
A Theoretical Framework for the Multicast Address Allocation Problem

Virginia Lo, Daniel Zappala, Chris GauthierDickey, and Timothy Singer
Department of Computer Science, 1202 University of Oregon, Eugene OR 97403-1202

lo
�
zappala

�
chrisg

�
tsinger@cs.uoregon.edu

Abstract— The multicast address allocation problem requires Internet

domains to allocate unique addresses to multicast applications from a

globally-shared space. We develop a theoretical framework for multicast

allocation algorithms that is influenced by subcube allocation in hyper-

cube computer systems. Based on this framework we derive complexity

results for the address allocation problem and describe several new allo-

cation algorithms that use a hypercube model for address representation.

I. INTRODUCTION

The multicast address allocation problem is one of several

key problems that has delayed deployment of native IP multi-

cast throughout the Internet. While recent work in the areas of

Source-Specific Multicast (SSM) and application layer multi-

cast protocols has side-stepped the malloc problem, neither has

proposed fully satisfactory schemes to support any source mul-

ticast (ASM). The rapidly increasing use of the Internet for all

manner of communications makes it imperative that we con-

tinue to seek support for minimum latency, maximally efficient

multicast services.

In this paper, we show that the multicast address allocation

problem is one instance of a well-known, general resource al-

location problem in which a block of resources is allocated and

de-allocated based on dynamic requests for sub-blocks of vary-

ing sizes. The ability to respond to requests under heavy loads

is difficult because the resource space may become fragmented

into many small non-aggregatable blocks.

The most well-known instance of this problem arises in

memory management and disk space management in which

contiguous bytes of memory (or physical blocks of disk space)

are allocated and de-allocated over time. Other examples in-

clude distribution of zip codes and telephone numbers, and the

processor allocation problem in hypercubes, tori, and meshes.

We focus our attention on the latter class of problems, specif-

ically the subcube allocation problem in hypercubes. We show

how results from subcube allocation – including its compact

notation, complexity results, and algorithms – can be applied

to the malloc problem to overcome the limitations of current

schemes for address allocation.

We first reported the close relationship between the malloc

problem and the subcube allocation problem in [1]. Here, we

continue our development of a theoretical framework for the

multicast address allocation problem and propose new algo-

rithms that use a hypercube-based approach. A companion pa-

per [2] (also submitted to Globecom) builds on these theoretical

results by modeling the malloc problem and studying the per-

formance of the algorithms we discuss within the context of the

MASC architecture [3].

The contributions of this paper include:

This work was supported in part by the National Science Foundation under
grants ANI-9977524 and NCR-9714680.

✁ Classification of address allocation algorithms into a se-

quence of three classes: prefix-based, contiguous, and non-

contiguous. While a prefix-based algorithm is recommended

for MASC, contiguous and non-contiguous algorithms offer a

more flexible representation for address blocks and hence pro-

vide a greater ability to recognize free blocks in a fragmented

space.✁ The first complexity results for the malloc problem and their

implications for address allocation protocols. Until now, the

malloc problem has not been studied formally. Our complex-

ity results show that address allocation is a subtle and diffi-

cult problem, more so than heretofore understood by the net-

working community. Our results provide guidance towards ap-

proaches that are likely to reap practical benefits for multicast

address allocation.✁ New polynomial time algorithms for address allocation that

use a hypercube model for address aggregation. These algo-

rithms are defined by their recognition capability (prefix-based,

contiguous, or non-contiguous) and their fit model (first fit,

ARBE fit, best fit, or worst fit). These new algorithms hold

promise for use within the MASC architecture.

II. BACKGROUND AND TERMINOLOGY

In this section, we define some basic terms, provide back-

ground information on the MASC architecture, formally define

the malloc problem, and show that there is a straightforward

correspondence between the subcube allocation problem in hy-

percubes and the malloc problem.

A. Address Expressions

An address expression is a compact notation for represent-

ing block or set of addresses. We use the standard don’t care

notation of hypercubes for expressions, e.g., the set of four ad-

dresses 0000, 0001, 0010, 0011 can be represented as the ad-

dress expression 00XX, in which the X’s represent don’t care

bits. This notation is similar to that of address masks, which

are commonly used in Internet routing protocols.

We define the following taxonomy of address expressions,

based on the allowable patterns of the don’t care bits.✁ Prefix-Based: Address expressions must have all all the

don’t care bits in the rightmost positions.✁ Contiguous: Address expressions must have contiguous

don’t care bits, with wraparound allowed.✁ Non-Contiguous: Address expressions may have the don’t

care bits in arbitrary positions.

For example, given a block of ✂☎✄ addresses allocated from a

✂✝✆✟✞ bit address space, 00100XXXXX denotes a prefix-based

address expression, 001XXXXX01 and XX00110XXX both

denote contiguous address expressions, and X00XX10XX0 de-

notes a non-contiguous expression.

Note that each class is contained in the next, with non-

contiguous✠ being the most general class.

B. MASC and the Malloc Problem

We assume the widely-accepted model for interdomain mul-

ticast defined by Kumar et. al. [3] and the proposals of the

IETF’s MALLOC working group [4]. Under this model, do-

mains use the Multicast Address-Set Claim (MASC) proto-

col to dynamically assign address blocks along the existing

provider-subscriber hierarchy. A subdomain claims blocks of

addresses from a parent domain in order to satisfy multicast

address requests from internal applications as well as from its

own child domains.

The heart of the MASC protocol lies in the scheme used for

allocation and de-allocation of address blocks. This fundamen-

tal, yet difficult problem is what we refer to as the malloc prob-

lem, which can be defined as follows for a single hierarchy

composed of a parent domain and ✡ child domains. The defi-

nition is easily extended to a multi-level hierarchy.

The Malloc Problem: A domain is given a contiguous set of

✂☎☛ multicast addresses, represented as binary numbers from ☞
to ✂✌☛✎✍✑✏ . Initially, all addresses are available for allocation.

Child domains ✒ ✞ through ✒✔✓ request blocks of addresses

whose sizes are powers of ✂ . The challenge of the malloc prob-

lem is to allocate blocks of addresses to child domains under

heavy demand, as the address space becomes fragmented over

time. A good allocation algorithm should satisfy as many re-

quests as possible, while attempting to minimize the number of

blocks a child domain holds (to keep routing tables small) and

the number of times a child must change addresses (to reduce

routing table flux).

A child domain that requests additional addresses may be

satisfied in three different ways:✁ expansion: A child is given a new block in addition to its

current blocks. Each new block increases the size of the do-

main’s routing table.✁ doubling: One of the child’s blocks is combined with a free

buddy block, which has the same address expression except for

one different instantiated bit. By combining with a buddy, the

new block can still be represented with a single address ex-

pression, specifically an expression where the differing bit is

changed to a don’t care bit. Growth by doubling is desirable

because it keeps routing table sizes stable and reduces the scope

of routing table updates.✁ migration: A child exchanges one or more of its blocks for

a new block that is as large as all of the old blocks combined.

Following a migration, the child then tries to expand by getting

a new block that can satisfy its need for additional addresses.

Migration followed by expansion is used to keep the total num-

ber of blocks assigned to a child within some bound. This helps

reduce the size of the domain’s routing table at the expense of

some routing table flux.

In the MASC architecture, the allocation algorithm uses

prefix-based expressions and allocates new blocks using a

worst-fit placement mechanism called ARBE. Worst-fit place-

ment generally leaves free space adjacent to each newly al-

located block, which can be used in the future for doubling.

When a child needs more addresses, it first checks whether it

✕✖✕✕✖✕✗✖✗✗✖✗
✘✙✘✙✘✘✙✘✙✘✚✙✚✙✚✚✙✚✙✚✛✖✛
✛✖✛✜✖✜✜✖✜✢✖✢✢✖✢✣✖✣✣✖✣ ✤✖✤✤✖✤✥✖✥✥✖✥ ✦✖✦✦✖✦✧✖✧✧✖✧

★✖★★✖★✩✖✩✩✖✩
✪✖✪✪✖✪✫✖✫✫✖✫

✬✖✬✬✖✬✭✖✭✭✖✭ ✮✖✮✮✖✮✯✖✯
✯✖✯

✰✙✰✙✰✰✙✰✙✰✱✙✱✙✱✱✙✱✙✱
✲✙✲✙✲✲✙✲✙✲✳✙✳✙✳✳✙✳✙✳✴✖✴✴✖✴✵✖✵✵✖✵

✶✙✶✙✶✶✙✶✙✶✷✙✷✙✷✷✙✷✙✷
✸✙✸✙✸✸✙✸✙✸✹✙✹✙✹✹✙✹✙✹

Subcube

00XX (prefix)

1XX0 (contiguous)

X1X1 (non−contiguous)

Address Block

0001

0010

0011

0100

0101 0111

0000

4−D hypercube

1000

1101

1011

1110

1111

1001

1010

11000110

Fig. 1. The correspondence between address allocation and subcube allocation

has free addresses available in one of its current blocks. Other-

wise it tries to expand to an additional block or double one of its

existing blocks. If this fails then it tries to migrate all its hold-

ings to a new block. An adaptive mechanism triggers request or

release of blocks based on low and high utilization thresholds.

Later in this paper, we examine ARBE more closely, in the con-

text of our taxonomy of allocation algorithms, and discuss its

advantages and disadvantages.

C. Subcube Allocation and the Malloc Problem

The hypercube is an elegant recursive mathematical structure

that served as the underlying communication network of the In-

tel iPSC and N-Cube parallel processors back in the late 1980s

and early 1990s. In a hypercube, the ✂☎☛ processors are each

labeled with an ✺ -bit address; processors whose labels differ in

exactly one bit position are connected.

A subcube is a subset of the nodes and edges of a hypercube

that themselves form a smaller hypercube. In a hypercube ma-

chine, parallel applications request subcubes, hold them for the

runtime of the application, and then release the subcubes back

to the operating system scheduler. The algorithm used by the

scheduler to handle the requests and releases of the subcubes

is the subcube allocation algorithm and has been the target of

intensive research for many years [5], [6], [7], [8]

A key observation is the fact that a subcube is equivalent to

a block of addresses described by a single address expression.

Thus, as shown in Figure 1, a given subcube — or its equivalent

block of addresses – can be described using prefix-based, con-

tiguous, or non-contiguous address expressions. This equiv-

alence means that subcube recognition techniques can be ap-

plied to the problem of multicast address allocation. However,

a number of key differences and practical constraints associ-

ated with the malloc problem require that results from hyper-

cube theory be applied to the address allocation problem with

great care.

III. COMPLEXITY OF ADDRESS ALLOCATION

Any practical allocation scheme must be able to double and

migrate efficiently. In this paper, we seek algorithms that yield

optimal solutions in polynomial time and space. Where this

is not possible we sacrifice optimality in order to maintain a

polynomial solution.

Below, we summarize complexity results for the three

classes of address allocation schemes: prefix-based, contigu-

ous, and non-contiguous.

A. Doubling Complexity

In any prefix-based allocation scheme, there is only one

choice for doubling, i.e., doubling can occur only by converting

the rightmost instantiated bit to a don’t care bit. For example,

Recognition for ✻ bit address space, ✼ bit subcube/block

Total blocks recognized

Subcube✽ General Example:

Allocation Scheme formula ✻✿✾❁❀ , ✼❂✾❄❃
Buddy (prefix) ❅❇❆✌❈❊❉ ❃❇❅
Gray (non-contig) ❅❇❆✌❈❊❉●❋■❍ ❏●❑
Dbl Gray (non-contig) not given ▲▼❅❇❀
Partners (non-contig) ◆❖✻◗P❘✼❚❙❁▲❱❯❳❲✿❅ ❆✌❈❊❉ 192

Cyclic (contiguous) ✻❘❲◗❅❇❆☎❈❨❉ ❅❇❩❇❏
Full (non-contig) ◆❬❆❉ ❯✖❲✿❅❇❆✌❈❨❉ ▲❱❭●❪❇❅

Table I. Recognition capability of allocation schemes

if child domain ✒❫✏ holds address block 000XX, it can only

double into the block 00XXX.

In any contiguous allocation scheme, there are two choices

for doubling, i.e. by converting either the leftmost or rightmost

instantiated bit to a don’t care bit. For example, if ✒❫✏ holds

block 0XX00, it can double into either block XXX00 or block

0XXX0.

The complexity of doubling for prefix and contiguous alloca-

tion is ❴❛❵❜✒❞❝ , where ✒ is the number of child domains. The al-

gorithm simply generates the address expression for the candi-

date buddy block and then tests whether that block is available

by checking for intersection with the other children’s blocks via

bitwise comparison of address expressions.

In any non-contiguous allocation scheme there are ✺❡✍❣❢
choices for doubling, where ✺ is the total number of bits in

the full address space and ❢ is the number of don’t care bits in

the current address expression. Doubling occurs by converting

any one of the instantiated bits to a don’t care.

The complexity of doubling for non-contiguous allocation is

❴❛❵❜✒❣❤✐✺❥❝ since it may have to examine all ✺❦✍❧❢ choices for

doubling, testing each for intersection with the other children’s

blocks.

B. Migration Complexity

The ability of an allocation scheme to migrate to a new block

in a highly fragmented address space is a function of its ability

to recognize blocks of the desired size in the free address space.

Table I shows the recognition capacity for a spectrum of sub-

cube allocation schemes all of which can be invoked for the

malloc problem. The table gives the general formula for the to-

tal number of subcubes/blocks of size ✂✌♠ that can be recognized

in a hypercube/address space of size ✂✌☛ . It is clear that relaxing

constraints on the format of the address expression from prefix-

based to non-contiguous vastly improves the potential recogni-

tion capacity. This potential may not necessarily lead to bet-

ter migration performance, due to fragmentation. Nevertheless,

the increased recognition capability provides strong motivation

to explore contiguous and non-contiguous algorithms.

Prefix-based allocation was proved to be polynomial time in

[6]. Under prefix schemes, blocks are allocated and deallocated

in a rigid pattern using a free list organized by block size.

We have developed the first known polynomial time algo-

rithm for contiguous allocation. Earlier work with hypercubes

under this model focused on parallel algorithms which use an

exponential number of processors [9]. Our algorithm, which

we call Cyclic, exploits the fact that there are only ✺ classes

of cyclic blocks, categorized by the position of the rightmost

don’t care bit. It uses techniques for logic design that are are

exponential time for logic circuits [10], but polynomial time

for cyclic address allocation. In the next section we give an

overview of Cyclic; the algorithm is fairly complex and de-

scribed more thoroughly in [11].

B.1 Non-Contiguous Allocation

Non-contiguous allocation is not as straightforward because

subtly different statements of the problem have been proposed

with different complexity results. We first give the complexity

results, then discuss their implications for address allocation

protocols. In the following, a feasible set of requests is one in

which the sum of the all the requested blocks does not exceed

the full address space.

Problem 1 Single-Request Address Allocation. Given child

domains ✒ ✆ through ✒♥✓ which have already been successfully

allocated (disjoint) blocks ♦ ✆ through ♦ ✓ , respectively, does

there exist a free block of size ✂✝♠ , ❢❄♣rqs✺ ?

Theorem 1 Single-Request Address Allocation is NP-hard.

We prove this by reduction from SAT. We establish a direct cor-

respondence between clauses and subcubes, showing that a set

of clauses is satisfied iff there is a free subcube of dimension ❢
after the subcubes corresponding to those clauses are allocated

to the child domains. The full proof can be found in [11].

Problem 2 Unordered-Requests Address Allocation. Given

a feasible unordered set of requests for blocks of sizes t ✆
through t✉✓ , is there an allocation that satisfies this set of re-

quests regardless of the order in which they are issued?

Theorem 2 Unordered-Requests Address Allocation is NP-

hard. This is an instance of a more general problem involving

offline subcube allocation that was proved NP-hard by Dutt and

Hayes [5].

Problem 3 Ordered-Requests Address Allocation. Given

an ordered sequence of requests for blocks of sizes t ✆ through

t✈✓ is there an allocation that assigns a block to each request if

a free block exists at the time of the request?

Ordered-Requests Address Allocation is an open problem.

We conjecture that it is solvable in polynomial time and hope

to complete our proof by the deadline for final submission of

this paper.

The reason Problem 3 may admit a polynomial time solution,

while Problems 1 and 2 do not, lies in the fact that under Prob-

lem 3 we know which of the past requests have been satisfied

and which blocks have been allocated to each child. Thus past

history and current state are known at the time of each given

request. Problem 2 requires that an algorithm be able to satisfy

all ✺❚✇ possible request sequences while Problem 1 requires that

the algorithm be able to reconstruct the sequence of requests

that led to the current situation.

B.2 Implications for the MASC Architecture

Theorem 1 implies that it is not sufficient to determine the

current allocation state and then satisfy a given request. For

example, a child domain that needs a new block of addresses

may want to query its siblings to find out what blocks they hold,

or a parent domain may simply track its allocations. In both

cases, it is not possible for the child or the parent to find a free

block① of the desired size in polynomial time.

Theorem 2 states that there is no polynomial time algorithm

that can satisfy a feasible set of unordered requests. However,

we note that in a realistic setting requests for blocks may oc-

cur in a fixed, ordered sequence; hence it is not necessary to

optimize over all possible orderings.

Problem 3 is a more natural statement of the malloc problem,

and we believe this can lead to a polynomial time algorithm for

non-contiguous address allocation. The algorithm we present

in the following section is framed in terms of a request-reply

protocol, but the same results should apply to any protocol that

maintains ordering for requests.

IV. MULTICAST ADDRESS ALLOCATION ALGORITHMS

In this section, we present several address allocation algo-

rithms within the context of our theoretical framework, includ-

ing those from the networking community and those we have

adapted or developed that are hypercube-based. Because dou-

bling is a straightforward operation for all algorithms, we focus

on migration. Recall that with MASC a child domain tries to

migrate when it is unable to double one of its current blocks.

Migration algorithms can be characterized by their recogni-

tion capacity (prefix, contiguous, non-contiguous) and by their

fit type (first fit, last fit, best fit, and worst fit). Due to space

limitations, we give only a high level description of our algo-

rithms; details can be found in [11].

Our discussion uses a simple example throughout: a single-

level domain hierarchy, an address space of ✂③② addresses, and

the following sequence of requests for addresses (given as

block sizes): 2, 1, 1, 2.

A. Prefix-based algorithms: Prefix-FF and Prefix-ARBE

Prefix-based algorithms can be best understood through the

use of an allocation tree in which the leaf nodes are labeled

left to right with the binary addresses ☞ through ✂☎☛④✍⑤✏ . Left

edges are labeled with ☞ and right edges labeled with ✏ . See

Figure 2(a).

It is easy to see that the binary sequence on the path from the

root to any leaf node is precisely the label of that leaf node. Any

interior node in the tree corresponds to a block of addresses

contained in the subtree rooted at that node. The expression for

this block is the binary sequence on the path from the root to

that interior node, followed by don’t cares.

Prefix-FF allocates addresses using first-fit; it is identical

to the Buddy Subcube Algorithm [6]. Prefix-ARBE allocates

blocks using a worst-fit, reverse-bit ordering [12]. Figures 3(a)

and (b) show how Prefix-FF and Prefix-ARBE would handle

the above sequence of addresses. With Prefix-FF, the requests

are all packed into the low numbered addresses. As a result,

no child block can double into its buddy block, but migration

requests for 2, 4, or 8 addresses can be accommodated. Under

Prefix-ARBE, the four initial requests are spaced out so that all

children can double. However, no migration requests of size 4

or 8 can be satisfied.

(b) The contiguous block 1XX0 in T above has been transformed

 into a prefix block 01XX in T
0

1

0 1 2 3

0 10 0 01 1 1

0 0 0 0 0 0 0 0 11111111

4 5 6 7 8 9 10 11 12 13 14 15

T
0

0

0

1

1

00XX (prefix) 1XX0 (contiguous)

(a) A prefix-based block and a contiguous block in allocation tree T0

01XX (in T) 1XX0 (in T)01

T labels
0

0 1 2 3

0 10 0 01 1 1

0 0 0 0 0 0 0 0 11111111

4 5 6 7 8 9 10 11 12 13 14 15

T
1

0

0

1

1

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

T labels
1

Fig. 2. Allocation trees for prefix and contiguous allocation

(a) First Fit:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) ARBE:

(b) Fragmented ARBE:

Fig. 3. Allocation for requests 2, 1, 1, 2 under Prefix-FF and ARBE fits

B. Contiguous algorithm: Cyclic

Assuming the initial allocations shown in Figure 3(a) and

(b), contiguous allocation improves over prefix-based alloca-

tion: all of the children can double and migration requests of

sizes 2,4, and 8 can be satisfied under either FF or ARBE fits.

We have developed a polynomial time algorithm for contigu-

ous address allocation called Cyclic. The key features of the

algorithm are (1) it inspects only ✺ allocation trees, (2) it sim-

plifies the task of finding a ❢ -cube into that of finding a single

free node in a truncated allocation tree, and (3) it uses binary

search and the consensus operation from logic design to locate

a single free node and thus a free ❢ -cube.

Cyclic inspects ✺ allocation trees, one corresponding to each

of the possible bit positions occupied by the rightmost don’t

care bit. Figure 2(b) shows the representation of block 00XX
in ⑥ ✞ and block 1XX0 as they appear in trees ⑥ ✞ and ⑥ ✆ .

Within a given allocation tree ⑥❳⑦ , Cyclic transforms the task

of searching for a free ❢◗✍⑨⑧❇⑩❳❶❸❷ into the task of finding a single

free node in two steps. First, the child holdings are represented

as prefix-based holdings in the current allocation tree ⑥■⑦ via

wraparound right-shift of ❹ bits. Then, the last ❢ bits are trun-

cated from each child’s holding.

Once a tree is transformed, then Cyclic does a binary search

of the tree to find a free node. If the search is successful, it

yields a free node in allocation tree ⑥■⑦ that can be translated

back to the address expression for the corresponding free ❢❺✍
⑧❇⑩❳❶❸❷ . If the search is not successful, there is no free node in the

tree and the operation must be repeated on the next allocation

tree.

To determine whether there is a free node in a given subtree,

Cyclic uses the consensus operation [10]. Consensus is a bi-

nary operation that finds the common block of addresses for

two adjacent blocks. If consensus is applied to two buddies,

the result is the combination of the buddies into a larger block.

Cyclic starts with a list of the child holdings and repeatedly

applies consensus to all pairs of adjacent blocks. Any blocks

that are covered by a larger block are removed from the list.

This procedure is repeated until no buddies remain. At most, a

block can be combined with its buddy ✺ times since each buddy

changes an instantiated bit to a don’t care. Thus, we are guar-

anteed that the algorithm terminates after ✺ iterations. These

repeated invocations of the consensus operation will yield the

whole subtree iff the subtree is covered by the children. This

indicates a failure to find a free node in the subtree.

The complexity of Cyclic is ❴❛❵❜✒⑤❤❻✺❽❼✈❝ . Note that Cyclic is

a migration algorithm for Problem 1 in which all that is known

is the identity of the blocks held by the children.

C. Non-contiguous algorithm: MaxQ

The advantages of non-contiguous allocation can be seen

from the highly fragmented situation in Figure 3(c). Cyclic can

only migrate to new blocks of size 2, while a non-contiguous

algorithm can migrate to blocks of sizes 2 and 4. For example,

a free non-contiguous block is 0X1X.

We have developed a non-contiguous address allocation

algorithm for the Ordered-Requests problem called MaxQ.

MaxQ uses the consensus operation to maintain a free list that

contains a maximal free subcube. This free list is a weaker type

of free list than that proposed by [5] which is a maximal free

list that is greater than all other maximal free lists. Our free

list only attempts to find one of all the maximal free blocks of

addresses, of which there may be several, and then the rest of

the list contains a sub-optimal list of free address blocks. For

example, if the free list contained the free addresses 000, 001,

110, 100, the algorithm in [5] would be guaranteed to find 00X
and 1X0 as the maximal free list. While this list might be found

by our MaxQ algorithm, it could also find 001, X00, 110 as a

free list.

By using the consensus operation, we compare the elements

of the free list to each other and find the consensus between all

pairs. Any new consensus which covers a pair of addresses is

kept and the covered pairs are removed. We apply the consen-

sus operation to all pairs in the free list repeatedly until we find

that there are no new consensus blocks. As for Cyclic, we are

guaranteed that our algorithm will execute at most ✺ iterations.

Once we have a list of maximal free blocks given from the pairs

in the original list, we can choose any of the largest blocks and

then keep the results of this block with the subtractions of the

other blocks in a new list and maintain a polynomial sized free

list.

Using a free list allows us to ensure that if a migration needs

a block of size ❢ , then a simple traversal through the list in

search of a k-sized block will reveal if one exists. Since we

know our free list will contain a maximal free block, then if

there is not a ❢ -sized block in the list, there is not a maximal

block of that size in the address space. We are currently work-

ing on a proof that the list will always remain polynomial in

size.

Note that a non-contiguous model for address expressions

called kampai was introduced in [13] for unicast routing. How-

ever, the kampai algorithm was restricted to growth through

doubling only.

D. Conclusion

In this paper we have established a theoretical framework for

the multicast address allocation problem by showing its close

resemblance to the subcube allocation problem in hypercubes.

We developed a classification scheme for address expressions

into prefix-based, contiguous, and non-contiguous, based on

constraints on the location of don’t care bits. We then proved

complexity results for each class, showing prefix and contigu-

ous allocation to be polynomial time, and showing two non-

contiguous allocation problems (Single Request and Unordered

Requests) to be NP-hard. We presented Cyclic, the first poly-

nomial time algorithm for contiguous allocation. Finally, we

conjectured that Non-Contiguous Ordered Requests is polyno-

mial time and presented the MaxQ algorithm for this problem.

Throughout, we focused on the implications of our results and

on finding practical algorithms for the malloc problem.

Based on their recognition capability, contiguous and non-

contiguous algorithms appear to hold great promise for mul-

ticast address allocation. In our companion paper [2], we in-

vestigate the performance of these algorithms within a general

model of the malloc problem.

REFERENCES

[1] M. Livingston, V. Lo, K. Windisch, and D. Zappala, “Cyclic Block Allo-
cation: A New Scheme for Hierarchical Multicast Address Allocation,”
in First International Workshop on Networked Group Communication,
L. Rizzo and S. Fdida, Eds., November 1999.

[2] D. Zappala, C. GauthierDickey, and V. Lo, “Modelling the multicast
address allocation problem,” submitted to IEEE Globecom 2002, Global
Internet Symposium, 2002.

[3] S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D.Estrin, and
M. Handley, “The MASC/BGMP Architecture for Inter-domain Mul-
ticast Routing,” in ACM SIGCOMM, August 1998.

[4] P. Radoslavov, D. Estrin, R. Govindan, M. Handley, S. Kumar, and
D. Thaler, “The Multicast Address-Set Claim (MASC) Protocol,” RFC
2909, September 2000.

[5] S. Dutt and J. P. Hayes, “Subcube Allocation in Hypercube Computers,”
IEEE Transactions on Computers, vol. 40, no. 3, March 1991.

[6] M. Chen and K. G. Shin, “Process Allocation in an N-Cube Multipro-
cessor Using Gray Code,” IEEE Transactions on Computers, vol. 36, no.
12, December 1987.

[7] A. AlDhelaan and B. Bose, “A new strategy for processor allocation in
an n-cube multiprocessor,” in Proceedings of the International Phoenix
Conference on Computers and Communication, March 1989.

[8] V. M. Lo, W. Liu, B. Nitzberg, and K. Windisch, “Noncontiguous Proces-
sor Allocation Algorithms for Mesh-Connected Multicomputers,” IEEE
Transactions on Parallel and Distributed Systems, July 1997.

[9] M. Livingston and Q. F. Stout, “Fault tolerance of the cyclic buddy sub-
cube location scheme in hypercubes,” in Proceedings of the 6th Dis-
tributed Memory Computing Conference (DMCC6), 1991.

[10] M. R. Dagenais, V. K. Agarwal, and N. C. Rumin, “McBOOLE: A
New Procedure for Exact Logic Minimization,” IEEE Transactions on
Computer-Aided Design, vol. CAD-5, no. 1, January 1986.

[11] V. Lo, D. Zappala, C. GauthierDickey, and T. Singer, “A theoretical
framework for multicast address allocation,” Tech. Rep. UO-TR-2002-
01, University of Oregon, 2002.

[12] P. I. Radoslavov, D. Estrin, and R. Govindan, “A Claim-Collide Mecha-
nism for Robust Distributed Resource Allocation,” Tech. Rep. USC-CS-
99-711, CS Department, University of Southern California, 1999.

[13] P. Tsuchiya, “Efficient and Flexible Hierarchical Address Allocation,” in
INET92, June 1992.

