
IDL: A Geometric Interference

Detection Language

Pedro Santos
Pedro.Santos@iscte.pt

Manuel Gamito
mag@iscte.pt

José Miguel Salles Dias
Miguel.Dias@iscte.pt

ADETTI/ISCTE, Associação para o Desenvolvimento das Telecomunicações e Técnicas
de Informática, Edifício ISCTE, 1600-082 Lisboa, Portugal, www.adetti.iscte.pt

Abstract
This paper describes a novel programming language approach to the problem of automatically verifying the de-

sign in an architectural and civil engineering project, fully described in 3D. The language is referred to as IDL,

Interference Detection Language, and is used to write geometric-based design verification tests, which are then

interpreted and applied to an architectural 3D virtual scene, resulting in geometric interferences if the geomet-

ric objects of the scene fail to verify those tests. IDL operators are algorithmically based on simple Geometric

Boolean Set and Constructive Solid Geometry operations, which are applied on a Binary Spatial Partitioning

organisation of the 3D scene being analysed. This paper also presents Visual IDL, an intuitive graphical editor,

which allows a common user to write design verification tests, according to the IDL syntax notation, and still be

relatively independent of the language constructs. With Visual IDL, the user is not required to learn the lan-

guage itself, but is still able to write typical tests quickly and efficiently. Visual IDL can be thought of as a

higher-level abstraction of the language, allowing the user to concentrate on exactly what is required, rather

than on how to execute it.

Keywords
Computing in AEC-Architecture Engineering and Construction, automatic design verification, geometric inter-

ference detection, visual scripting language.

1. INTRODUCTION1
Automatic Design Verification (ADV) technology is

becoming an important topic in 3D Virtual Prototyping

and Digital Mockup (DMU) applications. Some players

are operating in this area, with their solutions biased

towards the automotive and aerospace markets. This

type of technology uses a spatial organisation of the 3D

virtual scene based on voxels [Tecoplan]. After a voxel

conversion pre-processing stage, end-users can quickly

verify any test environments for collision conditions and

minimum distance checks between parts. Collisions can

also be checked on-line for assembly and disassembly of

parts. Static and dynamic swept volumes can be gener-

ated for packaging purposes. The technology can be

either integrated into existing high-end CAD packages,

such as CATIA, or offered as a standalone product, us-

ing the VRML data format and a multi-user virtual envi-

ronment [Blaxxun]. This approach has inspired the au-

thors in developing a new Automatic Design Verifica-

tion technique for the AEC-Architecture Engineering

and Construction sectors, (but that can well be applied

1 This work is sponsored by the European project IST 26287 M3D

“Multi-site cooperative 3D design system for architecture”.

in other industrial sectors), with the following character-

istics:

• Flexible and upgradeable, through the develop-

ment of the core of the technology: a simple yet

extensible design verification language, referred to

as IDL, the Interference Detection Language, the

focus of this paper.

• Data format independence by the adoption of the

VRML as its native format.

• Support of Object Classification following the

recommendations of an ISO standard [ISO 13567].

IDL operators are algorithmically based on basic Geo-

metric Boolean Set and Constructive Solid Geometry

operations, which are applied on a Binary Spatial Parti-

tioning (BSP) organisation of the 3D scene being ana-

lysed [Requicha80,Foley90]. BSPs provide a much

more efficient and general spatial partitioning scheme,

for the implementation of Geometric Boolean Set opera-

tors, than the voxel organisation scheme [Thibault87]

(such as the one used in [Tecoplan]). The IDL scripting

language supports different types of geometrical inter-

ference tests: minimum

distance checks, collisions, intersections between differ-

ent types of AEC objects and in fact, any user-defined

design verification rule that can be expressed by means

of a geometric Boolean expression. Our surveys, have

shown that architects, designers and engineers require

the availability of an Automatic Design Verification

tool, such as the one presented in this text, in their regu-

lar design process tasks [Dias99]. This ADV tool, in

turn, requires programming scripts to be written in a

specific technical-oriented language (IDL). This may be

a difficult task to the above-mentioned users. To over-

come this problem, we have developed Visual IDL, an

intuitive graphical editor that allows a common user to

write design verification tests, according to the IDL syn-

tax notation, whilst maintaining a relative independency

from the language constructs. IDL was conceived, tak-

ing in mind its extensibility potential: new objects pro-

duced by parts in motion of the assembled design can be

used in the future in the context of IDL tests. The IDL

language and ADV tool were developed in the frame-

work of a European Union funded project, referred to as

M3D (Multi-Site Cooperative 3D Design System for

Architecture [M3D]). This project has recently been

finalised by all of its developers and partners and ap-

proved by a European committee of expert reviewers.

The developed M3D system aids architects and engi-

neers, from several specialities, to work concurrently

over the Internet, in the design of a full architectural and

building construction project, allowing them to be geo-

graphically dispersed. M3D provides also the design

team, with a multi-user 3D shared virtual environment,

especially applicable to the AEC sectors [Luo00]. Each

member of such a team can access a joint M3D session

from different locations. M3D supports directly the De-

sign Management process, providing a service that en-

ables each specialist to insert 3D design work into a

common web database. M3D also allows the aggrega-

tion of the several specialised projects, into a final inte-

grated building construction project. In M3D, users are

able to navigate in cooperative mode through the 3D

virtual scene, pinpointing potential problems, exchang-

ing ideas, comments and suggestions. Users can also

communicate by attaching “post-its”, linking several

documents of different MIME types to 3D scene objects

or by using more traditional communication means, such

as text chat, audioconference and videoconference. Us-

ers are able to activate the ADV tool, whenever needed,

that will check for geometric interferences among the

different elements of the 3D scene, of different speciali-

ties (architectural, structural, water and sewage, etc) that

comprise the building construction project. This tool,

starts by analysing the whole geometric and topological

description of the scene and organises it spatially using

a BSP tree scheme. Afterwards, it interprets the IDL

script previously selected by the user, which defines the

design rules that must be enforced in the integrated pro-

ject, and executes it over the scene graph, possibly

computing the geometric interferences that violate those

rules. If geometric interferences are indeed found, ADV

adds them to the main 3D scene graph, for viewing pur-

poses.

The paper is structured as follows: the syntax of IDL is

synthetically explained in section 2. Visual IDL is then

introduced in section 3, as a means to accelerate the

development and execution of IDL scripts. This section

emphasises in the description of the Visual IDL wizard

service and in user interface issues. Section 4 briefly

presents some results of interference detection tests,

obtained by the execution of the ADV tool over a 3D

scene. Section 5, provides a synthesis of the presented

architecture and extracts some conclusions.

2. IDL SYNTAX
An IDL test is divided in two parts: the declarative part

and the tests specification part.

2.1 The declarative part
In the declarative part, we first define the object we

want to test (this is called the target object) and then

which objects (the sources) will be tested against it. The

objects are all named according to a specific ISO stan-

dard [ISO 13567]. The geometry is subdivided into a

hierarchy of layers and categories. A layer is a portion

of the architectural project that is done independently by

one specific specialisation of the design team. As exam-

ples, we may have an architectural layer, a structural

engineering layer or a water and sewage layer, among

others. Each layer is further subdivided into a series of

categories, that is, specific specialised project elements

(also known as object classes). An architect could define

categories like walls, stairs or window openings.

By definition, each object in M3D belongs to a specific

layer and, within that layer, to a specific category. This

classification of objects is necessary to properly specify

the design verification tests. Along with the layer and

category definition, an object is also defined by its col-

our code (in RGB format), which aids in the data ex-

change process with third party AEC CAD applications.

IDL layer Element Class Name IDL category R Colour G Colour B Colour

AR: Architect Interior wall WALL-I 134 134 134

AR: Architect Exterior wall WALL-E 187 187 187

SR: Structural Engineer Concrete Column C-COL- 0 255 255

SR: Structural Engineer Concrete Beam C-BEAM 0 0 255

AC: Air-conditioning Engineer Air ducts DUCTS- 255 255 0

Table 1: Example of ISO Codes

In Table 1, we show a sample of common ISO 13567

codes (or ISO codes for short) used in M3D. As we can

observe in this table, for each layer there are several

categories. Taking, as an example, an architectural inte-

rior wall: it belongs to the layer of architecture (AR) and

category WALL-I, so its full ISO name is ARWALL-I.

After declaring the target and the source objects classes

in an ordered list, with the target category first, followed

by the source categories, all separated by commas and

using their corresponding ISO codes, a short string fol-

lows it, describing the test itself. This text is merely an

aid for the user, since the ADV program will not act on

it, as we can see in Table 2.

2.2 The tests specification part
In the tests specification part, it is possible to define

rules involving different categories of objects, by means

of expressions, written using the IDL syntax. IDL ex-

pressions, can be grouped in two types: geometric ex-

pressions, which always produce, as a result, a geomet-

ric object (that can possibly be a null object) and logi-

cal expressions, which evaluate to true or false.

Different operators are available in IDL to write expres-

sions. There are Geometric Boolean operators (union,

intersection and difference), Unary operators

(scale, grow and shrink), Relational operators

(“==” and “!=”) and Compound operators (subtract

and compose). There is also an operator performing

attribution. Geometric Boolean algebra is the underlying

mathematical theory behind our approach to interfer-

ence detection. It describes the basic set theory of

mathematics but, in our case, applied to three-

dimensional geometric objects. According to this alge-

bra, several objects can be combined, with the help of

Geometric Boolean operators, to produce new objects.

With Geometric Boolean algebra it is possible to write

an IDL expression like C = A op B, where A and B are

two original objects, op is a Boolean operator and C is

the object that results from applying op to A and B. The

basic Boolean operators are demonstrated in Figure 1.

!A = A & B =

A | B = A – B =

Figure 1. The basic Boolean operators.

The IDL language allows the results of geometric Boo-

lean operations to be stored in new objects and these

objects to be used in subsequent computations. In this

way, it is equivalent to write:

func(object1 & object2), or

new_object = object1 & object2

func(new_object)

for some IDL operator func. In the remainder of this

section, all the arguments to IDL operators that expect

geometries use named objects but they can be replaced

by any other valid IDL geometric expression, since it

always evaluates to an object.

In design verification tasks, it is sometimes necessary to

change the volume of an object by enlarging or shrink-

ing it to some amount. This requirement has lead us to

the definition of Volume Changing operators, which are

unary operators since they take only one argument. As

an example, let us suppose that a design rule for a build-

ing, expresses the requirement that a person measuring

2.0 meters tall, could climb the stairs without bumping

his head on any other AEC element, such as a roof slab.

One way to address this requirement is to take the stairs

object and enlarge it by 2.0 meters along the vertical

direction. This would define a safe volume for the stairs.

If we then compute efficiently, a geometric intersection

between this safe volume and all other objects in the

scene, we will be able to detect if the building obeys this

design rule. If an intersection is found, it means that

some object of the building is inside the safe volume

and the stairs don’t have the necessary space for a 2.0

meters tall person to climb. Volume-changing operators

are thus useful to define tolerance volumes around ob-

jects and check for minimum distance interferences.

There are, at present, three volume-changing operators

defined in the IDL language. These are, as mentioned,

the scale, grow and shrink operators. They all take

one object and produce a new object. The scale op-

erator is the simplest one. It takes the form:

scale(object,percent), or:

scale(object,(percentx, percenty, percentz))

The first form scales the object by a global percentage.

Scaling by 200% will make the object twice as big, and

scaling by 50% will scale it down to half its original

size. The second form of the scale operator is similar

but applies different scaling factors along the X, Y, and

Z directions. Figure 2 gives two examples of the scaling

operator.

Figure 2. The scale operator.

B

A

A

scale(A,2) scale(A,0.5)

A

A

scale(A,(2,1,1))

Next, we have the grow and shrink operators. They

enlarge or shrink, an object by some absolute amount

along a chosen direction vector. The object is expanded,

or reduced, only along the direction of the vector. They

take the form:

grow(object,(vx, vy, vz))

shrink(object,(vx, vy, vz))

where (vx,vy,vz) is the vector along which the object

is enlarged or shrunk. The magnitude of this vector

gives the amount of displacement of the object. Figure 3

gives examples of these two operators. In both cases, the

object is displaced along the vertical direction by a dis-

tance of 1.0 meter. Note that, while the scale operator

changes the volume of an object by a relative percentage

value, the amount of displacement of the grow and

shrink operators is absolute and expressed in meters.

These two operators still take another form, which can

only be applied to parallelepiped objects. Parallelepi-

peds are fairly common objects in building projects.

Most structural pillars and beams take their shape. Par-

allelepipeds have a simple geometric structure and it is

possible to compute their three axes of symmetry. The

grow and shrink operators, when applied to paral-

lelepiped objects, can take the special form:

grow(object, dist)

shrink(object, dist)

where it is understood that object must return a paral-

lelepiped. The object is enlarged, or shrunk, along its

main axis of symmetry by the absolute amount dist, in

meters. Figure 3 gives an example for the case of the

grow operator. The shrink operator works the same

way, with the difference that the volume of the paral-

lelepiped is reduced, rather than expanded. Note that

growing or shrinking a parallelepiped by an absolute

displacement vector is still a valid operation. So, this

special kind of objects can use either type of the vol-

ume-changing operators. The displacement amount dist

can take positive or negative values. If dist is positive,

the facet of the parallelepiped in the direction of the

main axis of symmetry is selected for enlargement or

shrinkage. If dist is negative, the facet, opposite to the

main axis, is selected. Unfortunately, this special form

of growing and shrinking operators cannot be used for

general objects because these do not always have well

defined axes of symmetry.

The Relational operators, used in IDL logical expres-

sions, are the equality and its counterpart, the inequality

operator. They are both used to compare two objects.

The result of these operators is not another geometric

object, but a Boolean value (true or false), depending on

the result of the comparison. The equality operator takes

the form:

object1 == object2

and the inequality operator has the form:

object1 != object2

Often one wishes to compare an object against the

empty set. In that case, the special keyword null is

used to represent the empty set, and the comparison

becomes:

object == null

and equivalently for the inequality operator. These two

operators are almost always used in the return state-

ment of an IDL test, which will be explained later.

Lastly, the Geometric compound operators operate on

whole categories of M3D objects. They are called com-

pound operators because they execute, repeatedly, a

sequence of basic Boolean operators over all the objects

belonging to some given category. At present there are

two compound operators defined in the IDL language:

the compose operator and the subtract operator.

The compose operator can take two forms:

compose(object, category)

or:

compose(object,(category, category,…,category))

This operator computes the intersection of an object of a

target category against all the objects belonging to the

specified source categories. The first form of the opera-

tor above computes the intersection against a single

source category, while the second form specifies a list of

source categories, enclosed in parenthesis and separated

by commas.

To be more specific, if object is some geometric ob-

ject of a target category and category is a list of

objects {v1, v2,…, vn} belonging to some specific

source category, the result of the compose operator is:

compose(object, category)

=(object & v1)|(object & v2)|…|(object & vn)

It is the union of all intersections between the first ob-

ject and all the objects from the source category. This is

a useful operator when we wish to check if an object

intersects a whole category of objects (interior walls or

floor slabs, for instance). It would be tiresome to write

explicitly the whole Boolean expression on the right

side of the above equality. The compose operator con-

veniently encapsulates such a complicated expression in

a simple form.

The subtract operator is written is a similar manner:

subtract(object, category)

or:

grow(A,1)

A A

grow(A,-1)

Figure 3. The grow operator for a parallelepiped object. The

two dash arrows show two axes of symmetry for the object.

The longest arrow is the main axis of symmetry.

DEF

v!ACDUCTS-,SRC-BEAM!
Air_ducts_intersects_concrete_beams

Info

{

string "

result = compose($$,$1);

return scale(result, 1.1) if result!=null;

"

}

Table 2: Example test

subtract(object,(category, category,…,categ))

This operator takes an object and removes all the por-

tions of its volume that are intersected by objects from

the specified categories. Again, this operator can be

expanded according to the expression:

subtract(object, category) =

object – v1 – v1 - … - vn

where, as before, {v1, v2,…, vn} is the list of objects

belonging to a source category. The subtract

operator is useful to remove portions of an object that

are common to another category, or categories, of ob-

jects.

And finally, at the end of every IDL test there must be a

return statement. This return statement deter-

mines if the test failed (a geometric interference was

found) or not (the target object does not violate the

specified design rule). It contains a Boolean expression

featuring one of the two equality operators. The result of

this Boolean equality, or inequality, is the final result of

the test. The return statement takes the form:

return error_object if test_object == null;

or:

return error_object if test_object != null;

The error_object in the above return statements

represents the geometric shape of the inconsistency. It is

sent to the M3D editor and attached to the scene graph

to be visualized, if the Boolean expressions evaluate to

false for the test object. If we consider again the case

of checking if concrete columns are inside of walls, the

geometry of the inconsistency will be the portion of a

column that is outside of all the walls. This volume of

the pillar is flagged in the editor with a blinking colour

or a dashed shape for easy visualization. The

test_object in the return statement is what de-

termines the outcome of the test. It should either be

equal or different from the empty set, depending on the

version of the return statement that is used. As an

example, in Table 2, we have a typical test performed

on the LuisaZ2 project.

After analysing the IDL script, we can see that it de-

scribes a test to verify if air-conditioning ducts (target

category) intersect with structural beams (source cate-

gory). The test simply checks for an interference be-

tween these two object categories (using the compose

operator) and scales the result by a factor of 110%, so

that the interference will be enlarged in order to see it

more easily in the M3D Editor. Note that the target ob-

ject category (ACDUCTS-) is referenced in the test

specification part by the $$ symbol (which evaluates to

all the objects of its category), and all the source ob-

jects, of given categories, are identified, respectively, by

$1, $2, $3, etc.

2 Luisa Zambuginho or LuisaZ is a small house project devel-

oped by Architect Jorge Silva from Oficina de Arquitectura,

Lisbon and used as one of the benchmarks for M3D

As we have seen, the IDL language, although powerful

and flexible in the description of geometric-based de-

sign rules, can be complex for non-technical users. It

requires some “a priori” knowledge and understanding

of the language constructs, and of geometric Boolean

operations, to create the desired design verification

tests. We obviously recognized that this was too much

of a burden to the users that just wanted to check for

interferences between specific objects of their 3D

scenes. Users should not be required to learn the lan-

guage syntax in detail to be able to perform automatic

design verification in building construction projects.

The Visual IDL tool was created, to support this user

requirement.

2.3 Development of the IDL language
The IDL language was implemented as a Yacc-based

grammar file. This file was translated into a code parser

by the Yacc tool and this parser was then integrated into

the rest of the application.

The IDL scripts are translated internally by the applica-

tion into a tree of operators. Each IDL operator has one

geometric output and one or more inputs. We build the

tree by instancing such operators and connecting the

outputs of some to the inputs of others. Invoking the

operator at the top of the tree will cause the subsequent

invocation of all the other operators beneath it. The op-

erators at the bottom of the tree receive the original ob-

jects that comprise the geometry of the building con-

struction project. These objects are processed through

the chain of operators and the operator at the top will

return the final geometry of the IDL test implemented

by the tree.

Using this implementation strategy, it is very straight-

forward to extend the IDL language with new operators.

This was a need that had been envisaged from the early

stages of design of the language. One could not foresee

all the types of geometric tests that architects and engi-

neers would wish to use on their construction projects.

Whenever some functionality is desired that is not al-

ready supported by the language, one or more appropri-

ate operators can be designed, its syntax coded into the

Yacc grammar file and a corresponding instance added

to the tree of operators.

3. THE NEED FOR EFFICIENCY IN DESIGN

VERIFICATION
Visual IDL was developed to allow the users to create

their design verification rules (or tests) rapidly, effi-

ciently and (as this is always desirable) without too

much effort. In fact, most of the time a user just needs to

make a typical test (like the ones using the compose

operator) and doesn’t require anything too elaborate. So,

Visual IDL is a simple and intuitive, yet powerful editor

allowing a user to write simple as well as complex de-

sign verification rules. With this tool it’s possible to

create new test files, save them to disk, open existing

files, add, modify and remove tests, etc. Its user inter-

face is shown below:

Figure 4: The Visual IDL program

3.1 A Closer Look to Visual IDL
The main Visual IDL window shows the currently active

test, which is selected in the tree bar, at the left. Only

one test is displayed at a time, as this is easier to under-

stand and to work with. The tree bar displays all the

tests and is organized as follows: the main nodes of the

tree show the target object category of the test. By open-

ing the node, the source object categories are displayed.

By clicking on one of these child nodes, the correspond-

ing test is displayed in the main window, replacing the

previous one. Therefore, the tests are organized in the

tree bar in a hierarchal mode, giving the user an overall

look and an ordered view of the test file. As mentioned,

in order to write a test, the user must know the object

category to be tested (the target), the objects categories

which will be tested against it (the sources) as well as

what kind of test he would like. It can be a simple com-
pose, a scale, grow or even shrink type of test or

a programmed mixture of the above, written in IDL

script. To aid this task we have developed a Visual IDL

wizard.

3.2 The core service: the Wizard
The Visual IDL wizard directly helps the user to write

the test. It will take him in a series of steps, posing sev-

eral questions about what kind of test the user wants and

then creates it, with little effort from the user. To work

with the wizard, Visual IDL needs to be launched from

the M3D Editor application, which must have a 3D ar-

chitectural scene already opened. This scene can either

be complex or relatively simple like the one of Figure 5.

Figure 5: The M3D Editor application with an open scene

This scene is made of several AEC objects, which are

all correctly “labelled” with their corresponding ISO

codes. For example, the yellow air ducts have an ISO

code of ACDUCTS-. A wall has an ARWALL- ISO

name attached. Internally, the M3D Editor, the ADV

and Visual IDL recognize each object by these eight

character names. Since the M3D Editor and Visual IDL

are separate applications, M3D must hand-over to Vis-

ual IDL all the ISO names that are currently in the

scene. Therefore, there’s a “two-way communication

channel” between the two applications for data transfer

and synchronization of tasks.

3.3 A Step By Step Tour
Once the user has the scene loaded, he may want to see,

as an example, if the air ducts intersects with any of the

interior wall objects. This is an easy and typical task for

Visual IDL. After it’s launched from M3D, and the wiz-

ard is activated, the user will be able to choose which

will be the target and the source object categories.

These are displayed in a list of checkboxes according to

their ISO names (see Figure 6).

Figure 6: Selecting objects in the Wizard

There are two possible ways of choosing the desired

objects. If their exact ISO codes are known, it is possi-

ble to choose them directly in the wizard checkboxes.

However, users may also select objects by picking op-

erations in the M3D Editor scene. This can be done for

the target as well as the source objects. In this case, the

Visual IDL window will reshape to a smaller size, put

itself to the side of the screen and give the input focus to

the M3D Editor (Figure 7).

DEF

v!SRC-BEAM,SRC-COL-
!Test1_Tests_if_left_tip_of_beams_are_supported_by_c
olumns

Info

{

string "

large = grow($$,(0.0,-0.1,0.0));

short = shrink(large,0.1);

tip = large - short;

error = $$ - shrink($$,0.1);

return error if compose(tip,$1) == null;

"

}

DEF

v!SRC-BEAM,SRC-COL-
!Test2_Tests_right_tip_of_beams_are_supported_by_col
umns

Info

{

string "

large = grow($$,(0.0,-0.1,0.0));

short = shrink(large,-0.1);

tip = large - short;

error = $$ - shrink($$,-0.1);

return error if compose(tip,$1) == null;

"

}

DEF

v!ACDUCTS-,SRC-BEAM
!Test3_Checks_if_air_ducts_intersect_beams
Info

{

string "

result = compose($$,$1);

return scale(result,1.1) if result != null;

"

}

DEF

v!ARSTRS--,ARROOF-O
!Test4_Tests_stairs_have_enough_space_above_them
Info

{

string "

large = grow($$,(0.0,1.0,0.0));

intersect = compose(large,$1);

return scale(intersect,1.1)

if intersect != null;

"

}

Table 3: Test file

In this example, the user has chosen air ducts (the yel-

low object) and one of the walls surrounding it. The

wizard activates the corresponding checkboxes:

ACDUCTS- and ARWALL-, which in fact means all

objects of those categories. To create more specific

tests, that deal only with limited set of objects, and not

the entire category, the user may select in the Editor’s

scene tree, which particular objects he doesn’t want to

consider for the test. After this stage, the user is

prompted for a short text that describes the test.

Figure 7: Picking objects interactively in M3D

Finally, the user chooses the type of high-level test to be

performed as shown in Figure 8.

Figure 8: Choosing the type of test (with a graphical ren-

dering aid)

On the left side, the user can choose the desired test. In

the middle of the dialog, several optional parameters

can be set according to the type of test chosen. And, in

the right side, there’s an OpenGL frame window graphi-

cally displaying in an interactive animation, the type of

test and its effect on the geometry. As several values of

the parameters are changed, the animation changes ac-

cordingly, enabling the user to have full knowledge of

what the test will perform, and how. Whenever a simple

intersection test is required, the compose type of test

must be selected, as explained in section 2.2. After this

stage, the wizard finishes and writes the IDL code, ac-

cording to the target and source object categories cho-

sen, the description entered and the type of test specified

(and its parameters). After this process, the user can

alter what the wizard has produced. The text in black

(test specification section) can manually be changed.

However, the text in red (declarations section) cannot be

changed so easily. This is to prevent inexperienced users

to accidentally change the header of the test. In order to

change it (the target and source objects as well as the

description text) the user can just double-click on the

red text and the wizard will pop up. This time, how-

ever, it will help him change this information according

to his needs. The steps are identical so we will not cover

them again. Users with a fairly good knowledge of the

IDL language can, consequently, use the wizard to write

the basis for a typical design verification test and then,

change the body of the test to more complex IDL state-

ments according to their needs. So, while writing typical

and more common tests for most of the users, the wizard

also provides advanced users with the ‘skeleton’, or

‘building block’, of a more powerful and possibly more

interesting test.

Figure 9: The interferences calculated by ADV

3.4 Performing Automatic Design Verification
After the definition of an IDL script file, the user may

invoke the ADV program directly from the M3D editor,

as an asynchronous process, which uses, as arguments,

this file and a pointer to the 3D scene graph. This way,

the editor does´nt block while waiting for the comple-

tion of the automatic design verification process. The

input data format of the 3D scene is VRML, so ADV

requires an initial stage where the proprietary data for-

mats corresponding to the different specialised projects

(produced by native CAD applications), must be con-

verted into the VRML format, using the guidelines for

layer naming convention described in the ISO 13567

standard. The input shape objects are described accord-

ing to a BREP format. However, ADV requires a BSP

spatial description. Therefore, a filter is executed that

converts the VRML format with a BREP organisation,

into the same format, but with a BSP tree organisation.

Note that, this pre-processing stage is skipped by our

algorithm, if the same IDL test is executed for the same

3D scene, a second time, and no shape is altered, since

we maintain a cache of the BSP tree of the scene. After

this stage, ADV parses the IDL file and executes the

geometric-based design verification tests, as stated in

the IDL script. It will eventually finish to calculate the

geometric interferences, organised as a hierarchy of

VRML nodes under a common VRML SoSeparator

node. These are the geometries that have originated

false results in the IDL logical expressions, thus cor-

responding to the shapes that fail the IDL design

verification tests. These interference results will then be

cation tests. These interference results will then be

added to the M3D Editor’s scene graph and visualised,

highlighted in white (see Figure 9), under a distributed

multi-user collaborative environment [Luo00]. As we

can see in this figure, ADV has detected where the air-

ducts intersect the walls (in the white areas).

4. RESULTS
Our object classification scheme, the Visual IDL wizard

and ADV technique were extensively used in different

stages of several building construction projects, between

March 1999 and March 2001. Different specialities pro-

jects were fully designed in 3D, using proprietary CAD

packages and later exported to M3D. An international

design team was lead by Architect Jorge Silva from Ofi-

cina de Arquitectura, OA in Lisbon. The involved spe-

cialities included architecture, water and sewage (OA,

Portugal), structural engineering (Betar, Portugal), elec-

tricity (IDOM, Spain) and air conditioning (ARQMAQ,

Spain). The users, connected by means of a private IP

(over ISDN) network, have performed in their offices at

their own locations, the design tasks that correspond to

different stages of the following projects:

• Luisa Zambujinho/LuisaZ, Almada - March 1999

• Aveiro Pavilion - July 1999

• School Pavilion Tiana, Spain - November 1999

• Mirante Library, Sintra - November 1999 (first

phase)

• House in Palma de Mallorca- March 2000

• Industrial Pavilion in Barcelona- September 2000

• Mirante Library, Sintra - November 2000 to March

2001 (second phase)

For the specific case of the Mirante Library, starting

from November 2000 up to March 2001, the user group

made intensive international connectivity tests and on-

line synchronous co-operative work sessions. The trials

occurred weekly mainly among three locations: Lisbon

(OA), Palma (Arqmaq) and Barcelona (Idom). Special

user trial scripts where developed to structure the on-

line sessions, which were used to test and fine tune the

performance of the M3D Editor, ADV algorithm and

Visual IDL tool and our AEC project integration tech-

nique, within a distributed collaborative work session,

served by a central database system. During these real-

life user trials, we have performed more than 20 design

verification tests with success (that is, we have found a

number of design-related issues, that were subsequently

solved).

ADV and Visual IDL, were judged by the users has the

“most innovative functionality of all the modules” of the

M3D system (comprising Multi-user Editor, Database,

Conference Management, ADV & Visual IDL)

[Fonseca01], enabling operations of intersection, sub-

traction, reunion, growing, safe volume computation,

etc, with AEC shapes. With these tools, users were able

to check if the 3D geometries of different specialities

fulfilled the rules established by the architects, designers

and engineers, or if, within the same speciality, the nor-

mative, geometric or common practice rules were veri-

fied. The possibility of discussing and checking in group

and in real time, the found interference detection results,

makes it, according to the users [Fonseca01], “an effec-

tive toll for validating the design integration of different

specialities within a building construction project”.

The following figures (Figures 10 to 13) depict the

ADV results, which where embedded in the M3D Editor

scene graph, that correspond the IDL test file of table 3

(section 3.4), used for the LuisaZ case. This was a small

project with 1760 triangles, including architecture and

structural engineering. In table 4 we present the CPU

times used by our ADV algorithm, which we have split

in the following phases:

• Phase 1: BREP to BSP conversion and creation of

BSP files in the cache.

• Phase 2: Reading the BSPs files from the cache and

parsing the IDL script file.

• Phase 3: Performing geometric interference tests.

In table 5, we present the CPU times, of executing the

same IDL test in the LuisaZ project, but for the second

time this test was executed, that is, when the BSP tree

cache was already pre-calculated. The results show an

average reduction of 70% in the total CPU time, used by

the ADV algorithm, relatively to the cases of Table 4

(with no BSP files yet available in the cache).

Figure 10: The interference results of test 1. The left tip of

these beams are not supported by the columns, but by the

walls.

Figure 11: The interference results of test 2. The right tip

of these beams are also not properly supported by the

columns.

Figure 12: The interference results of test 3. As shown, the

air ducts are intersecting the beams.

Figure 13: The interference results of test 4. According to

the test, the stairs don’t have enough space between them

and the roof.

CPU time in ms Phase 1 Phase 2 Phase 3 Total

1st Test 1471 171 425 2067

2nd Test 1463 160 418 2041

3rd Test 1451 198 473 2122

4th Test 1493 185 594 2272

Table 4 CPU time used by our ADV algorithm in the

LuisaZ project with an initially empty BSP tree cache

CPU time in ms Phase 1 Phase 2 Phase 3 Total

1st Test 17 154 412 583

2nd Test 17 168 418 603

3rd Test 17 162 431 610

4th Test 18 164 546 728

Table 5 CPU time utilised by our ADV algorithm in the

LuisaZ project with an initially complete BSP tree cache

5. CONCLUSIONS
The IDL language has proven to be powerful yet flexi-

ble enough to be extensively used by the M3D project

architectural and engineering users, such as Oficina de

Arquitectura and Betar in Lisbon, or Arqmaq and Idom

in Spain. With IDL, users can write tests that perform

complex, valuable design verification tasks on geomet-

ric data. Great care was taken to ensure that the lan-

guage remains consistent and yet powerful and efficient.

With IDL, the ADV application has a standardized

manner of knowing how to act on the geometry. The

ADV tool reads an input IDL script file, parses it, analy-

ses the tests according to the IDL syntax and calculates

the interferences, attaching these to the M3D Editor’s

scene graph. Visual IDL was introduced as a bridge

between the user and IDL. Geometric interference tests

can now be designed, developed and deployed more

easily and efficiently. Specifically, the wizard helps

common users to write their typical tests with a fairly

acceptable degree of complexity and also helps more

advanced users with a good knowledge of the language,

to write a simpler prototype version of a test first, allow-

ing subsequent developments of the test, perfecting it

and improving it until it’s finished. Lastly, the wizard

itself makes it more easier to choose the target and

source objects (by direct picking operations) and the

OpenGL frame window provides a clear, clean and sim-

ple vision of the types of tests, their operation and their

final effects on the objects.

Future activities are planned to address the analysis of

temporal-spatial conflicts (and not just spatial, as for the

presented results) in design verification and planning

tasks [Akinci2000]. These may occur during the time

planning of the building construction operations, which

involve design elements, construction systems, dedi-

cated machinery, necessary operations, safety regula-

tions, materials and workers. All these entities impose

specific and well known time, volumetric and spatial

constraints, as well as safety zones, in the construction

site time-space continuum. These must be studied con-

cerning its geometric interference, in order to improve

safety, for a better humanisation of the construction site

workplace, as well as to enhance the quality of the

building construction.

ACKNOWLEDGEMENTS
We would like to thank, in no special order, Rui

Silvestre, Rafael Bastos and Luís Monteiro for their

ideas, comments, suggestions and support, as well as

António Lopes and Paulo Lopes for their early work in

the project. A special word of gratitude goes to the Ofi-

cina de Arquitectura team, namely Arq. Jorge Silva and

Zé Manel, as well as for the Engº Miguel Vilar from

Betar, for their ideas and requirements that are in the

genesis of the M3D system and of ADV and Visual

IDL.

6. REFERENCES
[Akinci2000] Akinci, B., "4D workplanner - A proto-

type System for Automated Generation of Construction

Spaces and Analysis of Time-Space Conflicts",

ICCCBE-VIII, Stanford, pp 740-747, August 2000

[Blaxxun] (www.blaxxun.com)

[Dias 99] Dias, J. M. S., Gamito, M., Silva, J., Fonseca,

J., Luo, Y., Galli, R., “Interference Detection in Archi-

tectural Databases”, Short paper Eurographics 99, Mi-

lan, September 1999

[Foley90] Foley, van Dam, Feiner, Hughes, “Computer

Graphics – Principles and Practice – Second Edition”,

Addison-Wesley Systems Programming Series, 1990

[Fonseca01] Fonseca, Z, Silva, J., Torres, I., Vilar, M.,

Castañeda, D., Albiol, M., “Report on the M3D user

trial evaluation”, ESPRIT 26287, Deliv 3.2,

M3D/OA/WP5/T5.3/2001/DL, March 2001 1990

[ISO 13567] ISO standard 13567 “Technical product

documentation-Organisation and naming of layers for

CAD”

[Luo00] Luo, Y., Galli, R., Sanchez, D., Bennassar, A.,

Almeida, A. C., Dias, J. M. S., “A Co-operative Archi-

tecture Design System via Communication Network”,

ICCCBE-VIII, Stanford University, USA, August 2000

[M3D] www.m3d.org

[Requicha80] Requicha, A.A.G., “Representations for

Rigid Solids: Theory, Methods and Systems”, Comput-

ing Surveys, 12(4), pp. 437-464, December 1980

[Tecoplan] www.tecoplan.com

[Thibault 87] Thibault, W.C., Naylor,B.F., “Set opera-

tions on polyhedra using binary space partitioning

trees”, Computer Graphics (SIGGRAPH ’87 Proceed-

ings) (July 1987), M.C. Stone, Ed., vol 21, pp.153-162

