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Abstract 
This paper describes a novel programming language approach to the problem of automatically verifying the de-

sign in an architectural and civil engineering project, fully described in 3D. The language is referred to as IDL, 

Interference Detection Language, and is used to write geometric-based design verification tests, which are then 

interpreted and applied to an architectural 3D virtual scene, resulting in geometric interferences if the geomet-

ric objects of the scene fail to verify those tests. IDL operators are algorithmically based on simple Geometric 

Boolean Set and Constructive Solid Geometry operations, which are applied on a Binary Spatial Partitioning 

organisation of the 3D scene being analysed. This paper also presents Visual IDL, an intuitive graphical editor, 

which allows a common user to write design verification tests, according to the IDL syntax notation, and still be 

relatively independent of the language constructs. With Visual IDL, the user is not required to learn the lan-

guage itself, but is still able to write typical tests quickly and efficiently. Visual IDL can be thought of as a 

higher-level abstraction of the language, allowing the user to concentrate on exactly what is required, rather 

than on how to execute it.  

Keywords 
Computing in AEC-Architecture Engineering and Construction, automatic design verification, geometric inter-

ference detection, visual scripting language. 

 

1. INTRODUCTION1 
Automatic Design Verification (ADV) technology is 

becoming an important topic in 3D Virtual Prototyping 

and Digital Mockup (DMU) applications. Some players 

are operating in this area, with their solutions biased 

towards the automotive and aerospace markets. This 

type of technology uses a spatial organisation of the 3D 

virtual scene based on voxels [Tecoplan].  After a voxel 

conversion pre-processing stage, end-users can quickly 

verify any test environments for collision conditions and 

minimum distance checks between parts. Collisions can 

also be checked on-line for assembly and disassembly of 

parts. Static and dynamic swept volumes can be gener-

ated for packaging purposes. The technology can be 

either integrated into existing high-end CAD packages, 

such as CATIA, or offered as a standalone product, us-

ing the VRML data format and a multi-user virtual envi-

ronment [Blaxxun]. This approach has inspired the au-

thors in developing a new Automatic Design Verifica-

tion technique for the AEC-Architecture Engineering 

and Construction sectors, (but that can well be applied 

                                                           
1 This work is sponsored by the European project IST 26287 M3D 

“Multi-site cooperative 3D design system for architecture”. 

in other industrial sectors), with the following character-

istics:  

• Flexible and upgradeable, through the develop-

ment of the core of the technology: a simple yet 

extensible design verification language, referred to 

as IDL, the Interference Detection Language, the 

focus of this paper.  

• Data format independence by the adoption of the 

VRML as its native format. 

• Support of Object Classification following the 

recommendations of an ISO standard [ISO 13567]. 

IDL operators are algorithmically based on basic Geo-

metric Boolean Set and Constructive Solid Geometry 

operations, which are applied on a Binary Spatial Parti-

tioning (BSP) organisation of the 3D scene being ana-

lysed [Requicha80,Foley90]. BSPs provide a much 

more efficient and general spatial partitioning scheme, 

for the implementation of Geometric Boolean Set opera-

tors, than the voxel organisation scheme [Thibault87] 

(such as the one used in [Tecoplan]). The IDL scripting 

language supports different types of geometrical inter-

ference tests: minimum  



distance checks, collisions, intersections between differ-

ent types of AEC objects and in fact, any user-defined 

design verification rule that can be expressed by means 

of a geometric Boolean expression. Our surveys, have 

shown that architects, designers and engineers require 

the availability of an Automatic Design Verification 

tool, such as the one presented in this text, in their regu-

lar design process tasks [Dias99]. This ADV tool, in 

turn, requires programming scripts to be written in a 

specific technical-oriented language (IDL). This may be 

a difficult task to the above-mentioned users. To over-

come this problem, we have developed Visual IDL, an 

intuitive graphical editor that allows a common user to 

write design verification tests, according to the IDL syn-

tax notation, whilst maintaining a relative independency 

from the language constructs. IDL was conceived, tak-

ing in mind its extensibility potential: new objects pro-

duced by parts in motion of the assembled design can be 

used in the future in the context of IDL tests. The IDL 

language and ADV tool were developed in the frame-

work of a European Union funded project, referred to as 

M3D (Multi-Site Cooperative 3D Design System for 

Architecture [M3D]). This project has recently been 

finalised by all of its developers and partners and ap-

proved by a European committee of expert reviewers. 

The developed M3D system aids architects and engi-

neers, from several specialities, to work concurrently 

over the Internet, in the design of a full architectural and 

building construction project, allowing them to be geo-

graphically dispersed. M3D provides also the design 

team, with a multi-user 3D shared virtual environment, 

especially applicable to the AEC sectors [Luo00].  Each 

member of such a team can access a joint M3D session 

from different locations. M3D supports directly the De-

sign Management process, providing a service that en-

ables each specialist to insert 3D design work into a 

common web database. M3D also allows the aggrega-

tion of the several specialised projects, into a final inte-

grated building construction project. In M3D, users are 

able to navigate in cooperative mode through the 3D 

virtual scene, pinpointing potential problems, exchang-

ing ideas, comments and suggestions. Users can also 

communicate by attaching “post-its”, linking several 

documents of different MIME types to 3D scene objects 

or by using more traditional communication means, such 

as text chat, audioconference and videoconference. Us-

ers are able to activate the ADV tool, whenever needed, 

that will check for geometric interferences among the 

different elements of the 3D scene, of different speciali-

ties (architectural, structural, water and sewage, etc) that 

comprise the building construction project. This tool, 

starts by analysing the whole geometric and topological 

description of the scene and organises it spatially using 

a BSP tree scheme. Afterwards, it interprets the IDL 

script previously selected by the user, which defines the 

design rules that must be enforced in the integrated pro-

ject, and executes it over the scene graph, possibly 

computing the geometric interferences that violate those 

rules. If geometric interferences are indeed found, ADV 

adds them to the main 3D scene graph, for viewing pur-

poses. 

The paper is structured as follows: the syntax of IDL is 

synthetically explained in section 2. Visual IDL is then 

introduced in section 3, as a means to accelerate the 

development and execution of IDL scripts. This section 

emphasises in the description of the Visual IDL wizard 

service and in user interface issues. Section 4 briefly 

presents some results of interference detection tests, 

obtained by the execution of the ADV tool over a 3D 

scene. Section 5, provides a synthesis of the presented 

architecture and extracts some conclusions.   

2. IDL SYNTAX 
An IDL test is divided in two parts: the declarative part 

and the tests specification part.  

2.1 The declarative part 
In the declarative part, we first define the object we 

want to test (this is called the target object) and then 

which objects (the sources) will be tested against it. The 

objects are all named according to a specific ISO stan-

dard [ISO 13567]. The geometry is subdivided into a 

hierarchy of layers and categories. A layer is a portion 

of the architectural project that is done independently by 

one specific specialisation of the design team. As exam-

ples, we may have an architectural layer, a structural 

engineering layer or a water and sewage layer, among 

others. Each layer is further subdivided into a series of 

categories, that is, specific specialised project elements 

(also known as object classes). An architect could define 

categories like walls, stairs or window openings. 

By definition, each object in M3D belongs to a specific 

layer and, within that layer, to a specific category. This 

classification of objects is necessary to properly specify 

the design verification tests. Along with the layer and 

category definition, an object is also defined by its col-

our code (in RGB format), which aids in the data ex-

change process with third party AEC CAD applications. 

IDL layer Element Class Name  IDL category R Colour  G Colour  B Colour  

AR: Architect Interior wall WALL-I 134 134 134 

AR: Architect Exterior wall WALL-E 187 187 187 

SR: Structural Engineer Concrete Column C-COL- 0 255 255 

SR: Structural Engineer Concrete Beam C-BEAM 0 0 255 

AC: Air-conditioning Engineer Air ducts DUCTS- 255 255 0 

Table 1:  Example of ISO Codes



In Table 1, we show a sample of common ISO 13567 

codes (or ISO codes for short) used in M3D. As we can 

observe in this table, for each layer there are several 

categories. Taking, as an example, an architectural inte-

rior wall: it belongs to the layer of architecture (AR) and 

category WALL-I, so its full ISO name is ARWALL-I. 

After declaring the target and the source objects classes 

in an ordered list, with the target category first, followed 

by the source categories, all separated by commas and 

using their corresponding ISO codes, a short string fol-

lows it, describing the test itself. This text is merely an 

aid for the user, since the ADV program will not act on 

it, as we can see in Table 2. 

2.2 The tests specification part 
In the tests specification part, it is possible to define 

rules involving different categories of objects, by means 

of expressions, written using the IDL syntax. IDL ex-

pressions, can be grouped in two types: geometric ex-

pressions, which always produce, as a result, a geomet-

ric object (that can possibly be a null object) and logi-

cal expressions, which evaluate to true or false. 

Different operators are available in IDL to write expres-

sions. There are Geometric Boolean operators (union, 

intersection and difference), Unary operators 

(scale, grow and shrink), Relational operators 

(“==” and “!=”) and Compound operators (subtract 

and compose).  There is also an operator performing 

attribution. Geometric Boolean algebra is the underlying 

mathematical theory behind our approach to interfer-

ence detection. It describes the basic set theory of 

mathematics but, in our case, applied to three-

dimensional geometric objects. According to this alge-

bra, several objects can be combined, with the help of 

Geometric Boolean operators, to produce new objects. 

With Geometric Boolean algebra it is possible to write 

an IDL expression like C = A op B, where A and B are 

two original objects, op is a Boolean operator and C is 

the object that results from applying op to A and B. The 

basic Boolean operators are demonstrated in Figure 1. 
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A | B =          A – B = 

Figure 1. The basic Boolean operators. 

The IDL language allows the results of geometric Boo-

lean operations to be stored in new objects and these 

objects to be used in subsequent computations. In this 

way, it is equivalent to write: 

func(object1 & object2), or

new_object = object1 & object2

func(new_object)

for some IDL operator func. In the remainder of this 

section, all the arguments to IDL operators that expect 

geometries use named objects but they can be replaced 

by any other valid IDL geometric expression, since it 

always evaluates to an object. 

In design verification tasks, it is sometimes necessary to 

change the volume of an object by enlarging or shrink-

ing it to some amount. This requirement has lead us to 

the definition of Volume Changing operators, which are 

unary operators since they take only one argument. As 

an example, let us suppose that a design rule for a build-

ing, expresses the requirement that a person measuring 

2.0 meters tall, could climb the stairs without bumping 

his head on any other AEC element, such as a roof slab. 

One way to address this requirement is to take the stairs 

object and enlarge it by 2.0 meters along the vertical 

direction. This would define a safe volume for the stairs. 

If we then compute efficiently, a geometric intersection 

between this safe volume and all other objects in the 

scene, we will be able to detect if the building obeys this 

design rule. If an intersection is found, it means that 

some object of the building is inside the safe volume 

and the stairs don’t have the necessary space for a 2.0 

meters tall person to climb. Volume-changing operators 

are thus useful to define tolerance volumes around ob-

jects and check for minimum distance interferences. 

There are, at present, three volume-changing operators 

defined in the IDL language. These are, as mentioned, 

the scale, grow and shrink operators. They all take 

one object and produce a new object. The scale op-

erator is the simplest one. It takes the form: 

scale(object,percent), or: 

scale(object,(percentx, percenty, percentz))

The first form scales the object by a global percentage. 

Scaling by 200% will make the object twice as big, and 

scaling by 50% will scale it down to half its original 

size. The second form of the scale operator is similar 

but applies different scaling factors along the X, Y, and 

Z directions. Figure 2 gives two examples of the scaling 

operator. 

 

 

 

 

 

 

 

Figure 2. The scale operator. 
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Next, we have the grow and shrink operators. They 

enlarge or shrink, an object by some absolute amount 

along a chosen direction vector. The object is expanded, 

or reduced, only along the direction of the vector. They 

take the form: 

grow(object,(vx, vy, vz))

shrink(object,(vx, vy, vz))

where (vx,vy,vz) is the vector along which the object 

is enlarged or shrunk. The magnitude of this vector 

gives the amount of displacement of the object. Figure 3 

gives examples of these two operators. In both cases, the 

object is displaced along the vertical direction by a dis-

tance of 1.0 meter. Note that, while the scale operator 

changes the volume of an object by a relative percentage 

value, the amount of displacement of the grow and 

shrink operators is absolute and expressed in meters. 

 

 

 

 

These two operators still take another form, which can 

only be applied to parallelepiped objects. Parallelepi-

peds are fairly common objects in building projects. 

Most structural pillars and beams take their shape. Par-

allelepipeds have a simple geometric structure and it is 

possible to compute their three axes of symmetry. The 

grow and shrink operators, when applied to paral-

lelepiped objects, can take the special form: 

grow(object, dist)

shrink(object, dist)

where it is understood that object must return a paral-

lelepiped. The object is enlarged, or shrunk, along its 

main axis of symmetry by the absolute amount dist, in 

meters. Figure 3 gives an example for the case of the 

grow operator. The shrink operator works the same 

way, with the difference that the volume of the paral-

lelepiped is reduced, rather than expanded. Note that 

growing or shrinking a parallelepiped by an absolute 

displacement vector is still a valid operation. So, this 

special kind of objects can use either type of the vol-

ume-changing operators. The displacement amount dist 

can take positive or negative values. If dist is positive, 

the facet of the parallelepiped in the direction of the 

main axis of symmetry is selected for enlargement or 

shrinkage. If dist is negative, the facet, opposite to the 

main axis, is selected. Unfortunately, this special form 

of growing and shrinking operators cannot be used for 

general objects because these do not always have well 

defined axes of symmetry. 

The Relational operators, used in IDL logical expres-

sions, are the equality and its counterpart, the inequality 

operator. They are both used to compare two objects. 

The result of these operators is not another geometric 

object, but a Boolean value (true or false), depending on 

the result of the comparison. The equality operator takes 

the form: 

object1 == object2

and the inequality operator has the form: 

object1 != object2

Often one wishes to compare an object against the 

empty set. In that case, the special keyword null is 

used to represent the empty set, and the comparison 

becomes: 

object == null

and equivalently for the inequality operator. These two 

operators are almost always used in the return state-

ment of an IDL test, which will be explained later.  

Lastly, the Geometric compound operators operate on 

whole categories of M3D objects. They are called com-

pound operators because they execute, repeatedly, a 

sequence of basic Boolean operators over all the objects 

belonging to some given category. At present there are 

two compound operators defined in the IDL language: 

the compose operator and the subtract operator. 

The compose operator can take two forms: 

compose(object, category)

or: 

compose(object,(category, category,…,category))

This operator computes the intersection of an object of a 

target category against all the objects belonging to the 

specified source categories. The first form of the opera-

tor above computes the intersection against a single 

source category, while the second form specifies a list of 

source categories, enclosed in parenthesis and separated 

by commas.  

To be more specific, if object is some geometric ob-

ject of a target category and category is a list of 

objects {v1, v2,…, vn} belonging to some specific 

source category, the result of the compose operator is: 

compose(object, category)

=(object & v1)|(object & v2)|…|(object & vn) 

It is the union of all intersections between the first ob-

ject and all the objects from the source category. This is 

a useful operator when we wish to check if an object 

intersects a whole category of objects (interior walls or 

floor slabs, for instance). It would be tiresome to write 

explicitly the whole Boolean expression on the right 

side of the above equality. The compose operator con-

veniently encapsulates such a complicated expression in 

a simple form. 

The subtract operator is written is a similar manner: 

subtract(object, category)

or: 

grow(A,1)

A A 

grow(A,-1)

Figure 3. The grow operator for a parallelepiped object. The 

two dash arrows show two axes of symmetry for the object. 

The longest arrow is the main axis of symmetry. 



DEF

v!ACDUCTS-,SRC-BEAM!
Air_ducts_intersects_concrete_beams

Info

{

string "

result = compose($$,$1);

return scale(result, 1.1) if result!=null;

"

}

Table 2: Example test 

subtract(object,(category, category,…,categ))

This operator takes an object and removes all the por-

tions of its volume that are intersected by objects from 

the specified categories. Again, this operator can be 

expanded according to the expression: 

subtract(object, category) =

object – v1 – v1 - … - vn

where, as before, {v1, v2,…, vn} is the list of objects 

belonging to a source category. The subtract 

operator is useful to remove portions of an object that 

are common to another category, or categories, of ob-

jects. 

And finally, at the end of every IDL test there must be a 

return statement. This return statement deter-

mines if the test failed (a geometric interference was 

found) or not (the target object does not violate the 

specified design rule). It contains a Boolean expression 

featuring one of the two equality operators. The result of 

this Boolean equality, or inequality, is the final result of 

the test. The return statement takes the form: 

return error_object if test_object == null;

or: 

return error_object if test_object != null; 

The error_object in the above return statements 

represents the geometric shape of the inconsistency. It is 

sent to the M3D editor and attached to the scene graph 

to be visualized, if the Boolean expressions evaluate to 

false for the test object. If we consider again the case 

of checking if concrete columns are inside of walls, the 

geometry of the inconsistency will be the portion of a 

column that is outside of all the walls. This volume of 

the pillar is flagged in the editor with a blinking colour 

or a dashed shape for easy visualization. The 

test_object in the return statement is what de-

termines the outcome of the test. It should either be 

equal or different from the empty set, depending on the 

version of the return statement that is used. As an 

example, in  Table 2, we have a typical test performed 

on the LuisaZ2 project.  

After analysing the IDL script, we can see that it de-

scribes a test to verify if air-conditioning ducts (target 

category) intersect with structural beams (source cate-

gory). The test simply checks for an interference be-

tween these two object categories (using the compose 

operator) and scales the result by a factor of 110%, so 

that the interference will be enlarged in order to see it 

more easily in the M3D Editor. Note that the target ob-

ject category (ACDUCTS-) is referenced in the test 

specification part by the $$ symbol (which evaluates to 

all the objects of its category), and all the source ob-

jects, of given categories, are identified, respectively, by 

$1, $2, $3, etc. 

                                                           
2 Luisa Zambuginho or LuisaZ is a small house project devel-

oped by Architect Jorge Silva from Oficina de Arquitectura, 

Lisbon and used as one of the benchmarks for M3D 

As we have seen, the IDL language, although powerful 

and flexible in the description of geometric-based de-

sign rules, can be complex for non-technical users. It 

requires some “a priori” knowledge and understanding 

of the language constructs, and of geometric Boolean 

operations, to create the desired design verification 

tests. We obviously recognized that this was too much 

of a burden to the users that just wanted to check for 

interferences between specific objects of their 3D 

scenes. Users should not be required to learn the lan-

guage syntax in detail to be able to perform automatic 

design verification in building construction projects. 

The Visual IDL tool was created, to support this user 

requirement. 

2.3 Development of the IDL language 
The IDL language was implemented as a Yacc-based 

grammar file. This file was translated into a code parser 

by the Yacc tool and this parser was then integrated into 

the rest of the application. 

The IDL scripts are translated internally by the applica-

tion into a tree of operators. Each IDL operator has one 

geometric output and one or more inputs. We build the 

tree by instancing such operators and connecting the 

outputs of some to the inputs of others. Invoking the 

operator at the top of the tree will cause the subsequent 

invocation of all the other operators beneath it. The op-

erators at the bottom of the tree receive the original ob-

jects that comprise the geometry of the building con-

struction project. These objects are processed through 

the chain of operators and the operator at the top will 

return the final geometry of the IDL test implemented 

by the tree. 

Using this implementation strategy, it is very straight-

forward to extend the IDL language with new operators. 

This was a need that had been envisaged from the early 

stages of design of the language. One could not foresee 

all the types of geometric tests that architects and engi-

neers would wish to use on their construction projects. 

Whenever some functionality is desired that is not al-

ready supported by the language, one or more appropri-

ate operators can be designed, its syntax coded into the 

Yacc grammar file and a corresponding instance added 

to the tree of operators. 



3. THE NEED FOR EFFICIENCY IN DESIGN 

VERIFICATION 
Visual IDL was developed to allow the users to create 

their design verification rules (or tests) rapidly, effi-

ciently and (as this is always desirable) without too 

much effort. In fact, most of the time a user just needs to 

make a typical test (like the ones using the compose 

operator) and doesn’t require anything too elaborate. So, 

Visual IDL is a simple and intuitive, yet powerful editor 

allowing a user to write simple as well as complex de-

sign verification rules. With this tool it’s possible to 

create new test files, save them to disk, open existing 

files, add, modify and remove tests, etc. Its user inter-

face is shown below: 

 

Figure  4: The Visual IDL program 

3.1 A Closer Look to Visual IDL 
The main Visual IDL window shows the currently active 

test, which is selected in the tree bar, at the left.  Only 

one test is displayed at a time, as this is easier to under-

stand and to work with. The tree bar displays all the 

tests and is organized as follows: the main nodes of the 

tree show the target object category of the test. By open-

ing the node, the source object categories are displayed. 

By clicking on one of these child nodes, the correspond-

ing test is displayed in the main window, replacing the 

previous one. Therefore, the tests are organized in the 

tree bar in a hierarchal mode, giving the user an overall 

look and an ordered view of the test file. As mentioned, 

in order to write a test, the user must know the object 

category to be tested (the target), the objects categories 

which will be tested against it (the sources) as well as 

what kind of test he would like. It can be a simple com-
pose, a scale, grow or even shrink type of test or 

a programmed mixture of the above, written in IDL 

script. To aid this task we have developed a Visual IDL 

wizard. 

3.2 The core service: the Wizard 
The Visual IDL wizard directly helps the user to write 

the test. It will take him in a series of steps, posing sev-

eral questions about what kind of test the user wants and 

then creates it, with little effort from the user. To work 

with the wizard, Visual IDL needs to be launched from 

the M3D Editor application, which must have a 3D ar-

chitectural scene already opened. This scene can either 

be complex or relatively simple like the one of Figure 5. 

Figure 5: The M3D Editor application with an open scene 

This scene is made of several AEC objects, which are 

all correctly “labelled” with their corresponding ISO 

codes. For example, the yellow air ducts have an ISO 

code of ACDUCTS-. A wall has an ARWALL- ISO 

name attached. Internally, the M3D Editor, the ADV 

and Visual IDL recognize each object by these eight 

character names. Since the M3D Editor and Visual IDL 

are separate applications, M3D must hand-over to Vis-

ual IDL all the ISO names that are currently in the 

scene. Therefore, there’s a “two-way communication 

channel” between the two applications for data transfer 

and synchronization of tasks. 

3.3 A Step By Step Tour 
Once the user has the scene loaded, he may want to see, 

as an example, if the air ducts intersects with any of the 

interior wall objects. This is an easy and typical task for 

Visual IDL. After it’s launched from M3D, and the wiz-

ard is activated, the user will be able to choose which 

will be the target and the source object categories. 

These are displayed in a list of checkboxes according to 

their ISO names (see Figure 6).  

Figure 6: Selecting objects in the Wizard 

There are two possible ways of choosing the desired 

objects. If their exact ISO codes are known, it is possi-

ble to choose them directly in the wizard checkboxes. 

However, users may also select objects by picking op-

erations in the M3D Editor scene. This can be done for 

the target as well as the source objects. In this case, the 

Visual IDL window will reshape to a smaller size, put 

itself to the side of the screen and give the input focus to 

the M3D Editor (Figure 7). 



DEF

v!SRC-BEAM,SRC-COL-
!Test1_Tests_if_left_tip_of_beams_are_supported_by_c
olumns

Info

{

string "

large = grow($$,(0.0,-0.1,0.0));

short = shrink(large,0.1);

tip = large - short;

error = $$ - shrink($$,0.1);

return error if compose(tip,$1) == null;

"

}

DEF

v!SRC-BEAM,SRC-COL-
!Test2_Tests_right_tip_of_beams_are_supported_by_col
umns

Info

{

string "

large = grow($$,(0.0,-0.1,0.0));

short = shrink(large,-0.1);

tip = large - short;

error = $$ - shrink($$,-0.1);

return error if compose(tip,$1) == null;

"

}   

 

 

DEF

v!ACDUCTS-,SRC-BEAM
!Test3_Checks_if_air_ducts_intersect_beams
Info

{

string "

result = compose($$,$1);

return scale(result,1.1) if result != null;

"

}

DEF

v!ARSTRS--,ARROOF-O
!Test4_Tests_stairs_have_enough_space_above_them
Info

{

string "

large = grow($$,(0.0,1.0,0.0));

intersect = compose(large,$1);

return scale(intersect,1.1)

if intersect != null;

"

} 

Table 3: Test file 

 

 

In this example, the user has chosen air ducts (the yel-

low object) and one of the walls surrounding it. The 

wizard activates the corresponding checkboxes: 

ACDUCTS- and ARWALL-, which in fact means all 

objects of those categories. To create more specific 

tests, that deal only with limited set of objects, and not 

the entire category, the user may select in the Editor’s 

scene tree, which particular objects he doesn’t want to 

consider for the test.  After this stage, the user is 

prompted for a short text that describes the test. 

 

Figure 7: Picking objects interactively in M3D 

Finally, the user chooses the type of high-level test to be 

performed as shown in Figure 8. 

 

Figure 8: Choosing the type of test (with a graphical ren-

dering aid) 

On the left side, the user can choose the desired test. In 

the middle of the dialog, several optional parameters 

can be set according to the type of test chosen. And, in 

the right side, there’s an OpenGL frame window graphi-

cally displaying in an interactive animation, the type of 

test and its effect on the geometry. As several values of 

the parameters are changed, the animation changes ac-

cordingly, enabling the user to have full knowledge of 

what the test will perform, and how. Whenever a simple 

intersection test is required, the compose type of test 

must be selected, as explained in section 2.2. After this 

stage, the wizard finishes and writes the IDL code, ac-

cording to the target and source object categories cho-

sen, the description entered and the type of test specified 

(and its parameters). After this process, the user can 

alter what the wizard has produced. The text in black 

(test specification section) can manually be changed. 

However, the text in red (declarations section) cannot be 

changed so easily. This is to prevent inexperienced users 

to accidentally change the header of the test. In order to 

change it (the target and source objects as well as the 

description text) the user can just double-click on the 



red text and the wizard will pop up.  This time, how-

ever, it will help him change this information according 

to his needs. The steps are identical so we will not cover 

them again. Users with a fairly good knowledge of the 

IDL language can, consequently, use the wizard to write 

the basis for a typical design verification test and then, 

change the body of the test to more complex IDL state-

ments according to their needs. So, while writing typical 

and more common tests for most of the users, the wizard 

also provides advanced users with the ‘skeleton’, or 

‘building block’, of a more powerful and possibly more 

interesting test. 

Figure 9: The interferences calculated by ADV 

3.4 Performing Automatic Design Verification 
After the definition of an IDL script file, the user may 

invoke the ADV program directly from the M3D editor, 

as an asynchronous process, which uses, as arguments, 

this file and a pointer to the 3D scene graph. This way, 

the editor does´nt block while waiting for the comple-

tion of the automatic design verification process.  The 

input data format of the 3D scene is VRML, so ADV 

requires an initial stage where the proprietary data for-

mats corresponding to the different specialised projects 

(produced by native CAD applications), must be con-

verted into the VRML format, using the guidelines for 

layer naming convention described in the ISO 13567 

standard. The input shape objects are described accord-

ing to a BREP format. However, ADV requires a BSP 

spatial description. Therefore, a filter is executed that 

converts the VRML format with a BREP organisation, 

into the same format, but with a BSP tree organisation. 

Note that, this pre-processing stage is skipped by our 

algorithm, if the same IDL test is executed for the same 

3D scene, a second time, and no shape is altered, since 

we maintain a cache of the BSP tree of the scene. After 

this stage, ADV parses the IDL file and executes the 

geometric-based design verification tests, as stated in 

the IDL script. It will eventually finish to calculate the 

geometric interferences, organised as a hierarchy of 

VRML nodes under a common VRML SoSeparator 

node. These are the geometries that have originated 

false results in the IDL logical expressions, thus cor-

responding to the shapes that fail the IDL design 

verification tests. These interference results will then be 

cation tests. These interference results will then be 

added to the M3D Editor’s scene graph and visualised, 

highlighted in white (see Figure 9), under a distributed 

multi-user collaborative environment [Luo00]. As we 

can see in this figure, ADV has detected where the air-

ducts intersect the walls (in the white areas).  

4. RESULTS 
Our object classification scheme, the Visual IDL wizard 

and ADV technique were extensively used in different 

stages of several building construction projects, between 

March 1999 and March 2001. Different specialities pro-

jects were fully designed in 3D, using proprietary CAD 

packages and later exported to M3D. An international 

design team was lead by Architect Jorge Silva from Ofi-

cina de Arquitectura, OA in Lisbon. The involved spe-

cialities included architecture, water and sewage (OA, 

Portugal), structural engineering (Betar, Portugal), elec-

tricity (IDOM, Spain) and air conditioning (ARQMAQ, 

Spain). The users, connected by means of a private IP 

(over ISDN) network, have performed in their offices at 

their own locations, the design tasks that correspond to 

different stages of the following projects:  

• Luisa Zambujinho/LuisaZ, Almada  - March 1999 

• Aveiro Pavilion - July 1999 

• School Pavilion Tiana, Spain - November 1999 

• Mirante Library, Sintra - November 1999 (first 

phase)  

• House in Palma de Mallorca- March 2000 

• Industrial Pavilion in Barcelona- September 2000 

• Mirante Library, Sintra - November 2000 to March 

2001 (second phase) 

For the specific case of the Mirante Library, starting 

from November 2000 up to March 2001, the user group 

made intensive international connectivity tests and on-

line synchronous co-operative work sessions. The trials 

occurred weekly mainly among three locations: Lisbon 

(OA), Palma (Arqmaq) and Barcelona (Idom). Special 

user trial scripts where developed to structure the on-

line sessions, which were used to test and fine tune the 

performance of the M3D Editor, ADV algorithm and 

Visual IDL tool and our AEC project integration tech-

nique, within a distributed collaborative work session, 

served by a central database system. During these real-

life user trials, we have performed more than 20 design 

verification tests with success (that is, we have found a 

number of design-related issues, that were subsequently 

solved). 

ADV and Visual IDL, were judged by the users has the 

“most innovative functionality of all the modules” of the 

M3D system (comprising Multi-user Editor, Database, 

Conference Management, ADV & Visual IDL) 

[Fonseca01], enabling operations of intersection, sub-

traction, reunion, growing, safe volume computation, 

etc, with AEC shapes. With these tools, users were able 

to check if the 3D geometries of different specialities 



fulfilled the rules established by the architects, designers 

and engineers, or if, within the same speciality, the nor-

mative, geometric or common practice rules were veri-

fied. The possibility of discussing and checking in group 

and in real time, the found interference detection results, 

makes it, according to the users [Fonseca01], “an effec-

tive toll for validating the design integration of different 

specialities within a building construction project”. 

The following figures (Figures 10 to 13) depict the 

ADV results, which where embedded in the M3D Editor 

scene graph, that correspond the IDL test file of table 3 

(section 3.4), used for the LuisaZ case. This was a small 

project with 1760 triangles, including architecture and 

structural engineering. In table 4 we present the CPU 

times used by our ADV algorithm, which we have split 

in the following phases: 

• Phase 1: BREP to BSP conversion and creation of 

BSP files in the cache. 

• Phase 2: Reading the BSPs files from the cache and 

parsing the IDL script file. 

• Phase 3: Performing geometric interference tests. 

In table 5, we present the CPU times, of executing the 

same IDL test in the LuisaZ project, but for the second 

time this test was executed, that is, when the BSP tree 

cache was already pre-calculated. The results show an 

average reduction of 70% in the total CPU time, used by 

the ADV algorithm, relatively to the cases of Table 4 

(with no BSP files yet available in the cache). 

 

Figure 10: The interference results of test 1. The left tip of 

these beams are not supported by the columns, but by the 

walls. 

 

 

Figure 11: The interference results of test 2. The right tip 

of these beams are also not properly supported by the    

columns. 

 

Figure 12: The interference results of test 3. As shown, the 

air ducts are intersecting the beams. 

 

Figure 13: The interference results of test 4. According to 

the test, the stairs don’t have enough space between them 

and the roof. 



 

CPU time in ms Phase 1 Phase 2 Phase 3 Total 

1st Test 1471 171 425 2067 

2nd Test 1463 160 418 2041 

3rd Test 1451 198 473 2122 

4th Test 1493 185 594 2272 

Table 4 CPU time used by our ADV algorithm in the 

LuisaZ project with an initially empty BSP tree cache 

 

CPU time in ms Phase 1 Phase 2 Phase 3 Total 

1st Test 17 154 412 583 

2nd Test 17 168 418 603 

3rd Test 17 162 431 610 

4th Test 18 164 546 728 

Table 5 CPU time utilised by our ADV algorithm in the 

LuisaZ project with an initially complete BSP tree cache 

5. CONCLUSIONS 
The IDL language has proven to be powerful yet flexi-

ble enough to be extensively used by the M3D project 

architectural and engineering users, such as Oficina de 

Arquitectura and Betar in Lisbon, or Arqmaq and Idom 

in Spain. With IDL, users can write tests that perform 

complex, valuable design verification tasks on geomet-

ric data. Great care was taken to ensure that the lan-

guage remains consistent and yet powerful and efficient. 

With IDL, the ADV application has a standardized 

manner of knowing how to act on the geometry. The 

ADV tool reads an input IDL script file, parses it, analy-

ses the tests according to the IDL syntax and calculates 

the interferences, attaching these to the M3D Editor’s 

scene graph. Visual IDL was introduced as a bridge 

between the user and IDL. Geometric interference tests 

can now be designed, developed and deployed more 

easily and efficiently. Specifically, the wizard helps 

common users to write their typical tests with a fairly 

acceptable degree of complexity and also helps more 

advanced users with a good knowledge of the language, 

to write a simpler prototype version of a test first, allow-

ing subsequent developments of the test, perfecting it 

and improving it until it’s finished. Lastly, the wizard 

itself makes it more easier to choose the target and 

source objects (by direct picking operations) and the 

OpenGL frame window provides a clear, clean and sim-

ple vision of the types of tests, their operation and their 

final effects on the objects.  

Future activities are planned to address the analysis of 

temporal-spatial conflicts (and not just spatial, as for the 

presented results) in design verification and planning 

tasks [Akinci2000]. These may occur during the time 

planning of the building construction operations, which 

involve design elements, construction systems, dedi-

cated machinery, necessary operations, safety regula-

tions, materials and workers. All these entities impose 

specific and well known time, volumetric and spatial 

constraints, as well as safety zones, in the construction 

site time-space continuum. These must be studied con-

cerning its geometric interference, in order to improve 

safety, for a better humanisation of the construction site 

workplace, as well as to enhance the quality of the 

building construction.  
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