

are three possible combinations for these three threads,

i1

i2

i3

i6

i9

i1

i2

i3

i5

i8

i1i1

i2

i4

i7

i1

i

i

i

i

i

i

i

i

i

i

i

i

i

2 2 2

1 1

3 3 4

75

89

6

T T T1 2 3

Figure 2. Example of threads extracted

from a Basic Block

[(T12, T3), (T13, T2), (T23, T1)]. The best combination

is(T13, T2). This example shows that although T1 and T2

have more common instructions, but their merger does

not yield the best savings. This cost defined in lines

7 and 8 of Algorithm 1 favors greater latency savings,

which is our main goal.

i1

i2

i3

i6

i9

T1

i1

i2

i3

i5

i8

T2

i1i1

i2

i4

i7

T3

i1

i2

i3

i9

i1

i2

i3

i5

i8

i1

i2

i3

i9

i1

i2

i3

i5

i8

i1

i2

i3

i1

i2

i3

i6

i9

T1T1,2

i5

i6

i8

T3 T1,3

i4

i6

i7

T2 T2,3

i4

i5

i7

i8

Figure 3. Example of Force Merging

Optimal scheduling is an N-P complete problem and

our scheduling algorithm does not always provide the

optimal solution. The figure 4 displays an example of a

basic block from an actual code in MIPS assembly lan-

guage and the resulting threads.

The number of thread which can execute concur-

rently is constrained by the number of available cores.

The overall execution time of the basic block would be

bound by the execution time of the longest fine-grained

thread. At the end of a basic block execution, register

values need to be communicated across the cores. To

this end, we propose some basic hardware modifications

to facilitate this process. These modifications are de-

tailed in the next subsection.

4

Figure 4. Basic Block:Thread Extraction

and Scheduling

3.2 Hardware

Parabilis extends the basic architecture found in

CMPs with additional register metadata and a cross-

core register communication network bus. The special

cross-core register communication bus is based on the

technique used in [3]. A diagram of a multicore Para-

bilis architecture is shown in figure 5. The figure shows

how conventional CMPs cores can be connected with the

cross-core register communication network bus. Each

core has private L1 (instruction and data) and L2 caches.

An expanded view of a single core is also shown in fig-

ure 5. It shows how the cross-core register data is com-

municated to each core through the help of a communi-

cation functional unit (Comm FU).

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

L1−D$L1−I$

L2

L1−I$ L1−D$

L2

Core1 Core2

L1−D$L1−I$

L2

Core N

L1−I$

Register Communication Network

Register Communication Network

REGISTER FILES

IF/DECODE

COM FU

Figure 5. Conceptual Parabilis Architec-

ture

An extra register bit is added to the register metadata

to indicate if that register has been modified by that core

during the basic block execution. A ’1’ signifies that the

register has been modified and the updated value needs

to be communicated to other cores (for use in computa-

tions in future basic blocks) at the end of the basic block

execution. A ’0’ signals that the register has not been

modified and the current values are valid. After the ex-

ecution of the basic blocks, all registers with a modified

value are broadcast to other cores on the register com-

munication bus. The fast cross-core communication bus

is able to communicate a register value in 3 cycles. Our

estimates differ from the one in [3] by a cycle. The es-

timates for communication in [3] add an extra cycle per

hop between cores. Our configuration allows for direct

communication between all cores. Further details are

discussed in the performance evaluation section.

4 Performance Evaluation and Simulation

Setup

In evaluating Parabilis, we compare the speedup

achieved by Parabilis to that of conventional CMPs and

OOO for selected SPEC2006 Benchmarks. We evalu-

ate speed up by comparing the reduction in total cycles

needed for execution. In the following subsections, the

configuration and simulation setups are discussed.

4.1 Configuration

For Parabilis, we assume simple in-order cores and

each core has one functional unit of each type; floating

point (FP), Integer (Int), Multiplier (Mult). For the OOO

simulation, we assume 2-wide instruction issue architec-

ture with one functional unit of each type: floating point

(FP), Integer (Int), Multiplier (Mult). We run simulation

tests for up to 64 cores of a CMP.

4.2 Simulation

Our thread generation algorithm is applied to thee

MIPS code generated by the GCC compiler for the se-

lected SPEC-2006 benchmarks. We use estimated laten-

cies for each MIPS instruction to compute the execution

cycle-times for the benchmark programs. The instruc-

tion latencies used in our study are taken from [19]. For

register communication after completing a basic block,

we assume 3 cycle delay: one cycle to push updated val-

ues to the register network, one cycle to propagate values

across the network, and one cycle to update the registers.

In addition, we model a perfect network with a 0 cycle

communication latency to establish an ideal maximum

bound for performance.

5 Results and Analysis

Table 1 and Fig. 6 show the results offer simulations,

normalized to the execution time of a single in-order

5

.

.

.

.

.

CMP core. We achieved the best performance gains for

mcf, even beating the performance of OOO core, when

16 simple cores are used. In addition, milc approaches

the performance of an OOO core when using 64 cores

The general trend across all benchmarks achieve only

small gains beyond the 8 cores. The average speedups

are 1.30, 1.44, 1.50, and 1.51 for 2, 4, 8 and 16 cores,

respectively.

Table 1. Simulation Results With Commu-

nication Overhead

Config 2 4 8 16 32 64 OOO

bzip2 1.119 1.140 1.145 1.145 1.147 1.147 1.682

gcc 1.267 1.359 1.387 1.393 1.398 1.400 1.512

hmmer 1.357 1.556 1.632 1.648 1.661 1.667 1.995

lbm 1.494 1.930 2.160 2.185 2.232 2.244 3.272

mcf 1.320 1.448 1.491 1.498 1.505 1.507 1.487

milc 1.412 1.677 1.793 1.833 1.849 1.855 1.859

sjeng 1.272 1.378 1.408 1.47 1.425 1.427 1.738

specrand 1.099 1.176 1.195 1.195 1.210 1.210 1.557

sphinx3 1.367 1.527 1.579 1.591 1.599 1.602 1.673

Geometric

mean 1.293 1.444 1.502 1.513 1.525 1.528 1.809

Figure 6. Speedup for Benchmarks with

Communication

Table 2 and Fig. 7 shows our results when the com-

munication overhead is set to zero. The results are simi-

lar to those obtained with a 3 cycle communication over-

head. The average speedup is slightly better at 1.33,

1.49, 1.55 and 1.56 for the 2, 4, 8 and 16 cores respec-

tively. This indicated that even with a perfect bus mech-

anism the scheme does not exceed the performance of

an OOO core.

5.1 Analysis

From the simulation results, we see an improved

speedup for applications using simple in-order cores.

Figure 7. Speedup for Benchmarks with-

out Communication

However, on average the performance is still less than

that of a OOO core. For the milc and mcf benchmarks

we equal or outperform OOO cores. Even though we

do not outperform OOO, we obtain an average speedup

of 1.5 using 8 in-order cores, when compared to us-

ing a single in-order core. We can further improve the

performance achieved by our system using simple com-

piler techniques like loop unrolling, software pipelining,

instruction reordering and variable (register) renaming.

We believe that the primary reason for the OOO core

performance is their use of register naming (with a large

number of renaming registers). This renaming elimi-

nates many data dependencies and permits concurrent

execution of instructions (in out of order). We hope to

explore register renaming for CMPs in our future work.

6 Future Work and Limitations

6.1 Limitations

Our implemented model as it stands, contains some

limitations. The execution stream is a simple traversal

of the assembly code produced, and does not account

for the factors introduced by control flow changes, par-

ticularly the multiple jumps associated with loops. In

addition, this scheme does not account for latencies in-

troduced by load or store misses. The variable latencies

imposed by network traffic and the memory hierarchy

will have a significant impact on the performance gains.

Another limitation is the nature of the static scheduling,

which forces a the application to conform to a set CMP

configuration.

6

.

.

.

6.2 Future Work

In the future we will explore extensions to our archi-

tecture by exploiting register renaming. Register renam-

ing will reduce the number of anti and output dependen-

cies, allowing for the extraction of more finer-grained

threads. In particular, the length of the longest thread,

based on the number of instructions in the thread, can

be shorted since some data dependencies are eliminated

with register renaming, and eliminate the need for repli-

cated instructions. In addition, using liveness analysis,

the number of registers that need to be updated by the

fine-grained threads across basic blocks can be reduced

(only the live registers need to be updated). As previ-

ously mentioned, accounting for the variable latencies

of memory operations is another important factor to in-

vestigate.

Another potential factor is the use of selective decom-

position of a basic block for execution on multiple cores.

If the achieved performance is small, we may execute

the code of a basic block on a single core. One other area

we can examine is the potential of exchanging register

values during the execution of threads of a basic block

(and not wait until the end of the basic block). This al-

lows cores to proceed to execute threads from different

basic blocks, without waiting for all computations of a

basic block to complete. The addition of a priority bit

to each register will allow the communication of priori-

tized values during basic block execution, reducing the

need for replication instructions. We also wish to ad-

dress the limitations imposed by the use of compile time

thread generation. An application may be compiled for

individual CMP configurations, but hardware resources

available to the application may be variable, and adapt-

ing the scheduling to account for this variability can im-

prove the scalability and performance. [20] presents a

potential basis for work in this area.

Table 2. Simulation Results Without Com-

munication Overhead

Config 2 4 8 16 32 64 OOO

bzip2 1.118 1.140 1.145 1.145 1.146 1.146 1.683

gcc 1.303 1.401 1.430 1.437 1.441 1.444 1.512

hmmer 1.407 1.623 1.705 1.723 1.737 1.744 1.995

lbm 1.525 1.982 2.226 2.253 2.303 2.315 3.272

mcf 1.359 1.482 1.527 1.534 1.542 1.544 1.487

milc 1.453 1.735 1.860 1.903 1.920 1.927 1.859

sjeng 1.306 1.417 1.449 1.458 1.467 1.469 1.738

specrand 1.139 1.220 1.241 1.241 1.258 1.258 1.557

sphinx3 1.401 1.570 1.626 1.638 1.646 1.649 1.673

Geometric

Mean 1.328 1.488 1.550 1.562 1.574 1.577 1.809

7 Conclusion

We have presented Parabilis as an alternative ap-

proach to the task of increasing the performance of

CMPs for executing single-threaded applications. Para-

bilis addresses this by utilizing compile time analysis to

extract fine-grained threads from a single thread and se-

lectively replicating instructions, so that threads can be

executed on multiple cores. Parabilis accomplishes this

with minimal hardware extensions. The results of our

simulations show a 50% speedup over a base simple in-

order CMP core. We use this measure since, without

OOO, single threaded applications can only run on one

simple core. Parabilis achieved up to 83% of the perfor-

mance of 2-issue Out of Order core. Our study can be

improved by accounting for cache misses, and the per-

formance of Parabilis can be improved using (register)

renaming, selective replication of instructions, and other

compiler techniques such as unrolling loops, software

pipelining, instruction reordering.

Acknowledgements

This work is supported in part by the US National

Science Foundation Net-Centric Industry/University

Cooperative Research Center.

References

[1] E. Ipek, M. Kirman, N. Kirman, and J. F. Martnez,

“Core Fusion: Accommodating Software Diversity

in Chip Multiprocessors,” in ISCA’07: Proceed-

ings of the 34th Annual International Symposium

on Computer Architecture, 2007, pp. 186–197.

[2] M. B. David Tarjan and K. Skadron, “Federa-

tion: Out-of-Order Execution Using Simple In-

Order Cores,” University of Virginia, Department

of Computer Science., Tech. Report CS-2007-11,

Tech. Rep., Aug 2007.

[3] H. Zhong, S. A. Lieberman, and S. A. Mahlke,

“Extending Multicore Architectures to Exploit

Hybrid Parallelism in Single-thread Applications,”

in Proceedings of the 2007 IEEE 13th Interna-

tional Symposium on High Performance Computer

Architecture. Washington, DC, USA: IEEE

Computer Society, 2007, pp. 25–36. [Online].

Available: http://portal.acm.org/citation.cfm?id=

1317533.1318098

[4] C. Madriles, P. López, J. M. Codina, E. Gibert,

F. Latorre, A. Martinez, R. Martinez, and A. Gon-

zalez, “Boosting Single-thread Performance in

7

. .

Multi-core Systems through Fine-Grain Multi-

Threading,” in ISCA ’09: Proceedings of the 36th

Annual International Symposium on Computer Ar-

chitecture. New York, NY, USA: ACM, 2009, pp.

474–483.

[5] A. Aleta, J. Codina, A. Gonzalez, and D. Kaeli,

“Instruction Replication for Clustered Microar-

chitectures,” in Microarchitecture, 2003. MICRO-

36. Proceedings. 36th Annual IEEE/ACM Interna-

tional Symposium on, Dec. 2003, pp. 326 – 335.

[6] T. A. Johnson, R. Eigenmann, and T. N.

Vijaykumar, “Speculative Thread Decomposition

Through Empirical Optimization,” in Proceedings

of the 12th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming,

ser. PPoPP ’07. New York, NY, USA: ACM,

2007, pp. 205–214. [Online]. Available: http:

//doi.acm.org/10.1145/1229428.1229474

[7] X. Wang, Y. Zhao, Y. Wei, S. Song, and

B. Han, “Prophet Synchronization Thread Model

and Compiler Support,” in Parallel and Distributed

Processing with Applications (ISPA), 2010 Inter-

national Symposium on, Sept. 2010, pp. 81 –87.

[8] R. Rangan, N. Vachharajani, M. Vachharajani, and

D. August, “Decoupled Software Pipelining With

the Synchronization Array,” in Parallel Architec-

ture and Compilation Techniques, 2004. PACT

2004. Proceedings. 13th International Conference

on, September 2004, pp. 177 – 188.

[9] A. Aggarwal and M. Franklin, “Instruction Repli-

cation for Reducing Delays Due to Inter-PE Com-

munication Latency,” Computers, IEEE Transac-

tions on, vol. 54, no. 12, pp. 1496 – 1507, Dec.

2005.

[10] M. Islam, A. Busck, M. Engbom, S. Lee,

M. Dubois, and Stenstrom, “Loop-level Specu-

lative Parallelism in Embedded Applications,” in

Parallel Processing, 2007. ICPP 2007. Interna-

tional Conference on, Sept. 2007, p. 3.

[11] M. Chen and K. Olukotun, “The JRPM System

for Dynamically Parallelizing Java Programs,” in

Computer Architecture, 2003. Proceedings. 30th

Annual International Symposium on, June 2003,

pp. 434 – 445.

[12] ——, “TEST: A Tracer for Extracting Specula-

tive Threads,” in Code Generation and Optimiza-

tion, 2003. CGO 2003. International Symposium

on, March 2003, pp. 301–312.

[13] A. Aleta, J. Codina, J. Sanchez, A. Gonzalez,

and D. Kaeli, “AGAMOS: A Graph-Based Ap-

proach to Modulo Scheduling for Clustered Mi-

croarchitectures,” Computers, IEEE Transactions

on, vol. 58, no. 6, pp. 770 –783, June 2009.

[14] T. A. Johnson, R. Eigenmann, and T. N.

Vijaykumar, “Min-Cut Program Decomposition

for Thread-Level Speculation,” in Proceedings

of the ACM SIGPLAN 2004 Conference on

Programming Language Design and Implemen-

tation, ser. PLDI ’04. New York, NY, USA:

ACM, 2004, pp. 59–70. [Online]. Available:

http://doi.acm.org/10.1145/996841.996851

[15] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vi-

jaykrishnan, and M. Irwin, “Compiler-Directed In-

struction Duplication for Soft Error Detection,” in

Design, Automation and Test in Europe, 2005. Pro-

ceedings, March 2005, pp. 1056 – 1057 Vol. 2.

[16] J. Steffan, C. Colohan, A. Zhai, and T. Mowry, “A

Scalable Approach To Thread-Level Speculation,”

in Computer Architecture, 2000. Proceedings of

the 27th International Symposium on, 2000, pp. 1

– 12.

[17] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hard-

ware for Speculative Run-Time Parallelization In

Distributed Shared-Memory Multiprocessors,” in

High-Performance Computer Architecture, 1998.

Proceedings., 1998 Fourth International Sympo-

sium on, Feb 1998, pp. 162 –173.

[18] M. Heffernan and K. Wilken, “Data-Dependency

Graph Transformations for Instruction Schedul-

ing,” Journal of Scheduling, vol. 8, pp. 427–451,

October 2005. [Online]. Available: http://portal.

acm.org/citation.cfm?id=1077342.1077363

[19] J. Heinrich, MIPS R10000 Micropro-

cessor User’s Manual. [Online]. Avail-

able: http://techpubs.sgi.com/library/manuals/

2000/007-2490-001/pdf/007-2490-001.pdf

[20] Y. Ding, M. Kandemir, P. Raghavan, and M. Irwin,

“A Helper Thread Based EDP Reduction Scheme

for Adapting Application Execution in CMPs,” in

Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, April

2008, pp. 1 –14.

8

